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ON POLAR CREMONA

TRANSFORMATIONS

Alexandru Dimca

1. Introduction

In this note we discuss the topology of the gradient rational map grad(f) :
P

n → P
n associated with any non-zero homogeneous polynomial f ∈ C[x0, ..., xn].

Such mappings were recently considered by Dolgachev, see [Do].
First we recall in section 2 the topological description of the degree of

grad(f) obtained by Stefan Papadima and the author in [DP], emphasizing in
Theorem 3 the relation to the Bouquet Theorem of Lê in [ Lê]. Proposition
5 shows that this degree is related not only to the topology of hypersurfaces
but also to the topology of complete intersections.

In section 3 we give some key examples showing how one can go in both
directions on the road connecting topology to algebra and get useful new
insights each way.

In section 4 we discuss the evidence we have to support a challenging
conjecture, and add a few remarks concerning the papers [Do] and [dPW].

2. The degree of the gradient

There is a gradient map associated to any non-constant homogeneous poly-
nomial f ∈ C[x0, ..., xn] of degree d, namely

φf = grad(f) : D(f) → P
n, (x0 : ... : xn) 7→ (f0(x) : ... : fn(x))

where D(f) = {x ∈ P
n; f(x) 6= 0} is the principal open set associated to f

and fi = ∂f
∂xi

. This map corresponds to the polar Cremona transformations
considered by Dolgachev in [Do].

Let d(f) = deg(φf ) denote the degree of the gradient map. It is defined to
be zero if the gradient map is not dominant, and for a dominant map φf one
has the following equivalent definitions:
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(i) There is a Zariski open and dense subset U in P
n such that for all u ∈ U

the fiber φ−1
f (u) has exactly d(f) points;

(ii) the rational fraction field extension φ∗f : K(Pn) → K(D(f)) has degree
d(f), see Mumford [M], Proposition (3.17).

In particular, this implies that d(f) = 1 if and only if the gradient map φf

induces a birational isomorphism of the projective space P
n.

Note that in all the above we may replace the open set D(f) by the larger
open set E(f) = P

n \ {x ∈ P
n; f0(x) = ... = fn(x) = 0} without changing the

degree of the gradient map (to see this just use the description (i) given above
for the degree). Note also that the gradient map is an affine morphism but
not a finite morphism unless V = V (f) is a smooth projective hypersurface
and we work with the open set E(f). Indeed, a finite morphism is proper and
hence E(f) has to be compact.

One of the main results in [DP] is the following topological description of
the degree d(f) of the gradient map grad(f).

Theorem 1. For any non-constant homogeneous polynomial f ∈ C[x0, ..., xn],
the complement D(f) is homotopy equivalent to a CW complex obtained from
D(f)∩H by attaching d(f) cells of dimension n, where H is a generic hyper-
plane in P

n. In particular, one has

d(f) = (−1)nχ(D(f) \H).

Note that the meaning of ’generic’ here is quite explicit: the hyperplane H

has to be transversal to a stratification of the projective hypersurface V . As
remarked already in [DP] this Theorem gives a positive answer to Dolgachev’s
conjecture at the end of section 3 in [Do].

Corollary 2. The degree of the gradient map grad(f) depends only on the
reduced polynomial fred associated to f .

It is a challeging question to find an algebraic proof for this result.

Moreover, Theorem 1. can be restated in the following way, which shows
that for any projective hypersurface V , if we choose the hyperplane at infinity
H in a generic way, then the topology of the affine part X = V \ H is very
simple.

Theorem 3. For any non-constant homogeneous polynomial f ∈ C[x0, ..., xn],
the affine part X(f) = V (f) \H of the corresponding projective hypersurface
V (f) with respect to a generic choice of the hyperplane at infinity H is homo-
topy equivalent to a bouquet of (n− 1)-spheres. The number of spheres in this
bouquet is the degree d(f).
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Indeed, let ` = 0 be a linear equation for the hyperplane H. Then the
affine part X(f) can be identified to the Milnor fiber of the germ ` : ({x ∈
C

n+1; f(x) = 0}, 0) → (C, 0) using the usual passage from local to global
objects in the presence of homogeneity, see for instance [D].

The linear form ` being generic, this germ has an isolated singularity at the
origin in the stratified sense. The results in [Lê] imply that X(f) is homotopy
equivalent to a bouquet of (n− 1)-spheres and our Theorem 1 shows that the
number of spheres in this bouquet is precisely d(f).

