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PREFACE

From September 25 to October 6, 1995 a Workshop and a Meeting on Rep-
resentation Theory of Groups and Algebras had been held at the Ovidius Uni-
versity in Constanta, Romania. The WORKSHOP consisted of five series of four
lectures each on the topics

1. “Computer algebra and representation theory”
“Auslander—Reiten sequences and derived categories”

“Structure of blocks with cyclic defect and Green correspondence”
“Stable and derived equivalences of blocks”

5. “Clifford theory and the Zassenhaus Conjectures”

o N

and a demonstration of the Computer-Algebra-System MAPLE and the Group-
Systemn GAP.

The intention of this workshop was to report on some of the recent devel-
opnents in representation theory of groups and algebras, and to introduce the
audience to the use of computers in group and representation theory.

The emphasis of the INTERNATIONAL MEETING in the second week was on
representations of groups and algebras.

We would like to express our gratitude to Jon Carlson, Vlastimil Dlab, IKarl
Gruenberg, Idun Reiten and Claus Ringel for each giving a series of three lec-
tures during the meeting.

Special thanks go to the University of Constanta which supplied us with a
pleasant environment for the meeting. )

The financial support of the Volkswagen-Stiftung has made this meeting
possible and we are very grateful. Also the Deutsche Forschungsgemeinschaft
has supported many of the participants fromm Germany, we also thank it.

Viviana Ene, Christina Flaut and Michael Kauer have been the genies behind
the scene without whose help and engagement the meeting would not have run
as smoothly as it did.

There were many more people who helped us with the organization of the
meeting. We do not name all of them, but we thank them.

Maybe it is worthwhile to present some data about the University with name
of the Latin poet Ovid. Publius Ovidius Naso has been banished by the Roman
emperor Augustus in the first decades of the Christian era (approx. 9 a. d. -
16/17 a. d.) to the ancient Greek (Greece) then Roman colony of Tomis on the
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vi PREFACE

coast of the Black Sea (then Pontus Euxinus), where he also died!. Constanta
has been built on the ruins of Tomis. It 1s now the biggest Romanian harbour.
The University was founded in 1990, growing out of a Pedagogical Institute and
a Technical University. It has now seven faculties, Letters and Theology, His-
tory and Law Sciences, Economical Sciences, Natural Sciences, Medical Faculty,
Engineering and Mechanics and Mathematics, with altogether more than 5.000
students. A new campus is now in construction and the University is developing
each day.

An exposition of the lectures from the workshop will constitute PART 1 of
these proceedings. .

The contributions from the talks during the meeting will make up ParT Il
of the proceedings and should give the reader a flavour of the lectures during
the meeting.

We highly appreciate, that the participants did send us their contributions
to be published in the “ANALELE STIUNTIFICE ALE UNIVERSITATII OVIDIUS,
CONSTANTA”, thus promoting the young University of Constanta.

We should like to express our gratitude to all the referees for all their help
and to the “ANALELE STIINTIFICE ALE UNIVERSITATII OvIDIUS, C'ONSTANTA"
for publishing this volume.

The TgXnical preparation of these volumes was done with great care and
many time consuming trial and error checks by Michael Kauer and Martin
Wursthorn. Qur special thanks go to them for their courageous engagement in
preparing these notes. -

Constanta, March 1996
Mirela Stefanescu
Klaus Roggenkamp

!Contrary to the participants of this meeting, Ovid did not at all enjoy his stay in Tomis.
We have included for leisurely reading some of Ovid’s ‘lamento’ about this place from his
“Tristia’, p. ix.
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OVID’S DESCRIPTION OF HIS LIFE, BEING BANISHED TO TOMIS — NOWADAYS
CALLED (CONSTANTA

Ovid, “Tristia’?

IX. The Origin of Tomis. Here too then there are Greek cities (who would
believe it?) among the names of the wild barbarian world. But the ancient
name, more ancient than the founding of the city, was given to this place ’tis
certain, from the murder of Absyrtus. For in the ship® wicked Medea fleeing
her forsaken sire brought to a haven her oars, they say, in these waters. Him in
the distance the lookout espied and said, “A stranger approaches from Colchis;
I recognize the sails!”

The Colchian maid conscious of her guilt smote Ler breast with a hand that
had dared and was to dare many things unspeakable, and thought her heart still
retained its great boldness, there was a pallor of dismay upon the girl’s face. -

And so at the sight of the approaching sails, she said. “I am caught!™ and I
must delay my father by some trick!?” As she was seeking what to do, turning
her countenance on all things she chanced to bend her gaze upon her brother.
When aware of his presence she exclaimed, “The victory 1s mine! His death
shall save me!” Forthwith while he in his ignorance feard no such attack she
pierced his innocent side with the hard sword. Then she tore him limb from
limb, scattering the fragments of his body throughout the fields so that they
must be sought in many places. And to apprise her father she placed upon a
lofty rock the pale hands and gory head.

Thus was the sire delayed by his fresh grief, lingering while he gathered those
lifeless limbs, on a journey of sorrow.

So was this place called Tomis because here, they say, the sister cut to pieces
her brother’s body.4.

X. The Rigours of Tomis. If there be still any there who remembers banished
Naso, if my name without me still survives in the city, let him know that beneath
the stars which never touch the sea I am living in the midst of the barbarian
world. When grim winter has thrust forth his squalid face, and the earth is
marblewhite with frost, and Boreas and the snow prohibit dwelling beneath the
Bear, then ‘tis clear that these tribes are hard pressed by the shivering pole.
The snow lies continuously, and once fallen, neither sun nor rains may melt it.,
for Boreas hardens and renders it eternal. So when an earlier fall 1s not yet
melted another has come, and in many places ‘tis wont to remain for two years.

?We would like to thank Karl Gruenberg to supply us with the english translation of this
part of the “Tristia’, quoted from an english translation by A. L. Wheeler, second edition by
G. P. Goold

3The Argonauts

40vid derives Tomis (Tomi) from Tepvw, “to cut”



With skins and stitched breeches they keep out the evils of the cold: of the
whole body only the face is exposed. Often their hair tinkles with hanging ice
and their beards glisten white with the mantle of frost. Exposed wine stands
upright. retaining the shapes of the jar, and they drink. not draughts of wine,
but fragments. _

Why tell of brooks frozen fast with the cold and how brittle water is dug out
of the pool? The very Hister freezes as the winds stiffen his dark flood, and
winds its way into the sea with covered waters. Where ships had gone before
now men go on foot and the waters congealed with cold, feel the hoof-beat of
the horse. I may scarce hope for credence, but since there is no reward for a
falsehood. the witness ought to be believed.

I have seen the vast sea stiff with ice. a slippery shell holding the water
motionless. And seeing is not enough; 1 have trodden the frozen sea, and the
surface lay beneath an unwetted foot. At such times the curving dolphins canuot.
launch themselves into the air; if they try, stern winter checks them; and though
Boreas may roar and toss his wings, there will be no wave on the beleaguered
flood. Shut in by the cold the ships will stand fast in the marble surface nor
will any oar be able to cleave the stiffened waters. I have seen fish clinging fast
bound in the ice, yet some even then still lived. '

So, when the Hister has been levelled by the freezing Aquilo the barbarian
enemy with his swift horses rides to the attack — an enemy strong in steeds
and In far flying arrows — and lays waste far and wide the neighbouring soil.
Some flee, and with non to protect. their lands their unguarded resources are
plundered, the small resources of the country, flocks and creaking carts all the
wealth the poor peasant has. Some are driven, with arms bound behind them.
into captivity, gazing back in vain upon their farms and their homes; some fall in
agony pierced with barbed shafts. for there is a stain of polson upon the winged
steel. What they cannot carry or lead away they destroy. and the hostile Hame
burns the innocent hovels. Even when peace prevails, there is timorous dreac
of war, nor does any man furrow and soil with down-pressed share. A foe this
region either sees or fears when it does not see; idle lies and soil abandoned in
stark neglect. Not here the sweet grapes lving hicden in the leafy shade nor
the frothing must brimming the deep vats! Fruits are denied in this region.
This then, though the great world is so broad, is the land discovered for my
punishment!

XI. To an Enemy. A barbarous land, the unfriendly shores of Pontus, and
the Maenalian bear with her companion Boreas I>ehold me. No interchange of
speech have T with the wild people; all places are charged with anxiety and
fear. As a timid stag caught by ravenous bears or a lamb surrounded by the
mountain wolves is stricken with terror. so am 1 in dread, hedged about on all
sides by warlike tribes, the enemy almost pressing against my side. Were it a
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slight punishment that I am deprived of my dear wife, my native land, and my
loved ones; were I supporting no ills but the naked wrath of Caesar, is the naked
wrath of Caesar too small an 1117

XIIL. Springtime in Tomis. The cold is now weakening beneath the zephyrs
and at the year’s end a winter more endless than those of old curbs its rigour.
Now merry boys and girls are plucking the violets that spring up unsown in the
fields, the meadows are abloom with many—coloured flowers, the chatty birds
from unschooled throats utter a song of spring, and the swallow, to put off the
name of evil mother®, builds beneath the raftevs the tiny house that cracles her
young. The grain that lay in hiding beneath the furrows sends forth from the
unfrozen soil its tender tips. Wherever grows the wine, the bud is just pushing
from the shoot and wherever grows the tree. the branches are just budding. In
vonder land there is now rest, and the noisy wars of the wordy forum are giving
place to festivals one after another: now there is exercise on horse. now there
15 play with light arms, with the bhall or the swift circling hoop; now the voung
men. reeking of slippery oil, are bathing wearied limbs in Virgin water®. The
stage 1s full of life.

But mine is to feel the snow melted by the spring sun and water which 1s
not dug all hard from the pool. The sea, too. is no longer solid with ice, nor
as before does the Sauromatian herdsman drive his creaking wagon across the
Ister. Some ships will begin to voyage even as far as here, and sooun there will be
a friendly bark on Pontus’ shore. Eagerly I shall run to meet the mariner and
when I've greeted him. shall ask why he comes, who and from what place he is.
Rarely does a sailor cross the wide seas from [taly. rarely visit this harbourless
shore. Yet if he knows how to speak with the voice of Greek or Roman (this
last will surely be the sweeter), whoever he is, he may be one to tell faithfully
some rumour, one to share and pass on some report. May he, I pray, have power
to tell of Claesar’s triumphs and vows paid to Jupiter of the Latins; that thou,
rebellious Germany, at length hast lowered thy sorrowing head beneath the foot
of our leader”. He who tells me such things as these — Things it will grieve me
that [ have not seen — shall be forthwith a guest within my home. Ah me! s
Naso’s (Ovid’s) home now in the Scvthian world, and dost thou, Pontus, assign
me thy soil as an abode? Ye gods. give Caesar the will that not here may be
my hearth and home but only the hostelry of my punishment!

