Volume IX (2001) fascicola 1
				
					Table of contents:
				
				
				
					- Prefata/Preface
						Download: .PDF or .PS 
					- S. Basarab 
						The dual of the category of generalized trees
						Download: .PDF or .PS 
					- V. Brinzanescu 
						Double covers and vector bundles
						Download: .PDF or .PS 
					- M. Cipu and F. Luca 
						On the Galois group of the generalized Fibonacci polynomial
						Download: .PDF or .PS 
					- S. Crivei and I. Crivei 
						Classes of modules related to Serre subcategories
						Download: .PDF or .PS 
					- A. Dimca 
						On polar Cremona transformations
						Download: .PDF or .PS 
					- T. Dumitrescu 
						A two-dimensional domain whose integral closure is not t-linked
						Download: .PDF or .PS 
					- V. V. Kirichenko, M. A. Khibina and V. N. Zhuravlev 
						Gorenstein tiled orders with hereditary ring of multipliers of Jacobson
							radical
						Download: .PDF or .PS 
					- O. Pasarescu 
						Linearly Normal Curves in P4 and P5
						Download: .PDF or .PS 
					- D. Popescu 
						Gröbner basis and depth of Rees algebras
						Download: .PDF or .PS 
					- I.Purdea and N. Both 
						Indicative propositions
						Download: .PDF or .PS 
					- M. Roczen 
						Examples of string-theoretic Euler numbers
						Download: .PDF or .PS 
					- S. Rudeanu 
						On equations in bounded lattices
						Download: .PDF or .PS 
					- W. Rump 
						Ladder functors with an application to representation-finite artinian
							rings
						Download: .PDF or .PS 
					- C. Voica 
						A bound of the degree of some rational surfaces in P4
						Download: .PDF or .PS 
					- V. Vuletescu 
						Vector bundles with trivial determinant and second Chern class one on some non
							Kähler surfaces
						Download: .PDF or .PS 
					- A. Zimmermann 
						Self-equivalences of the derived category of Brauer tree algebras with exceptional
							vertex
						Download: .PDF or .PS 
					- Instructiuni / Instructions 
						Instructiuni pentru autori / Instructions for authors
						Download: .PDF or .PS