Remark 4. Using Thom’s Second Isotopy Lemma, see for instance [D],
it follows that for any projective variety V the topology of the affine part
X = V \H is independent of H for a generic hyperplan H. For this reason we
will use the alternative simpler notation Va for the generic affine piece X of the
projective variety V . Exactly the same argument as in the proof of Theorem
3 shows that Va is homotopy equivalent to a bouquet of k-spheres when V

is a complete intersection of dimension k. In the next result we explain how
the number of spheres in such a bouquet can be computed using degrees of
gradient maps in the case of a codimension two complete intersection. The
general case is similar and is therefore left to the interested reader. For related
results see Damon [Da].

Proposition 5. Let V = V (f, g) be a codimension two complete intersec-
tion in P

n. Then
bn−2(Va) = d(fg)− d(f)− d(g).

Proof. Note that V (f) ∩ V (g) = V and V (f) ∪ V (g) = V (fg) and use the
general formula for the Euler numbers

χ(A ∩B) + χ(A ∪B) = χ(A) + χ(B)

in addition to Theorem 3.

3. Some interesting examples

Our first example is a polynomial f for which we know in advance that
d(f) = 1 and use Theorem 3 to get information on the topology of the asso-

ciated affine hypersurface Va. Identify the space C
n2

to the space of square

matrices of size n over C and let f : Cn2

→ C be the determinant function,
regarded as a homogeneous polynomial of degree n. Then it is known that
d(f) = 1, see [Do], Example 3. In fact the corresponding gradient map in this
case can be written in terms of matrices as A → A−1 and hence it is clearly a
birational isomorphism!
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The corresponding hypersurface V (f) in P
n2

is very singular and has a rich
topology due to the obvious fibration C

∗ → Gl(n, C) → D(f). For instance,
using the results in [DL] section 6. it follows that the weight polynomial of
D(f) is given by

W (D(f), t) = (1− t4)(1− t6) · ... · (1− t2n).

This shows in particular that the sum of the Betti numbers of D(f) (which
is bounded below by the sum of the absolute values of the coefficients in the
weight polynomial W (D(f), t)) or of V (f) tends to infinity for n going to
infinity.

Nonetheless the generic affine piece Va is very simple, since Theorem 3.
implies the following.

Corollary 6. The generic affine piece V (det)a is homotopy equivalent to
a (n2 − 2)-sphere.

Our second example deals with plane curves, i.e. homogeneous polynomials
in C[x, y, z]. By Corollary 2 we can and do assume that the polynomial f

is reduced. Let C = V (f) be the corresponding plane curve and let C =
C1 ∪ ... ∪ Cm be the decomposition of the curve C into distinct irreducible
components. The following result was obtained by Dolgachev using algebraic
geometry methods in [Do].

Proposition 7. The following two conditions are equivalent.

(i) d(f) = 1;

(ii) one of the following holds:

(a) m = 1 and C is a smooth conic;

(b) m = 2 and C is a smooth conic plus a tangent;

(c) m = 3 and C is a union of three non-concurrent lines. Our

aim now is to give a topological proof for this beautiful result. Recall that
an irreducible projective curve has the homotopy type of a smooth curve of
genus g with a number k of attached circles S1. In case this curve is a plane
curve of degree d, it follows that the corresponding affine piece Ca satisfies
b1(Ca) = 2g + k + d − 1. Indeed Ca is a bouquet of circles and is obtained
from C by deleting d smooth points.

Let’s see which are the minimal values for this Betti number b1(Ca).

(A) b1(Ca) = 0 iff g = k = d− 1 = 0, i.e. C is a line.

(B) b1(Ca) = 1 iff g = k = 0 and d = 2, i.e. C is a smooth conic.
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Now back to the proof of Proposition 7. The case C irreducible, i.e. m = 1
is clear by (B) above. Assume now that m = 2. Then the Mayer-Vietoris
exact sequence in homology gives

b1(C1a ∪ C2a) = b1(C1a) + b1(C2a) + b0(C1a ∩ C2a)− 1

Using (A) and (B) we can find the minimal values for b1(Ca).
(C) b1(Ca) = 0 iff both components Ci for i = 1, 2 are lines;
(D) b1(Ca) = 1 iff one component is a smooth conic and the other is a line

tangent to the conic.
This completes the proof in the case m = 2. A similar discussion shows

that for m = 3 there is just one possibility (the triangle) giving b1(Ca) = 1,
while for m > 3 there are no such configurations.