“Procne
tFrom the aqueduct called Virgo
"Tiberius, who took the field against the Germans after the defeat of Varus, AL DLy
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XIII. A Birthday at Tomis. Lo! to no purpose — for what profit was there
in my birth? my birthday god® attends his anniversary. Cruel one, why hast
thou come to increase the wretched years of an exile? To them thou shouldst
have put an end. Hadst thou any love for me or any sense of shame, thou wouldst
not be following me beyond my native land, and where first 1 was known by
thee as an ill-starred child, there shouldst thou have tried to be my last, and
when I was forced to leave Rome, thou too, like my friends shouldst have said
in sorrow “Farewell”.

What hast thou to do with Pontus? Is it that Caesar’s wrath sent thee too to
the remotest land of the world of cold? Thou awaitest, I suppose, thine honour
in its wonted guise: a white robe hanging from my shoulders, a smoking altar
garlanded with chaplets, the grains of incense snapping in the holy fire, and
myself offering the cakes that mark my birthday and framing kindly petitions
with pious lips. Not such 1s my condition nor such my hours, that I can rejoice
at thy coming. An altar of death girdled with funereal cypress is suited to me
and a flame made ready for the up-reared pyre. Nor is it a pleasure to offer
incense that wins nothing from gods, nor in such misfortunes do words of good
omen come to my lips. Yet if I must ask thee something on this day, return
thou no more to such a land, I pray, so long as all but the remotest part of the
world, the Pontus, falsely called Euxine® possesses me.

XIV. Epilogue to an Unnamed Friend. Cherisher and revered protector of
learned men what doest thou — thou that hast ever befriended my genius? As
thou once wert wont to extol me when I was in safety, now too dost thou take
heed that [ seem not wholly absent? Dost thou assemble my verse except only
that “Art” which ruined its artificer? Do so, I pray, thou patron of new bards;
so far as may be, keep my body!? in the city. Exile was decreed to me, exile
was not decreed to my books; they did not deserve their master’s punishment.
Oft is a father exiled on a foreign shore, yet may the exile’s childpen live in the
city. Pallasfashion!! were my verses born from me without a mother; these are
my offspring, my family. These I commend to thee; the more bereft they are,
the greater burden will they be to thee their guardian.

8The genius natalis to whom the Roman offered sacrifice on his birthday. The genius was
believed to be a spiritual counterpart of the individual.

9Euxine means “hospitable”.

10§ ¢. my poems

1 pallas was born from the head of Zeus
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ELEMENTARY PROPERTIES OF GROUP-RINGS AND
ORDERS

K. W. ROGGENKAMP

Mathematisches Institut B, Universitat Stuttgart
Pfaffenwaldring 57, D-70550 Stuttgart, Germany

ABSTRACT. Here we recall some general results from the theory of orders
and representation theory of groups, as separable, maximal, hereditary and
Green orders, vertices, sources and blocks, and we introduce some basic
facts about group cohomology, which may be of use for the understanding
of the following contributions. and in particular those in Volume II. No
proofs are given. .

1. DEFINITIONS AND NOTATIONS

We assume that the reader is familiar with BASIC ALGEBRA and ALGEBRAIC
NUMBER THEORY. We also freely use constructions from HOMOLOGICAL ALGE-
BRA. Moreover, we also assume the basic facts from ordinary representation
theory and character theory. “

We shall first FIX THE NOTATION, which is used throughout these notes: For a
commutative ring R we denote by maz(R) the set of maximal ideals of R ; this
set becomes a topological space under the ZARISKI TOPOLOGY.

If S 1s aring and M, N are left S-modules, we shall often use the NOTATION
Homg(M,N) = (M,N)s .

For the arithmetic we shall denote by (,, a primitive n-th root of unity over 7,
and for groups we shall denote by C,, the cyclic group with n elements.

This research was partially supported by the Deutsche Forschungsgemeinschaft and the
Volkswagen Stiftung.
Received by the editors November 1995.
1991 Mathematics Subject Classification. Primary 16G30.
1



[

K. W. ROGGENKAMP

As general references for orders and their representations we list Curtis-Reiner
[C-R1; 82], [C-R2; 87]. Reiner [Re; 75], Gruenberg [Gr; T0], Roggenkamp-Huber-
Dyson [RHD; 70 1], Roggenkamp [Ro; 70 2], [Ro; 92dmv], [Ro; 94], Reiner-Rog-
genkamp [ReRo; 79)].

Definition 1.1. A DEDEKIND DOMAIN is an integral domain, such that every
finutely generated torsion free module is projective. It has a field of fractions I\ .
By A we denote a finite dimensional separable K -algebra

An R-ORDER A IN A is an R-algebra A C A such that

1. A is finutely generated as R-module and
2. KA=A"%

A (LEFT) A-LATTICE s A-module. which 1s finitely generated and torsion free
over R. We denote the category of left A-lattices and (homo-)morphisins by
AaMO.

Note 1.2. 1. For R one should think of as the ring of algebraic integers in
an algebraic number field or of the polynomial ring in one variable over a
field.

2. Since an R-order A is finitely generated over R, every element A € A is
INTEGRAL OVER R. But contrary to the commutative situations, the set
of all elements in 4, which are integral over R does not form a ring. The

matrices
(0 1/2 (0 0
a:= (O 0 ) and b:= (1/2 0)

are surely integral over 7, but (a + b)? is not.

3. A typical example of an R-order is the GROUP-RING R over R of a finite
group . 1. e. it is R-free with basis {24}4ec . and the multiplication is
induced from that in G 2. In order that the underlying algebra 4 := KN
is separable, we must however AssUME that (cher(K),|G]) =11

4. Since R is a Dedekind domain, every A-lattice is projective as R-module.

5. In case R is a principal ideal domain and A = RG, the A-lattices corre-
spond categorically to the REPRESENTATIONS OF G OVER R 1. e. homo-

morphisms G —— Gl(n. R) ®. For an arbitrary Dedekind domain, every
R-representation of (¥ gives rise to an RG-lattice. but not conversely. since

'"This means that 4 is semi-simple and the center of 4 is a finite product of separable

field extensions of ' i.e. 4 = [[%

Y1 (Di)n, , where D; are skew-fields, whose centers are

separable over K . :

2This means that A contains a -basis of 4 .

2We will in general identify a4 with g.

4This means that the group order and the characteristic of A" are relatively prime.
“This is the group of invertible n x n-matrices over R .
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not every RG-lattice comes from a representation — note: not every R-
lattice is R-free.

One word of caution is advisable: In A M? an epimorphism M —— N
is not necessarily surjective, but every surjective homomorphism is an

_epimorphism®.
. Thus, if we use the notion of projective with respect to epimorphisms,

free Z-modules would not be projective. We have to use the notion of
SURJECTIVE.

. The same remark applies for a short exact sequence of A-lattices:

0 Mo g Py 0.

Here we require o to be monic’, and 3 must be surjective.
PROJECTIVE A-LATTICES are then those lattices M”  where every se-
quence as above is split. A A-lattice is projective if and only if it is a
direct summand of a finitely generated free left A-module.

. On AM?Y we have a duality from left A-lattices to right A-lattices MY :
=) A

¥ 1 aM® — MO M —— Homp(M,R) :=M".

The reason is that A-lattices are projective as R-modules, and so the dual
Hompg(—, R) is an exact functor.

An INJECTIVE (with respect to short exact sequences of lattices) LEFT
A-LATTICE 15 of the form P* for a projective right A-lattice P. It has
with respect to lattices the splitting property of short exact sequences:
1. e. if a left A-lattice I is an injective A-lattice, then Ewati{M. 1) =0 for
every M & aMY . These injective A-lattices are definitely not injective
A-modules.

A is sald to be a GORENSTEIN ORDER, provided, each projective left A-
lattice is also an injective A-lattice. The notion of Gorenstein is symmetric
with respect to left and right lattices. Note that a Gorenstein order can
never have finite global dimension®.

Since A-lattices are torsion-free over R, we have for the global dimensions

gl.dim(A) = gl.dim. (AM°) + 1.

GROUP-RINGS ARE SPECIAL types of orders, since they have additional struc-
tures, which we shall discuss briefly:

¢ The map & —— 7 is an epimorphism, but not surjective.

"This is the saine as injective.

8 A ring U is said to have global dimension bounded by n , provided every finitely generated
left A-module has homological dimension bounded by n i. e. a projective resolution of length
less or equal to n.
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Note 1.3. 1. For a group-ring RG we have another duality: With G we
can associate the opposite group G ¥ Thus each left R(G;-module is in a
natural way a right RG°?-module. More precisely, we have the ANTIPODAL
MAP g — ¢~'. Using this one can change from right to left modules and
vice versa.

2. If we combine this with the above duality, we can make for M € reM°
then the module M* again into a left RG-lattice, called the CONTRAGRE-
DIENT OF M .

3. An important property of a group-ring RG of a finite group is that it is
Gorenstein. It is even symmetric; i-e. RG ~ RG*. This means that
the contragredient of a projective module is again a projective module.
For an indecomposable RG-lattice we thus get — in case the Krull-Remak-
Schmidt-Theorem  is valid - a bijection on the indecomposable projective
modules, this is called the NAKAYAMA TRANSFORMATION.

4. We also have SPECIAL CONSTRUCTIONS of RG-modules, which comes from
the fact thatwe have the ANTIPODAL MaP g — g~ % : Given two left RG-
modules M and N, we can make Hompg (M, N) into a left RG-module,
by defining:

(9-8)(m):=g-d(g”" -m)forge G ,éd€ Homp(M,N).

5. We also can make the tensor product M @z N into a left RG-module, by
defining

g-(m® n)=¢-m® g-n and then extending R-linearly!?.
6. The tensor product- and the hom- constructions are linked by the formula:
Homp(M,N*)~ M ®@r N as RG-modules.

‘7. A very important property of the tensor product of two RG-modules is
the following observation: Assumme that M is RG-projective and N is
R-projective, then

M ©r N is RG-PROJECTIVE .
Definition 1.4. For a maaimal ideal p of R we denote by R, the LOCALIZA-

TION of R at p and by ﬁp 1ts COMPLETION. Both the localization and the com-
pletion are principal ideal domains. For

M € \M° we put M, =R, &r M and ﬁp = I?tp Op M.
Simalar notation 1s used for A :

Ay =Ry &p Aand Ay = Ry ©r A

hopg=g-h.
¥ Tough g € G acts diagonally, the scalars » € R act as usual.
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Note 1.5. 1. We also point out that Kp-lattices are IA%p—free.
2. Given a A-lattice M we have

M= (] M,.
pemax(R)

This means that a lattice is determined by the local data. Note that here
the local lattices are given PHYSICALLY. If one replaces the local lattices
by isomorphic copies, the intersection will in general be NOT ISOMORPHIC
to the original one. This will lead to the notion of GENUS.

Similarly, A 1s the intersection of its localizations.

Conversely, given A, -lattices A (p;) C V' lying in a FIXED 4-module V
for 1 <2 < n. then there exists a A-lattice M with localizations M (p;)
for this finite number of maximal ideals p; .

If M e /\uMO then

M = (K &g M)N M, .

This means that M is determined by the 4-module K @r M and the
completion of M . Moreover, given M € ;\ADMO and an A-module V' with

K, o V=K, Or, M,
then
M=VAM

1s a Ap-lattice with completion M.

A A-lattice P is projective if and only if P, is projective for every p €
maz(R) if and only if ﬁp is projective for every p € max(R). (This
follows from Note 2.10 below.)

2. LATTICES: LOCAL VERSUS GLOBAL

Let us first consider an Artin N-algebra 4 - not necessarily semi-simple. Let
aM/ be the category of finitely generated left A-modules. Though the repre-
sentation theory of 4 is not at all understood in general, there are some features,

which make life a bit easier (cf. [Ba; 68], [ARS; 95]):

1.

2.

CANCELATION holds in 4 M7 i e.
X®Z~X@Y implies X ~Y .

The KRULL-REMAK-SCHMIDT THEOREM holds; i. e. every module de-
composes UNIQUELY — up to isomorphism - into indecomposable modules.
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3. Every X € 4M' has a PROJECTIVE COVER:

: 3
0— 0 (¥) 2 Px) 2 x —

where P(.X) is projective and 3 is an ESSENTIAL EPIMORPHISM: i. e. if
Im(a)+ N = P(X) for asubmodule N of P(X) then N = P{X). By this
property both P(X} and £,(.X) are uniquely determined by X . If 4 is
self-injective (Gorenstein), then Q1 (.X) has no projective direct summand.

Proposition 2.1. Let A be an order over the complete local Dedekind domain
R. Then :

1. cancelation holds in \MP .
2. the KNrull-Remak-Sehmidt Theorem is valid in aM"
3. projective covers exist for M € M.

Hence the representation theory of orders over complete Dedekind domains has
similar nice properties as that of Artin algebras.

An important application of this result is

Lemma 2.2 (Noether-Deuring).

Let S be a finite R-free extension of the complete Dedekind domain R and lel
M, N € aAMY. Then

SOr M ~sgn SOr N if and only of M ~5 N .

We now assume that R is a SEMI-LOCAL DEDEKIND DOMAIN; 1. e. R has only
finitely many maximal ideals. Then R 15 a principal ideal domain.

Proposition 2.3. Let A be an R-order, where R is a semi-local Dedekind do-
main. Then in s\ MO

1. cancelation holds,
2. the Krull-Remak-Schmidt Theorem does not hold in general,
3. projective covers do not exist in general.

The first statement follows from the close relation between A-modules and their
completions:

Let J = rad(R) — note that this is different from zero, since R is semi-local.
The J-ADIC COMPLETION of R 1s

f? = [hnlproj_(R/J”) - H }A?,p

peEMmar(R)
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is the product of the completions of R at its maximal ideals. If

R—Ronh= @ A
peémax(R)

is the completion of A . then we define for M € A MY the completion as M=
R®pr M . Note that M ~ €D c,..o0(r) My - We then have the following result:

Proposition 2.4. Let M, N € \MP then

M ~ N if and only if M ~ N .

In particular, if R is local, then two A-lattices are isomorphic if and only if their
completions are 1somorphic.
The cancelation property follows easily from this result.

We now turn to the GLOBAL SITUATION; 1.e. R1s an ARBITRARY DEDEKIND DO-
MAIN with —in general - infinitely many maximal ideals; e. g. R = alg.int(K) is
the ring of algebraic integers in an algebraic number field &', finite dimensional

over (.

Note 2.5. Let A be an R-order in a separable [ -algebra, for a Dedekind do-
main R. Then in , M

1. cancelation coes not hold in general - not even for projective A-lattices,
2. the Krull-Remak-Schmidt Theorem does not hold in general,
3. there do not exist projective covers in general.

The theory of GENERA 1s the ARITHMETIC OF ORDERS and malkes integral rep-
resentation theory DIFFICULT and also FASCINATING — it plays global represen-
tation theory versus local representation theory.

Definition 2.6. We say that two A-lattices M, N lie in the SAME GENUS (in
signs M V N ), provided M, ~ N, for every p € max(R). The GENUS of «
A-lattice M consists of the isomorphism types of A-lattices in the same genus
as M .

If R is semi-local, then M vV N if and only if M ~ N |

The question of when two lattices lie 1n the same genus is a very delicate one
and involves class groups of finite extensions of R [Ja; 68a], [Ja; 63b].

If R is the ring of algebraic integers in the algebraic number field K", then the
genus of R consists precisely of the non-zero ideals in R and the non-isomorphic
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modules in the genus of R constitute the cLASS GROUP of R. Given two non-
zero ideals a and b, CLASS FIELD THEORY implies that al™ ~ b{(™ 1 for some
natural number 7.

Let now R be a Dedekind domain and let A be an R-order. The next result
generalizes in some sense class field theory.

Proposition 2.7. Let M, N € \M" | then the following are equivalent:

1. MVN 1. e. M and N lie in the saume genus,

2. MM ~ NG for some n € M.
Though lattices in the same genus are in general not isomorphic, they never-
theless share an important property:
Proposition 2.8. Let MV N .| Then M is indecomposable if and only if N is
mndecomposable. This means that decomposition ts ¢ GENUS PROPERTY.
This result 1s a consequence of the following observation:

Lemma 2.9. Given an exact sequence

E: 0 M’ M M 0
of A-lattices. Then £ is split 1f and only if for every p € max(R) the sequence

i 0 — Mé—»]v{p———M{,'——» 0
15 splat.
Note 2.10. The reason for this result is twofold:

1. Eati(M”, M') is a finitely generated R-torsion module,
2. Ry ®r Exth(M", M) ~ Ewt}\v(]\'{‘;’, M), since Ry is R-flat.

We have pointed out that projective covers for M € A M" do not exist in general;
there 1s for group-rings though a special property of the kernels of projectives
mapping onto M .

We first recall:
Lemma 2.11 (Schanuel’s Lemma).

Given M € s M and two ezact sequences

0 Q P M — 0 and
0 Qs Py M 0,

1 A7(") denotes the direct sum of n copies of the module M .
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with P; projective, then
: Py P Q.

We now turn to the ARITHMETIC SITUATION for group rings: R is the ring of
algebraic integers in an algebraic number field and G is a finite group. By A
WE DENOTE THE GROUP-RING RG.

An important property of projective RG-lattices 1s given by:
Lemma 2.12. Let P be an indecomposable projective left A—lattice_, then P lies

in the same genus as the left module A A .

Definition 2.13. Let M € AM° and let us be given a PROJECTIVE RESOLU-
TION .

0 Q P M 0

with P projective. We decompose @ = C'(a) & @, where Q is projective and
C'(«) has no projective summands. Then C'(«) is called « CORE OF M.

Lemma 2.14. Let C be a core of M . Then there exists a projective resolution
of M of the form

0 C P M 0.

Proof: Since C 1s a core, there exists an exact sequence

E : 00— C®Q —+P — M — 0.

Let o : C @ @ — (' be the projection. Then the push-out of & along « has
the desired property. ©q.e.d.

An important property of cores is given in the following

Proposition 2.15. 1. Two cores C and C' of M lie in the same genus.
2. Let C be a core of M and assume that C' VvV C, then C’ is also a core of
M.

3. This means that the CORES OF M CONSTITUTE A FULL GENUS CLASS.
Proof: Assume that we are given two projective resolutions

51 . 0——’6'1@Q1——>P1'—>A’[——>0&lld
En : 0 — CQEE’QQ—>PQ'——-—>A/[—-—>0,

where (7}, 'y are cores of M . Then Schanuel’s Lemma 2.11 implies

Cl@Q1®P22C2J{%Q2%E*P1-
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Using the fact that the projective modules are locally free that the cores do not
have a locally free direct suimmand, and that decomposition is a property of the
genus (cf. Proposition 2.8) we conclude ] Vv Cs.

Conversely, let C'V (' . The sequence &; represents an element in Ext} (M, C1
@1) . Because of Note 2.10 we have )

Exti(M,C)) ~ Exty(M,C).

Thus &1 corresponds — up to equivalence of short exact sequences — to a unique
extension £ in Ext} (M,C ® Q;), say

E + 00— CoH»Q — X — M — 0.

Since 'being projective’ is a local property (cf. Notes 1.5, 4.)), we conclude that
X 13 projective. And hence (' is a core of M . q.e.d.

3. SOME SPECIAL ORDERS

For the results in this section we refer to the books [Re: 75], [RHD: 70 1].
Definition 3.1. Let A be an R-order. A s called

1. HEREDITARY, if every A-lattice is projective;

2. MAXIMAL, if it is « maximal object among the R-orders in 4 under the
nclusion relation;

3. SEPARABLE, if A is projective as A° = A Or A% -module’?. A® is called
the EVELOPPING ORDER fo A.

Proposition 3.2. The order A is mazimal (hereditary, separable) if and only
if Ay is mavimal (herveditary, separable) for every p € mawx(R) if and only if A,
is maximal (heveditary, separable) for every p € maa(R).

Theorem 3.3. 1. Let R be a Dedekind domain and let A be an R-order in
the SEPARABLE KN -algebra A . Then A is contuined in a - not necessarily
unique - mazimal R-order. (We point out that it is not enough to require
that A is semi-simple.)

2. Let R:= R := I?ip be complete and let A = D be a skew-field. Then there
exists @ UNIQUE MAXIMAL R-ORDER Q := Q(D) in D. (It consists of all
elements in D which are integral over R '3.) Moreover, rad(Q2) = wq-Q =
Q-wo ' is a principal ideal for some wy € Q.

'2This means that the Hochschild cohomology groups Hi.(A, ) vanish forn > 1.
12 These are elements in D satisfying a monic polynomial over R .
YThis is the Jacobson radical.
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3. Assume that A is a connected '° maxinal order in the separable K -algebra
A, then A is simple, say A = (D), '° for a skew-field D and A is conjugate
i A to ()., 2 as above.

4. Assume that A is a basic*” connected hereditary order, then A = (D), 1s
simple and A is conjugate in A to

QO Q9 - Q Q
we £ Q0 - Q Q

wo wy N - Q Q

- N , (1)
wo Wy Wo Q@ 0

wo wo wo o wo 2/,

where wy = wg - N =0 - wy = 1rad(Q) and Q is the unique maximal order
m D . Moreover, we have

wy O O Q 0
wy wy O QO 0
wo W wp Q Q
rad(A)= |~ T T . (2)
wp wo wo wp £
wo Wy Wo wo  wo

—_— n

5. Let A be a separable connected R-order. then 4 = (L), s simple and A
1s conjugate in A to (S), . where S 15 the ring of alyebraic integers in the
unramified extension L of K 8.

We shall next list an interesting characterization of hereditary orders. But first
we have to make a definition.

Definition 3.4. Let R be a complete Dedekind domain and let A be an R-order.
If J .= rad(\) we define the LEFT-ORDER OF rad(A) - sometimes this is also
called the LEFT RING OF MULTIPLIERS of rad(A) - as

AN=AA)={red|lr-JCJ}.
This surely is an R-order in A .

Proposition 3.5. An R order A over the complete Dedekind domain R is here-
ditary if and only «f Aj(A) = A of and only iof rad(A\) 1s a projective left A-lattice.

'%This means that A is indecomposable as ring.

Y This denotes the full matrix ring over D .

1" This means that in the (unique) decomposition of A into indecomposable left modules, -
there are no multiplicities.