4. Hypersurfaces with isolated singularities

The aim of this section is to give support for the following.

Conjecture 8. Let f ∈ C[x0, ..., xn] be a reduced homogeneous polynomial
such that

(a) d = deg(f) > 2 and n > 2;
(b) the associated projective hypersurface V (f) has only isolated singulari-

ties.
Then d(f) 6= 1.

Theorem 9. This conjecture is true if all the singularities of the hyper-
surface V (f) are in addition weighted homogeneous.

Proof. Using Theorem 3. and known facts on the topology of special fibers
in a deformation of an isolated hypersurface singularity we have

d(f) = (d− 1)n − µ(V (f))

where µ(V (f)) is the sum of the Milnor numbers of all the singularities of
V (f), see [D], p. 161 for details.

When all these singularities are weighted homogeneous, then

µ(V (f)) = τ(V (f))

where τ(V (f)) is the sum of the Tjurina numbers of all the singularities of
V (f). Note that the left hand side of the equality in Lemma 2. in [Do] is
exactly τ(V (f)), hence in our opinion that result is valid only when all the
singularities of V (f) are in addition weighted homogeneous.
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The proof of Theorem 9. is based on recent results by du Plessis and Wall
[dPW], some of them to be recalled below.

Case 1. V (f) is a cone, i.e. after a linear coordinate change the polynomial
f is independent of x0. In this case the gradient map φf is not dominant, and
hence d(f) = 0.

Case 2. V (f) is not a cone, i.e. f0 does not belong to the ideal (f1, ..., fn).
Assume moreover that the coordinates are chosen such that f1, ..., fn, x0 is a
regular sequence in C[x0, ..., xn]. Let r be the minimal degree of a homogeneous
polynomial g such that g is not divisible by x0 and gf0 ∈ (f1, ..., fn, x0). It is
obvious that 0 ≤ r ≤ d− 1.

If r > 0, then the Theorems (4.4) and (5.1) in [dPW] imply that

d(f) ≥ r(d− 1− r)(d− 1)n−2.

This gives the result for r < d − 1. When r = d − 1, we can apply the final
remark at the end of section 4 in [dPW] and get the inequality

d(f) ≥ 2

(

n + d− 2

n

)

≥ 2(n + 1) ≥ 8.

To complete the proof we show now that for a generic choice of the hy-
perplane H : x0 = 0 one has r > 0 for any hypersurface V (f) with isolated
singularities when n > 2.

Note that r = 0 if and only if there is a linear combination fa = a0f0 +
... + anfn with aj ∈ C, a0 6= 0, such that the hypersurface V (fa) has the
hyperplane H as an irreducible component.

Consider the linear system

S = {fb = b0f0 + ... + bnfn; b ∈ P
n}

and note that this linear system does not depend (up-to automorphisms of the
projective spaces with coordinates x and b) on the choice of the coordinates
x. The base points of S are exactly the singular points V (f)sing of our hy-
persurface, hence a generic member of the linear system S is smooth outside
V (f)sing.

It follows that the set

S0 = {b ∈ Pn;V (fb) contains a hyperplane}

is a closed proper subset of P
n. In particular dim(S0) < n. The algebraic

subset

T0 = {(b,H); b ∈ S0 and V (fb) contains the hyperplane H}
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has dim(T0) = dim(S0), since the first projection has finite fibers. It follows
that Y0 = pr2(T0) is a closed proper subset of the dual projective space P

n

parametrizing the hyperplanes. Hence a generic hyperplane is not a component
for any hypersurface V (fb).

If we choose the coordinate system on P
n such that x0 = 0 is an equation

for a hyperplane not in Y0, then we get r > 0 as we have claimed.

Remark 10. The Conjecture 8. is also true when V (f) is a Q-homology
manifold. Indeed, in this case it follows as above that

d(f) = (d− 1)n − µ(V (f)) ≥ (d− 1)n − b0
n−1(W

d
n−1)

where W d
m denotes a smooth projective hypersurface of dimension m and de-

gree d and b0
j stands for the primitive Betti numbers, see Theorem (5.4.3) in

[D] for details. Using the equality (5.3.27) in [D], we get

d(f) ≥ b0
n−2(W

d
n−2) > 1.
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