18 This means that S is R-free of finite rank and rad($) = 7'(1(1(15) -5
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This can sometimes be used to reduce questions about an arbitrary order to
questions about a hereditary order, by going up the FINITE cHAIN of radical
orders, until one reaches a hereditary order.

We can GENERALIZE THE STRUCTURE OF A HEREDITARY ORDER in the follow-
ing way:

Definition 3.6. Let R be complete, and let Q be a local '* R-order. and let wg
be a reqular >0 element and assume that wo :=wp - Q= Q-wy. Then the order

w £ 9 - Q Q
wog wyg £ - Q Q
H(Quwo) = |~ — . 3
wo wo wo -
wo wo wo o wo £

. n
18 called @ GENERALIZED HEREDITARY ORDER OF SIZE 7.
Then there ts a special ideal

wo £ Q

we wo © - QO
W Wy wo Q Q
a(Quwo)y: =" T T y : (4)
wo wo wo - wo £
wo Wwp Wo - wg wy

n

We note that H(Q,wo)/a(Q.wo) is a product of n copies of the local rings Q/wy .

Such a generalized hereditary order can be characterized as follows:

Proposition 3.7 ([Ro; 92]). Let A be a basic R-order, and assume that A has
a fulP' two-sided ideal I such that

1. A/I is a product of local algebras,
2.1 =A«,
3. I Crad(h),

then A is a generalized hereditary order.

These generalized hereditary orders play an important role in the STRUCTURE
OF BLOCKS WITH CYCLIC DEFECT of group-rings.

19This means that Q/rad(2) is a skew-field - equivalently Q is indecomposable as left
module. .

20This means that wp is a unit in 4.

21 This means N - [ = A.
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For the description of these blocks the next construction is essential. We start
with an example:

Example 3.8. Let G = (), x Cy, where ¢|(p — 1) and p is an odd prime, be
the semidirect product??. Here C, should be identified with the p-th roots of
unity over Z, and Cj should be viewed as the appropriate subgroup of the
Galois-group of Q[¢,]. The semidirect product structure is then given by the
Galois-action. Let S = Z[(,] be the fixed ring of Z[¢,] under C,, and denote
by € the completion of S at p - note that p is totally ramified in 5. Let
7 Q = rad() and put wop = m. Then Q/n - Q> Z/p - Z. Let A := H(Q, wy)
be the corresponding GENERALIZED HEREDITARY ORDER of size ¢. Then there
is a natural epimorphism™3

q
A T]z/mz
We let R= ZP and A = []? R. Then we also have an epimorphism

q
AN Tl zez.
We thus can form the pull-back

T

9
_/B.Hz/p.z.

Lemma 3.9. The order 11 is-isomorphic to the integral group-ring RG .

We shall now generalize this construction:
Definition 3.10. Let {H; := H(Qi,wi)}i<i<n and {D; = H(Aj,85)i<j<m
be generalized hereditary orders of size n; and m; resp. Assume that
Qo Qif(wi - Q) ~A;/(6-A;), 1<i<n, 1<j<m
is the same for all {14}, and that

m 7.

E m; = E n; = v.
i=1 i=0

22 As set this is the product, and the multiplication is twisted by the action of Cqon Cy.
22 At the beginning we have pointed out the epimorphisms are not necessarily surjective:
however, we shall nevertheless use ‘epimorphisin’ to mean surjective epimorphisms.
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Let

m

H::ﬁH,' andD::HDi.
i=1

i=1

We then have epimorphisms
o« H— B:=[[QandB:D— B.

The order A, defined as pull-back

[——

A
|k
D—p;B,

18 called @ GENERALIZED (GREEN ORDER.

It will turn out that BLOCKS WITH CYCLIC DEFECT are a special type of gene-
ralized Green orders, they are so called GREEN ORDERS.

Note 3.11. The above definition needs — for the experts — an EXPLANATION.
Let B be a block with cyclic defect and Brauer tree T, which we orient clockwise.
To each vertex corresponds a generalized hereditary order. We now subdivide
these hereditary orders into the orders {H;} and {D;} in such a way that there
are only edges between {f;} and {D;}. This is possible, since T' is a tree. The
identification in the pull-back is then according to GREEN’S WALK AROUND THE
BrAUER TREE [Gr; 74]. So B is a generalized Green order.

We now RETURN TO MAXIMAL, HEREDITARY AND SEPARABLE ORDERS.

Note 3.12. The above results (in Theorem 3.3) show that separable R-orclers
are maximal and that maximal orders are hereditary.

We shall next define IDEALS In R, which measure, HOW FAR AWAY AN ORDER
IS FROM BEING SEPARABLE AND HEREDITARY RESP..

Definition 3.13. 1. The HiGMAN IDEAL H(A) of A is defined as the an-
nihilator
anng(Hae(A, =) := H(A).
2. We put
) h(A) := m ' anng(Ext) (M, N))
M NgsMO
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Lemma 3.14. We have 0 # H(A) C h(A) C R. Moreover, for a maximal
ideal p the order A, s separable (resp. heveditary) if and only of (p, H{A)) = 1
(resp. (p,h(A)) =1) %
This implies in particular that Exzt} (N, M) is R-torsion for M , N € M°.
The lemma needs a word of explanation: We have the exact augmentation
sequence of A°-modules:

0 — I(A) —= A®* S v A— 0

where ¢ is the AUGMENTATION; 1.-e. multiplication, and I(A) is the AUGMEN-
TATION IDEAL. Thus

H(A) = annp(Hae (A, I(A)),

which is a non zero ideal, since A is separable.
Moreover, we have a natural identification:

Hpe(A, Homp(M,N)) = Exti(M,N).
Whence the statements follows. q.ed.

For details we refer to [Ro; 94].

"Remark 3.15. 1. For the group-ring RG of a finite group G, the Higman
ideal is given by H{RG) = |G|- R = h{A). This is shown by modifying
the argument in the proof of Maschke’s Theorem:.

2. Consequently, a group-ring 1s hereditary :f and only if it is maximal if and
only if it 1s separable.

We conclude this section with an explicit description of a group-ring:

Example 3.16. 1. With the group-ring RG we have associated the AUG-
MENTATION SEQUENCE

0 — Ig(G) — RG S+ R —— 0,

where € : g —— 1 is the AUGMENTATION MAP and Ip(G) is the aua-
MENTATION IDEAL. It is generated freely over R by the elements

{9 = Vgeariny -

2. Let G be a finite group such that |{G|- R = R. Then RG is a product of
full matrix-rings over unramified extensions of R.

24This notation means that the ideals are relatively prime.
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3. Let Cp :=< ¢, ¢® =1 > be the cyclic group of order p for a rational prime
p and denote by ¢, a primitive p-th root of unity. Then there is a natural
homomorphism

ZC, 2 7] e — G

We also have the TRIVIAL representation: ¢ ~%2, 1. We thus have an
embedding:
7C, 2l 7ic ) < Z.
So the group-ring will be described as a sub-ring of Z[(,| x Z:
Zcp - {('Lsy) |1’ € Z[Cp])y €Z: rxa= yﬂ}

where o and 3 resp. is reduction modulo the ideal generated by ¢, — 1 and
p resp. This means that ZC, is the pull-back

ZCy — Z[G)
3

I}

—+F

r

B —

where IF, is the field with p elements.
4. Let G = M » H be the semidirect product of H acting on the abelian
group M — written multiplicatively — by conjugation; 1. e.

(my,hy) - (ma, ha) = (my " ma,hy - ha) , ki € H by € H
then the group-rings RG 1s a TWISTED TENSOR PRODUCT
RG = RM ®r RH,

where the addition is as in the usual tensor product, but the multiplication
on the group generators is twisted according to the above action and then
extended linearly.

4. INDUCTION AND RESTRICTION

Definition 4.1. Let H be a subgroup of G, and denote by {gi}1<i<n left coset
representatives of H in G .

1. Let M be an RH-module. The INDUCED MODULE FROM M TO G 13
defined as the RG-module

M 1$:= RG Opy M .
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Since RG is RH-free on {gi}1<i<n , we have

n -
M=o M,
i=1
where g; @ M is an R(9 H)-module®>.
2. If gi € Ng(H) ?°, then g; ® M =: 9 M is again an RH-module, called
the CONJUGATE MODULE.
3. Let M be an RG-module, then the RESTRICTION M ig 1s the RH -module
obtained by restricting to RH C RG .

INDUCTION AND RESTRICTION ARE EXACT FUNCTORS.

The following FORMULA OF MACKEY is important in applications:

Proposition 4.2 (Mackey’s formula). Let U and V be subgroups of G, and
let M be an RU-module. Then

m
- o
M 1E15= 6D ((g: © M) 1:500v) Toivyar -
i=1
where the sum is taken over the U\NG/V double cosets and {gi}1<i<n are double
cosel representalives.

The next formulais FROBENIUS’ RECIPROCITY and it describes homomorphisms
to an induced module:

Proposition 4.3. Let H < G and assume that M is an RG-module and N is
an RH-module. Then there is a natural isomorphism
Hompg(M,N 1) = Hompy (M 1§, N),

which extends also to the derived functors®”.

Let now R be COMPLETE of characteristic zero with residue field of characteristic
p.> 0 and put A := RG. Again using a modification of Maschke’s argument,
one can show:

Proposition 4.4. Let M € AM°, and let P be a Sylow p-subgroup of G . Then
M is a direct summand of M lng, This means that for M indecomposable,
M is a divect summand of a lattice, induced from an indecomposable lattice of
the Sylow p-subgroup.

An important consequence of this result is — we use the notation from above -
259 [ .= gi-H -g;—l .

26 This is the normalizer of H in G'.
2TIn cohomology of groups (derived functors) this is called Shapiro’s Lemma.
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Proposition 4.5. The number of indecomposable non-isomorphic RG-lattices
s finite if and only if the number of indecomposable non-isomorphic RP-lattices
18 finite for a Sylow p-subgroup P of G .

This was used by A. Jones [Jo; 63] to show

Theorem 4.6. The number of non-isomorphic indecomposable 7 -lattices is
finite if and only if the Sylow p-subgroups of G are cyclic of order < p* for
EVETY Prime p .

In Proposition 4.4 we have seen that every indecompbsable A-lattice 1s a direct
summand of a module induced from a Sylow p-subgroup. However, it-can also
be induced from a smaller group. This leads to the

Definition 4.7. Let M € AMO be indecomposable. A subgroup V of G is called
¢ VERTEX OF M . provided it is minimal among the subgroups H , such that M
is o drect summand of a module N induced from H . say N = S T?_I for an
indecomposable H-module Y. The module Y is called @ SOURCE OF M with
respect to the verter V = H .

Proposition 4.8. Let M € A M" be indecomposable. Then all vertices of M
are conjugate, and they are p-groups. Each representative of this conjugacy class
15 called - by abuse of language - THE wvertex of M . Let V' be a verter of M
and let 1 and o be two sources — with respect to the SAME VERTEX. then they
are conjugate in the normalizer of V' 1. e. B ~ Y4 for some @ € Ng (V).

We shall now apply this to bimodules. We denote by (¢ := G x . Then RG
15 a left module for R(G€) ~ (RG)¢ (cf. Definition 3.1). This i1s tantamount to
saying that RG is an RG-bimodule.

Definition 4.9. Let R be a complete Dedckind doman of characteristic zero
with residue field of characteristic p > 0 and let G be a fimite group. A BLOCK B
of RG is an indecomposable ring dvrect summand of ﬁ(: Thas s the same as
saying that B s an imdecomposable divect summand of RG as left RGE -module.

The DEFECT GROUP OF A BLOCK B of RG is the vertex of B as left module
over RG® . more precisely,

Proposition 4.10. Let Gy = {(g,97')| C G} be the diagonal subgroup. Then
any block B of RG has « vertex contained in Gy . So the verter of B, called
THE DEFECT GROUP D OF B 28, can be viewed as a p-subgroup of (7. if one
wdentifies Gy with G . The verter of B is called the DEFECT GROUP of B.

28 Recall that the vertex is a conjugacy class of subgroup, and hence also the defect group
of a block is a conjugacy class of p-subgroups of G .
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As a matter of fact not every p-subgroup of (G can occur as a vertex of a block.
Defect groups are INTERSECTIONS of two Sylow p-subgroups.

Note 4.11. 1. The last statement implies that for a group with a normal

Sylow p-subgroup P, all blocks have defect group P.

A block of defect zero ~ 1. e. it has the trivial group as defect group - is
a full matrix ring over an unramified extension of Rii e itis separable.
Since the group-ring RG contains the trivial representation R. there is a
unique block By, PRINCIPAL BLOCK which contains the trivial represen-
tation.

. Let. & be a solvable group and let O, (&) be the largest normal subgroup

of order prime to p. then the principal block is By = R(G/O,,/(G)) .

. In general, the remaining blocks can often be described for solvable groups

by using CLIFFORD THEORY (cf. [Ro; 96,11]).

5. COHOMOLOGY

In this section we shall give a brief account of GROUP coHoOMoOLOGY. For
a detailed presentation of group cohomology we refer to the books [Ben; 91],
[Ev; 91]. Here R is an arbitrary integral domain.

Definition 5.1. 1. Forn > 0, the n-th COHOMOLOGY GROUP OF (f WITH

COEFFICIENTS IN THE FINITELY GENERATED R(G-MODULE M is defined
as

HR{ (G M) = Extho(R.AM) .
Here R 1s the trunal RG-module. These cohomology groups are R-modules:
they are even right modules for Endre (M) in addition. H*(G,—) is
covartant functor. For n =0 the group

H%(G M) = Hompgg(R, M)

consists of the FIXED POINTS OF G IN M. We sometimes write M for
the fired points.

. Morve generally, if 4 is a ring and L, M . N are left R-modules, then

forn > 1. the elements in ExtUy (M. N) can be interpreted as long evact
sequences of length n+ 1, starting with N and ending with M . Thus the
Juataposition of long exact sequences (Y ONEDA-PRODUCT) gives a puiring

Exty (N, L) x Ext} (M. N) — Eaxt" T™(M L),
which turns out to be associative [Ben: 84]. Moreover.

Exti (M. N) is a bimodule over (Enda(N), End4(M)).
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This way,
Exty (M) := ) Extly(M. M)
i>0
is ¢ graded algebra over Enda (M) .

. Moreover, the direct sum

@ Ea:t’;‘(M, N) is a graded right module for Ext’ (M) .

>0
For the group-ring RG, the COHOMOLOGY RING OF (G OVER R is defined
as

Hi(G) =P Hz(G.R
i>0
It turns out, that HE(G) is a commutative ring in the graded sense; 1. e.

a-B= ( )m n ﬁ «,

where o and 3 are homogeneous elements of degree m and n resp.; 1. ¢
a € HR(G,R) and B € H}(G, R).

It should be noted that for an - even simple - RG-module M the graded
ring Exthe (M, M) is in general not commutative in the graded sense.

. This shows that for char(R) # 2 the sum @, 44 H%(G, R) is a nilpotent

tdeal in HE(G) - already the squares are zero.

= (D HiG.R
1 even

is then a genuine commutative ring. By a deep result of Quillen [Qui; T1]
it is a finitely generated R = H%(G, R)-algebra, generated by homogeneous
elements.

The prime ideal spectrum of HF (G) with the Zariski topology is called
the COHOMOLOGY VARIETY OF G OVER R. If R ts noetherian. it 1s «
noetherian space 2°.

. The quotient

. Let now M be an R-projective RG-module, then the R-module

Extyg(M) = ) Butag(M. M)

can be made into a module for H*((G, R) wn the following way: Guen a
cohomology class ¢ € H™(G, R). Then it.1s represented by a long exact
sequence:

E:0— R— X, X, R 0.

29 This means that the lattice of open sets is noetherian; i. e. ascending chains terminate
(cf. [Ba: 68]).
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Since M s R-projective, the functor M @g — is exact. Hence M ®g £
represents an element in Exth (M, M) . If we now have an element £ €
EztR (M, M), we can use the Yoneda composition with M®g & to obtain
an element in Bt} (M, M) . This way Extyg (M, M) becomes a graded
module for H*(G, R) .
10. Thus
annpye(G) (E.L'i}‘;G(M, 1\’1))

s an ideal, and its variety is called the COHOMOLOGY VARIETY OF M
[Ben; 91].

Note 5.2. 1. The cohomology variety of M carries very important informa-
tions on M . For example, it gives a measure of how far M is from being
projective [Ca; 83]. _

2. The low dimensional cohomology groups H'((G, M) have important group
theoretical interpretations ~ we have Z as ring of coefficients.
(a) H°(G, M) are the fixed points of G in M .
(b) H'(G, M) describes the derivations modulo inner derivations (see for
example [Ro; 94], [Gr; 70], [H-S; 70]). ;
_(c) H?(G, M) describes group extensions E with a normal abelian sub-
group M and E/M ~ G.

We shall elaborate a bit on H?. We have described H*(G, M) as Ewt3 (Z, M),
which is by dimension shift isomorphic to Eat}.(I(G), M), where I(G) is the
integral augmentation ideal of ZG (cf. Example 3.16, 2.).

There is however a PURELY GROUP THEORETICAL DESCRIPTION OF H?(G, M)
in terms of 2-cocycles and 2-coboundaties.

Given a short exact sequence of groups with M an abelian group, written mul-
tiplicatively: ,
o' 3
£ 0 M E-2.¢ 0.

Then M becomes a GG-module by conjugating with an inverse image in £ of
g € G . This operation is well defined, since Af is abelian.

Most naturally a 2-cocycle arises as obstruction of a set theoretical splitting of
f to 3 in the short exact sequence & .

Definition 5.3. If f is a set theoretical splitting of 3, then
flg) - flh) = f(gh) - a(g, h) *.

20This is the usual definition contrary to our use of a 2-cocycle above which arises. since
we have written maps on the left.
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for « umique o(g,h) € M. The map 0 : G x G —— M s then called «a
2-COCYCLE OF G WITH VALUES IN M.

Using the associativity in ', one obtains — viewing M as G-module — the
relation
=1
olg, hk)-o(h k) = a(gh k) - 1) o(g, h).

If one takes another splitting ¢, then these splittings differ by a 2-COBOUNDARY
OF (G WITH VALUES IN M, which is of the form

olg.h) = plgh)™ - " ulg) - plh)
for all g, h € G for SOME FUNCTION p: G — M .

Note that g € G acts on m € M by conjugation with f(g). We have written
this action as /(9m = Im.

Direct computation shows that every 2-coboundary 1s a 2-cocycle and both sets
form abelian groups (this uses heavily that A is abelian).

The SECOND COHOMOLOGY GROUP H;-(G‘ M) of a group G with. values in a
G-module M is defined to be the group of 2-cocycles modulo the group of 2-
coboundaries. This group CLASSIFIES THE GROUP EXTENSIONS in the described
way.

There is a natural isomorphism between H?((;, M) and H;,.(G’. M), which 1s

explicitly described in [ReRo; 79]: it gives a natural construction of how to pass
from module extensions

0 — > M —+ X — [(() —= 0

to group extensions

0 M —F G 0.

The crucial map here is the set-theoretic map ¢ € G —— ¢ — 1 € I(G), which
is used to form pull-backs. in order to pass from module extensions to group
extensions. :
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1. INTRODUCTION

This paper is based on a course I gave at the Ovidius university in Constanta
on "Structure of blocks with cyclic defect groups and Green correspondence”.
However, 1 added many details to the script of the course I have given there.
We shall divide the material into three parts.

o In the first part we will present a new way due to Auslander and Kleiner
[1] to derive a form of Green correspondence. The classical Green corrve-
spondence follows easily from that and this more general point of view
might have some impact on other fields of interest. The classical Green
correspondence will be used successfully in the following sections.

o In the second part we shall present the classical paper of Green [5]. Here,
the Green correspondence in its classical form is used intensively. We just
cite from the classical paper of Dade [2] the fundamental properties of
blocks with cyclic defect groups. We also give results of Michler [13, 14]
on the structure of blocks with cyclic defect groups.

o The third part deals with K. W. Roggenkamp’s paper [16] on Green orders
in which he firstly defined Green orders, secondly used the results of Green
to prove that a block with cyclic defect group 1s a Green order, and thirdly
determines the structure of a Green order in great detail. As far as is
known.to the author, this is the most far reaching result on the structure
of blocks with cyclic defect groups. For the proof we follow [16].

The author acknowledges financial support from the Deutsche Forschungsgemeinschaft
Received by the editors November 1995.
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The reader is assumed to know the basic facts on categories, such as the
definition of a category, functors and natural transformations. Recommended
references are [15, 12]. Also the basic notions in noetherian ring theory are
assumed to be known such as the notion of a radical of a ring and a module,
a socle and a top. As a reference we refer to [7]. Furthermore, some basic
algebraic number theory is assumed to be known such as the basic definitions of a
Dedekind domain and the ramification index for local fields. [6] is recommended
as an abundant reference. Besides the theory of Dade, all proofs are included.
In this sense the paper 1s self-contained. )

The course I gave in Constanta is contained, for the part dealing with the
Green correspondence in the Sections 2.1, 2.2, 2.3,2.4.1, 2.4.2 and the beginning
parts of 2.4.4. For the reader who is merely 1nterested in the classical Green
correspondence we suggest studying only Sections 2.1, 2.3 and 2.4.1. Of course,
the proof is given in abstract terms, as in [1]. The most interesting part of the
abstract. Green correspondence is collected in the Sections 2.4.2 and 2.4.3. For
the classical theory on blocks with cyclic defect groups, the material presented
in Constanta 1s located in the Sections 3.1, 3.2 and 3.3. Sections 3.4 and 3.5
are devoted to the proof of Green’s walk around the Brauer tree, as in [5]. For
Roggenkamp’s description of blocks with cyclic defect groups the parts which
were presented in Coustanta are located in Sections 4.1 and 4.2. The rest of the
sections contain mainly proofs, which especially in Section 2 are technical, and
which are not needed for the understanding of the other parts.

Acknowledgment. 1 want to thank the organizers of the “Workshop and Meet-
ing on the Theory of Groups, Algebras and Orders™ for having given me the
opportunity to give this series of lectures. I also want to thank the Equipe des
Groupes Finis de I'Univérsité de Paris 7 for their hospitality during the time
this paper was written.

2. (GREEN CORRESPONDENCE

2.1. Motivation. Let ¢ be a finite group and let R be a complete discrete
valuation ring of characteristic 0 with residue field k of characteristic p. A
large part of modular representation theory of finite groups deals with trying to
relate the representation theory of G to the representation theory of the ’p-local
structure® of G. The first and perhaps most elementary attempt to do so is the
Green correspondence.

By RF - mod we denote for any finite group F the stable module cate-
gory. The objects of RF — mod  are the same as those of RF — mod®, namely
finitely generated R-projective RF —modules, called in the sequel RF —~lattices.
To define the morphism set we have to put an equivalence relation outo the
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morphism sets of RF —mod®. Let M and N be two RF-lattices. Two mor-
phisms f,g € Hompp (M, N) are called equivalent, f = ¢, if and only if f — g
factors through a projective RF-module. Then, ’

Hompp a0 (M, N} =: Hompp(M,N) := Homgp(M,N)/=.

Theorem 2.1. (Green) Let D be a Sylow p—subgroup of G and let H := Ng(D)
be the normalizer of D in G. Assume that for all g € G\H we have gDg~'ND =
{1}. Then, induction
ind% = RG gy — : RH —mod’ —> RG — mod
and restriction
res$y : RG — mod — RH — mod

are mutually inverse equivalences of categories. These equivalences of categories

preserve the indecomposability of modules. More precisely, for every indecom-

posable non projective RG-module M there is an indecomposable non projective

RH -module f(M) such that f(M)|res§ (M) ' and res$ (M)/f(M) is a projec-

tive RH -module. For every indecomposable non projective RH -module N there

is an indecomposable non projective RG -module g(N) such that g(N)|ind$(N)
and (ind$G N)/g(N) 1s a projective RG~module.

Remark 2.2. o The situation described by the hypotheses of Theorem 2.1
1s commonly known and will be referved to as the TI-situation. Here TI
stands for ’trivial intérsection’.

e One should note that even the classical Green correspondence is more
general than expressed here. The theorem above 1s just a special case
where the correspendence appears in a quite illustrative way.

This theorem is a very special case of a much more general statement which
was proven by M. Auslander and M. Kleiner in [1]. They give a categorical
and more general approach to the theory of J. A. Green [4] which establishes
an equivalence between certain quotient categories of finitely generated RG—-
modules and finitely generated RH-modules where H is a subgroup of GG con-
taming the normalizer in G of a certain p-subgroup D of . The theoremn
above 1s the case for which the categorical equivalence of Green is most easily
formulated. '

2.2. Adjoint functors.

The method of Auslander and Ixleiner intensively uses adjoint functors. We
shall give a brief account on this subject.

We assuime the reader to be familiar with the notion of a category, functors
and of natural transformations hetween functors. As basic reference one might

see [15] or [12].

'"For any ring R and any two R-modules M and N we say that M|N, if there is an
R-module K such that M g ' = N.
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Definition 2.3. Let A and B be two categories and let F : A — B and
G : B — A be two functors. The category of sets is called Ens.
If there is an equivalence

B(F—. )~ A(—,G=)
of bifunctors
Ax B —s &ns

then the functor F is said to be left adjoint to the functor G and the functor ¢
1s said to be right adjoint to F. The pair (F, () is said to be an adjoint pair.

Let (F,G) be an adjoint pair. By the defining relation we get an isomorphism

of bifunctors
n B(F- F-)~A(-,GF-)
and hence we get a natural transformation
n:lqg—GF

by just putting n(A) := 1y/(¢dpa). The natural transformation 7 is called the
unit of the adjointness. Of course, it depends not only on the two functors F'
and G but also on the choice of the isomorphisms in the defining relation.

We grve an example. Let R be a commutative ring and let G be a finite group
with subgroup H. We denote by « : RH — R{ the canonical embedding.
Since an RG-module A is an R-module 3/ together with a ring homomorphism
RG — Endgr{M), one defines the restriction res® .y (M) just as RH —»
RG — Endgr(M). The corresponding mapping is denoted by .. One should
observe that this means that the RH-module structure of r'e.s'g(M) 1s just A
as R—module and H operates on A as a subset of G.
One defines functors

'in(llc} = RG Opy — : RH — mod — RG — mod
and ,
7’6’3% =ty : RG — mod — RH — mod.
We claim that (ind§j, res$) is an adjoint pair. This fact is commonly known
as Frobenius reciprocity. ,
We have to give for all RG-modules Af and for all RA-modules N natural
isomorphisms
H0171.Rc;(indg'}(1\/), M)~ Hompy (N, resg (M)).
We define
Hompge (ind$(N), M) =~ Hompy (N, res$ (M)

¢ 2, (n — ¢(1 D n)) YnéeN
(g @n— g-Y(n)) & P VneN geG
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and observe that the second mapping is well defined since ¥ is RH-linear.
Now, one immediately checks that ®¥(y) = 3 and V®(p) = ¢ for all ¢ €
Homﬂg(indg(N),/V[) and v € Homgy (N, 7’esg(M)]. For the functoriality
of & and ¥ we observe that for a homomorphism o : N — N’ and for a
homomorphism 3 : M — M’ we get

B([2(8))(a(n)))

[30¢](1©® a(n))
= [®(Bo o (idra @ a))](n)

and

Bl¥W)(g®@a(n) = Bly-(¥oa)(n))
(g-[Bovoa](n)
[T(Boyoa)n).

This proves the functoriality.
2.3. Some more background from modular representation theory.
Though we do not need to use modular representation theory to formulate
and prove the Green correspondence for adjoint functors we shall give some
background to see what the Green correspondence is about and to be able to
give examples. :
In this subsection we shall use the following notation.

e R is a commutative Noetherian ring.

e ( is a finite group.

e For any subgroup S of G we set mod(G, S) := mod(RG, S) the full®, ad-
ditive subcategory of RG — mod whose objects are finitely generated
RG—modules M for which there is an RS5-module L such that M is a
direct summand of RG @gs L.

With these notations we state the following results which also provide a brief
introduction into some of the elementary techniques in modular representation
theory.

1. Choosing R alocal complete discrete valuation ring of characteristic 0 with

pR # R or a field of characteristic p, for a prime number p, and choosing
D a Sylow p—subgroup of &G, we claim that mod({G, D) = RG — mod.
Proof. Given M € mod(G, D). Then, the mapping

RGGrp M — M
gom —r gm

2 A functor F : C' — C is full, if it is surjective on the morphism sets.
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is split by?
M — RGOrp M

1 -1
m — m Z ‘h (o9} hm .
DheD\G

The last map 1s clearly well defined and is a G-linear map since

g > hlohm= 3 (hg7H)"' G (kg V)gm.

DheD\G DheD\G

Additionally, running over a coset {h} is the same as to running over the
coset {hg=1} = {h}g~1.

Given a finitely generated RG-module M we call a group D which is
of minimal order amongst all the subgroups D’ with M € mod(G, D) the
vertex of M. - ]

2. (D. Higman) Let A be a finitely generated RG-module and let S be a
subgroup of G. We claim that M is a direct summand of ind% (L) for some
finitely generated RS-module L if and only if M is a direct summand of
ind$res$ (M).

Proof. Clearly, if M |ind$§res§ (M), then there is the RS-module I =
reng such that M|indg?'(L).

Conversely, let L be a finitely generated RS—module such that
M|'1Tndg7'L. Then, by Mackey’s formula,

indSres§ M = indSresSind§L
= ind%( @ ind® e syres o .y 9L) .
HgHEeH\G/H

= IfndgLéb others
= M others .
How unique the vertices are is the subject of the following item.
3. We assume now that R is a complete discrete valuation ring of charac-
teristic 0 with pR # R for a prime number p or a field of characteristic
p. Given an indecomposable RG'—module M we claim that vertices of A
are conjugate to each other.
Proof. M|ind$GV and M |ind$, 1V with VV € Ob(RD — mod) and IV €
Ob(RD’ —mod), D and D’ being both vertices of M. But, using Mackey's

formula,

L LR - ! g -
resS, indGV = @ indPpnpiressBap IV
DgD! ‘

3We denote by D\G the left cosets of G by D on which G acts on the right and by G/D
the right cosets of G by D on which G acts on the left.
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and
. = . ) ; h i
resf indG,W = EB indPpapiresnBinp "W =W @ others .
D'hD'

res$, M is a direct summand of both modules. Direct surmands X in
the above equation have vertices smaller than D’ or are isomorphic to .
If X|res$, M for X # W then M|ind$., for some smaller subgroup D' of
D’ and we reach a contradiction. Hence there must be some gy with

. 4 g0 -
WlindL prpireses aap: 0V .

Hence, Nf|i7zd§{;DmD,reszggnD, 90} and by the minimality of D, we get
opnND =D, ‘

. An indecomposable ring direct factor B of RG is called a block of RG.

Of course, then B is an R(G x G)-module by putting (g, h) - m = gmh™!
where (g,h) € G x G and m € B.

We claim that there is always a vertex of B in {(g,9) € G x G|y €
G} =: A(G). : _ '

Proof. We view R(G x G) as RG-right—-module by letting G act as
A(G).

R(G x G)®@pacy R — RG
((g9.h)@r) — grh™' =rgh™!

for » € R, (g,h) € G x G, s split by

H(("” X (J’) "?’RA(G] R — R(;,

(Z rglg, 1)) O L — Z e -

g€G geG

The splitting is a module homomorphism as one immediately verifies using
that we tensor over RA(G).

The vertex of a block as R(G x G)-module 1s called a defect group of
the block.

We assume now that R is a complete discrete valuation ring of charac-
teristic 0 with pR # R for a prime number p or a field of characteristic p.
Then the defect groups D are p-groups and the integer log, (| D|) is called
the defect of the block.

5. Now we assume again that R is a complete discrete valuation ring of char-

acteristic 0 with pR # R for a prime number.p or a field of characteristic
p. If B is a block of & with defect group D and if A is an indecomposable
B-module, then there is a vertex of M contalned in D.
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Proof?. Since B has defect group D, we see by 3. that
B|[R(G x G) Ora(p) B).
Hence,
M = BOgre M|R(G x G) Oraw) B @re M
= RGOrp M. ‘

With these preparations we shall illustrate the Green correspondence in the
situation of Theorem 2.1.

Ezample. We fix a prime number p and set G := SLa(p) the group of 2 by 2
matrices over the prime field of characteristic p with determinant 1.

We look at the modular representations of G over k being the prime field of
characteristic p.%

We set G La(p) the group of invertible 2 by 2 matrices over the prime field of
characteristic p. Then we get an exact sequence

1 — SLa(p) — GLa(p) 5 1 — 1.

Now, k* has order p—1 and G La(p) has order (p>—1)-(p?—p) since an invertible
matrix is determined by its action on the 2-dimensional natural moclule and the
first basis vector can be mapped to all of k% besides the zero element, the second
basis vector can be mapped to 4> besides the one dimensional space which is
already spanned by the image of the first basis vector.

Hence, |SLa(p) = (p— 1) -p- (p+ 1).

The Sylow p-subgroup of G is hence cyclic of order p. In fact, it is easy to

find one explicitly:
. B |y |
pi={( g ¥ ) e

The normalizer H of D in & is
i r oy e X ,
H._{<0 w_1>l-L€/» Yy €k}

We shall illustrate the Green correspondence on the (natural) module

k
M =
M (k)

on which G acts by matrix multiplication.
Clearly, M is indecomposable. By Theorem 2.1 we know that res§ (M) =~
F(M) & Py where Py is a projective RH—-module.

4This proof was pointed out to e by M. Linckelmann.

5This characteristic is commonly called the deseribing characteristic and in the theory of
algebraic groups the describing characteristic always provides a huge framewark of techniques
coming from algebraic geometry.
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Claim 2.4, Let P be a p-group and let R be a complete discrete valuation ring
of characteristic 0 with residue field of characteristic p. Then, RP is a local
mng. Every projective RP-module is free.

Proof. We have to show that R/radR is the only simple RP-module. We
proceed by induction on |P|.

The statement is true for the group with 1 element.

Let P be arbitrary. Let 1 # ¢ be a central element of P of order p, which exists
by the conjugacy class number formula, just counting the size of the conjugacy
classes and observing that their order equals the index of the stabilizer of an
element which is a subgroup, and let V' be a simple RP-module. Then, since
¢ 1s central, V| := (¢ —1) -V 1s also an RP-module. If Vi = 0, then V is an
indecomposable R(P/ < ¢ >) module and V' is isomorphic to R/radR by the
induction hypothesis. Else, ¥ = V by the simplicity of V. Hence,

Vel(e=1) V(e V= =(c—1)) V=(—1).V=0,

which is a contradiction.

The above claim shows that a projective kG-module has as k-rank at least
the order of a Sylow p—subgroup. In fact, the restriction of a projective RG-
module to a Sylow p-subgroup is again projective, hence free.

This argument (or elementary computations) shows, that the 2-dimensional
kH-module 7’esg(M) 1s indecomposable.

Conversely, let N be the natural two dimensional &k H-module. Then, N =
1‘65%(1\1). We look for its Green correspondent in k(. As above,

indGN = indSresG M — M
gOm — gm
is split and M|ind§ N. Hence, the Green correspondent of N in kG is M =
g(N).
But, since the index of H m G is p+ 1, dimk(indgl\:’) =2 -(p+ 1) and
dimg (ind§ (N)/M) = 2p and ind§(N)/M is a projective module of dimension
'2p. Observe that this matches our observation in Claim 2.4.
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.

2.4. The Green correspondence for adjoint pairs of functors. We shall
follow the paper [1].

All categories we deal with are assumed to be additive®. We start with three
{additive) categories D, H and G and functors

pHu g
as well as
pnudg
where (S,T) and (S, T”) will form adjoint pairs.
In our later application to group theory these categories and functors will be
specialized as follows.
Let & be a field of characteristic p > 0, let G be a finite group, and assume
for simplicity that £G is indecomposable as ring, let D be the Sylow p-subgroup

of G, let H be a group with D < H < (. The results become non trivial only
if we assume that H > Ng(D) := {g € Gl¢D = Dg}. One should think of

D=kD—-mod H=kFH —mod, G = k(G — mod

and

S =kH @ip —; S = kG @y —;

T =res§i(=); T' = resp (=),
where res§ and resf are the restriction functors of kG—modules to kH -
modules or of &H-modules to &D-umiodules respectively. and the adjointness
is just Frobenius reciprocity as explained earlier in Subsection 2.2.
For technical reasons in later applications we fix isomorphisms, natural in
both variables,

a(N, M) :G(SN, M) — H(N,TM); VN € Ob(H). M € Oh(G)
and

V(L. N) : H(S'L,N) — D(L,T'N); VN € Ob(H), L € Ob(D) .

S A category is called additive if it has a zero object, there are finite products and coprod-
ucts, finite products over a set of objects and finite coproducts over this set are isomorphic by
the natural map, and for every object 4 there is an endomorphism s 4 of 4 such that, denoting
by A 4 the diagonal mapping and by ¥V 4 the codiagonal mapping, A 4(1.4 ¢ s4)V 4 =0. In
additive cat;egories the set of morphisms carries a structure of an abelian group by setting
f+a=2,(/®g)Vpfor f,g € Mur(4, B) ’
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Throughout Section 2.4 we assume that
TS=1yal

for an endofunctor U/ of H and that the induced natural transforma-
tion ' .
g ily 5 TS=1yas U™ 1y

is an isomorphism.

Notation 2.5. o All subcategories in Section 2.4 are meant to be full and
additive. If A and B are full subcategories of the category C, then we say
that A divides B if for all M € Ob(A) there is a X € Ob(B) such that
M|X,ie. M is a direct summand of X. If Ob(A) has only one element
M, then we also say that M divides B. We use the notation A|B.

e Let ' be a subcategory of the category C. We denote by C/C’ the category
whose objects are the same as those of C and the morphisms are equiva-
lence classes of morphisms of C. Two morphisms are said to be equivalent
if their difference factors through an object of C'.

e Let £ and F be categories and let I/ : &€ — F be a functor. For any
subcategory Y of F let U7}(Y) be the full additive subcategory of &
generated by objects M € Ob(E) with UV{M)|V.

2.4.1. The theorem in group theorvetical terms. We shall give the Gireen corre-
spondence in the classical situation, before we turn to.the more abstract setting.

Theorem 2.6. (Green ) Let G be a finite group and let R be a complete discrete
valuation ring of characteristic 0 with residue field of characteristic p > 0 or let
R be a field of characteristic p. Let D be a p-subgroup of G and let H > Ng(D).
Set
X ={X<DngDg tgeG\H)}
Y:={Y <HNgDy 'lgc G\ H}
Z={Z<D}.
Set mod(G, F) the category of finitely generated RG—modules with vertex in F
for Fe {X,Y, Z}.
Then,
ind§ : mod(H, Z)/mod(H, X) — mod(G, Z)/mod(G, X)
18 an equivalence of categories and
res% : mod(G, Z)/mod(G, X') — mod(H, Z)/mod(H, )
s an equivalence of categories.
For every indecomposable object M in mod(H, Z)\mod(H, ) there is an in-

decomposable object (M) n mod(G, Z)\mod(G, X') which is a direct summand
of ind% (M). '
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For every indecomposable object N in mod(G, Z)\ mod(G, X'} there is an in-
. decomposable object f(N) in mod(H, Z)\mod(H,Y) which is a direct summand
of resG(N).

We shall prove the theorem in the sequel.

2.4.2. The general situation. We can now state the most important theorem
of this subsection. The remaining part deals with the particular situation of
Krull-Schmidt categories. But even without this assumption we are able to
_ prove an equivalence of certain quotient categories. In the next subsection we
shall explain how one can derive the usual Green correspondence from this
rather abstract setting.

Theorem 2.7. [1](Green correspondence for adjoint functors) Let there be
three additive categories D, H and G and functors
IR TN
as well as
p&nLg
where (S,T) and (S',T") will form adjoint pairs. Assume that T'S = 1y U and

that for the unit n : 14y —> T'S we get that ny := n - proj; is an isomorphism.
Let Y be a full, additive subcategory of H such that

S'T'Y|Y and ST YUY
Then,
1. S, T induce functors
S:H/S'TY — G/SS'T'Y
T:G/SST'Y — H/Y.
2. For Z := (US")7!Y, the restrictions of the functors S and T
S (addS' 2))S'T'Y — (addSS' 2)/SS'T'Y
T : (addSS'Z)/SS'T'Y — (addS'Z)/]Y
are equivalences of categories and
TS : (addS'Z)/S'T'Y — (addS'Z)]Y
is tsomorphic to the functor induced by the identity functor.
Before we prove Theorem 2.7 we shall see what this means for the group
theoretical situation. -
The question if the assumptions of the theorem are satisfied i the group

theoretical situation will cover subsection 2.4.5 and we postpone this question
until then.
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Again let R be a complete discrete valuation ring of characteristic 0 with
residue field k of characteristic p > 0 or let R be a field of characteristic p. Let
G be a finite group and let D be a p—subgroup of . Let H be a subgroup of
G with D < Ng(D) < H < G. We set

G := RG — mod®, H := RH — mod®, D := RD — mod®
and
S =ind§, S = ind® T =res§ | T' = resl.
Furthermore, we set
S={V<GlIgeG\H:V<g-D-g-'nH}.

Let Y be the full additive subcategory of RH — mod® whose objects are finite
direct sums of indecomposable finitely generated RH -lattices which have vertex
m .

We compute S'T'Y. Let V € S and L € Ob(RV — mod®). A generating
object of S'T"Y is of the form

. ) . . hys
zndgresg md{i L = zn.dID{ ( EB md{,)v ADTESH : aD h L)
VhDEV\H/D

- hy
- P mdipresivap "L.
VhDEV\H/D

If we now set
X :={V<D|3geG\H:V<g-D-g~'nD}

we observe that the above generating modules are direct sums of modules which
have vertices in .X¥. We set I the full additive subcategory of RH —mod® whose
objects are finite direct sums of indecomposable finitely generated RH-lattices
which have vertex in X'. ‘H/(S"T"Y) = H /U since if a morphism factors through
a direct summand it also factors through the whole direct sum.

In a similar way, with somewhat more effort but still simply using Mackey s
formula one proves that Z is the full additive subcategory of RH —mod® whose
indecomposable objects are modules with vertex being a subgroup of D.

2.4.3. The proof. The proof of Theorem 2.7 will proceed in several steps. This
will cover this subsubsection. The next subsubsection will deal with the special
situation when we are given a IKrull-Schmidt category.

The proof of Theorem 2.7 relies mainly on the following observation.

Proposition 2.8. Let V' be a subcategory of H and let X' be a subcategory of G
such that SY'|X" and TX'|Y'. Then, S, T extend naturally to functors between
HIY' and G/X' and (S.T) form again an adjoint par as functors between
these quotient categories. The adjointness homomorphism o for the adjont
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pair (S.T) of functors between H and G induces an adjointness homomorphism
for the adjoint pair (S, T) of functors between H/Y' and G/X’.

Proof. First we prove that S extends to the quotient categories. Let there be
given two objects M and N in ‘H and a morphism [ € H(AM, N) which factors
through an object Y of }’. Then, there are fi € H{M,Y) and f» € H{Y. N)
such that f = fifa. Therefore, Sf = (Sf1)(Sf2) and Sf factors through SY .
But, SY'|X’ and therefore, there is an X € Ob(X’) such that SY|X. Hence,
Sf factors through an object in X",

The argument that 7" extends to the quotient categories is absolutely analo-

gous. ,
We show that for any N € Ob(H), M € Ob(G) the mapping a(N, M) :
G/X'(SN,M) — H/Y'(N,TM) is an isomorphism. Let f : N — TM
be a morphism factoring through Y € ). Then, there are f; € H(M.Y)
and fo € H(Y,N) such that f = fifo. Now, a7 1(f) = o~} (fi)a"1(f2) with
Sfi = a7(f1) € G(SN,SY) and a7'(f2) € G(SY, M). However, SY|X for
an object X € X’. Hence, a~1(f) factors through an object of A’. Therefore,
a~! is defined over the quotient categories. Analogously, o is defined over the
quotient categories. It is clear that then o (N, M) is a natural isomorphism.

This proves the proposition.

Corollary 2.9. Let Y be a subcategory of H.
IfS"T"Y|Y, then

1. (8, T") is an adjoint pair as functors between H/Y and DJT'Y. The
wsomorphisms v induce adjunctions also wn the quotient categories.
2. (8", T") is an adjoint pair as functors between H/S'T'Y and DJT'Y. The
tsomorphisms v induce adjunctions also in the quotient categories.
3. The functor 1y induces a functor 13 : H/S'T'Y — H/Y and gives rise
to an isomorphism of bifunctors (H/S'T'YNS' —, =) ~ (H/Y)(5'—, -}
IfT'"TSS'T'Y|T'Y, then '

. 4. (SS',T'T) is an adjoint pair between the categories G/SS'T'Y and D/T'Y
with adjunction induced by vor.
5. If moreover S"T'Y|Y, then the tnverse of o induces an isomorphism func-
torial in both variables L € Ob(D). M € Ob(G),

H/S'T'Y(S'L,TM) — G/SS'T'V(SS' L, M) .

Proof:
Part 1. follows from Proposition 2.8 by just setting X/ :=T'Y and Y’ := Y.
Part 2. Set A’ := STV and Y = T'Y. Then, ST'Y|Y =

T'S"(T'Y)[(T'Y) and Proposition 2.8 applies.
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Part 3. We apply first 2. and then.1. to get the isomorphisms

-1

y ¥
H/S'T'Y(S -, =) = DIT'Y(-,T-) = H/YES -, -).
Part 4. This is an application of Proposition 2.8 with X’ := S$S5'T"Y and
Y’ :=T"Y and as functors one takes just 7'7T.
Part 5. We have

va(-.-) Y7H(=-)

G/SST'Y(SS' -, -) = D/TY(-,TT-) = H/STYS —.T-)
where the last part is due to 2. and the first is due to 4.

We come to the actual proof of Theorem 2.7. We need a lemma.

Lemma 2.10. Under the assumptions of Theorem 2.7 we get the following.
(S'T'Y|Y and S'T'Y|U (V) < TSS'T'Y|Y.

~ Pioof. TS=1y U = TSS'T' = ST S UST and 1nbertmg Y €)Y gives
the result.

We can now prove Part 1 of Theorem 2.7. In fact, for S the statement is clear
and for T it follows from Lemma 2.10.

Lem¥ma 2.11. Under the assumptions of Theorem 2.7 we get the following.
1. For all L € Ob(D), B € Ob(U~1Y),
S (H/S'T'YV)S' L, BY—=(G/SS'T'Y)(S5'L,SB)
gives an isomorphism.
2. Forall L € Ob((U/S")"Y(D)), A €g, _
T :(G/SS'T'YYSS' L, A= (H/Y)TSS'L, TA4)
gives an isomorphism,

Remark 2.12. We notice that if S"7"(U7.S'D)|(US'D), then Y := (US'D) sat-
1sfies each of the equivalent conditions in part 1.

Proof of Lemma 2.11.
The conditions to apply Corollary 2.9 1.-5. are satisfied. We have 9 : 1y —
TS and ng € H(B,TSB). The following diagram is commutative.

a~— !

5 (S'L.B) S ('L TS B) S ey (SS'L,SB)
i I >~ 1u
X(s'L,B) ™ B(S'L,TSB)=¥(5'L,B),
where the very left hand side vertical 13 is an isomorphism by Corollary 2.9.
3. o~ ! is an isomorphism by Corollary 2.9. 5. The equality in the lower right
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corner follows from the fact that TS = 14 @ U and UB|Y. But, g, -proji1 = n
is an isomorphism. Therefore, going down, right, up we conclude that the upper
78, 15 an 1somorphism.

Furthermore, Vh € H(S'L, B), we get

a~!(npoh)=a"'(np) o S(h) = 1sp o S(h) = S(h),
where the first equation is just the functoriality, the second is the definition of

7 by nny = (N, TSN) ! (1sn). This shows the statement for S.
The statement for the functor T is shown analogously.

We can now also prove Part 2 of Theorem 2.7. By Lemma 2.11 we see that
the restriction of S to add S’Z/S'T'Y and of T to add SS'Z/SS'T'Y is full
and faithful.

These restrictions of S and 7" are dense on their unages.

Since TSS'Z = S’ 24U/ 5’ Z and since by the definition of Z for all Z € Ob(Z)
we get US'(Z2)]|Y, we see that add TSS'Z}/Y = add S'2Z/Y.

Moreover, U/ causes all the occuring terms to vailish and therefore by our
assumption that n; is an isomorphism, 7°S is just the natural projection.

This finishes the proof of the theorem.

2.4.4. The Krull-Schmidt situation.

Notation 2.13. If £ and F are subcategories of a common Krull-Schmidt
category’ G, then Fe¢ denotes the full additive subcategory of F generated
by objects M € Ob{F) such that no non zero direct summand of M divides &.
Ore should think of F¢ as the part of F which has nothing to do with £.

Lemma 2.14. Let £ be a subcategory of a Krull-Schmudt category F. Then,
the identity functor induces a functor Fg — Fe/E which is full®, dense® and

reflects isomorphisms!? .

Proof. 1x is clearly full and dense. Take an isomorphism X L ¥in FelE.
Then, there is a ¥ -5 X with gf = 1x and fg = 1y in F¢/E. Take preimages
fo and gg of f and g in F. Then, fogo = 1x +kx where kx is an endomorphism
of X which factors through an object of £. No summand of X divides £ and
therefore, kx € radEnd(X). But, the Jacobson radical rad End(.X) has the

7 A Krull-Schmidt category is an additive category such that every object is a finite direct
sum of indecomposable objects and endomorphism rings of indecomposable objects are local.
It follows then that the decomposition into direct summands is unique up to isomorphisms.

8F :C" — C is full, if it is surjective on the morphism sets.

9F : C' — C is dense, if every object in C is of the form F(’ for a C € Ob(C’).

WE . ¢! — C is reflects isomorphisms, if

F(f) € More(FCy, FC2) is an isomorphism iff f € Mor(C,C>) is an isomorphism.
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property that 1 + radEnd(X) 1s a subgroup of the unit group. Similarly, go fo
is invertible. Hence, fy is an isomorphism.

Proposition 2.15. Let Y be a subcategory of H. Then TS : X — H/Y
satisfies
TSy < (U='y)/y
and ' k
TS : U™y — (U™'Y)/Y is isomorphic to 1y .
If H is a Krull-Schmudt category, then TS : (U™'Y)y — (U7 Y)y /Y s full.
dense and reflects 1somorphisms.

Proof. We know that n; is an isomorphism.
BeU™'Y & UB)Y
e UB)~0€0bH/Y)
= 0 1luly-1y = TSly-1y ismy which is an isomorphism.

The second statement follows immediately from Lemma 2.14.

Proposition 2.16. Let Y be a full additive subcategory of the Krull-Schmidt
category H.

1.
S U Vy — SN/ Ty
is dense, reflects isomorphisms. and N is indecomposable in U~ (V)y +f
and only if SN is indecomposable in G/T~'Y.
2. : '

T:SUTHYW)/TTY — U YV)y/Y
is full, dense, reflects isomorphisms and M s indecomposable in
S(U=YW)y)/T71Y if and only of TM 1is indecomposable in H /Y.
Proof.

S is dense by definition.
SNy ~ SNy = TSN, ~ TSNa = Ni ~ Na since T'S reflects isomorphisms by
Proposition 2.16.
T _is dense since T'S is dense.
T is full since given T'X N TY, then there exist X', Y’ mapped to X,Y by
S such that TSX’ Ly sy, But, 7S is full, again using Proposition 2.16,
hence, f = TSf for X! — Y’/ and T(Sf') = f and Sf is a preimage.
TM, ~TMs = Iy, N M; = SN; = TSNy =~ TSNy = Ny >~ Ny = M| =~
SN| =~ SNy~ M>.
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N is decomposable in U™1(Y)y = take Ni|N = SN;|SN. But, SN; =0 =
Ny = 0. Therefore, SN is decomposable.
Let M be decomposable in S(U~1(YV)y)/T~'Y. Take 0 # M) |M = TM,|TM.
But, TM1 =0e U Dy/Y = Tnllw = M, € T7'Y = M; =0 €
St Wy)/T Y. Hence TM is decomposable.
SN deromposable = TSN decomposable in U~1(Y)y/T-!'Y = N is decom-
posable since T'S is full, dense and reflects isomorphisms.
TM is decomposable with M € S(U~'(V)y)/T~'Y = 3IyM =~ SN =
TSN ~ TM is decomposable = N is decomposable since T'S is full, dense,
and reflects isomorphisms = M = SN is decomposable.

All details considered, we have proved the proposition.

Corollary 2.17. Let H and G be Krull-Schmidt categories and let Y be a full
additive subcategory of H.

1. For all indecomposable objects N € U™V (Y)y the object SN has exactly
one indecomposable summand g(N) which is not contained in T~1).

2. For all indecomposable objects M € (add S(U™*(¥)y))r-1y the object
TM has exactly one indecomposable summand f(M) that does not divide
Y.

3. flg(N)) ~N.

4. g(f(M)) ~ M.

Remark 2.18. One should note that this establishes one part of the Green
correspondence, namely, the bijective correspondence between parts of the two
module categories of the group rings.

However, one should be careful with this statement. If we wanted to apply
this to our group theoretical situation, we would not need that H > Ng(D). It
will become clear that if this is not the case, then there s no indecomposable
object as required.

Proof of Corollary 2.17.

1. SN =M, & - M, for indecomposable ohjects M; in G withi=1,...,s

and s € [.

By Lemma 2.14, M; is indecomposable or zero in G/T~1 Y.

By Proposition 2.16 SN is indecomposable in G/T7! ).

Hence, there is exactly one jo with M, not being contained in 7!

2. There is an indecomposable N € U/7*(Y)y and some M € G with SN =
M & M'. Since M is not contained in 77'Y we get SN =~ M in G/T~ V.
Let TSN =TM = N, & - & N, for indecomposable objects N; in ‘H and
i=1,...,tand t € M. But we know that TSN is indecomposable in H/Y
by Proposition 2.16.

Hence there 1s exactly one g where N;  does not divide Y.
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3. 9(N) =SN in G/T71Y. f(g(N)) @ TSN ~ N in H/Y since TS ~ 1 as
functor U™'Y — (U1 Y) /Y.

4.
faf(M) ~ f(M) by 3. = Tgf(M)~TM in H/Y
Prp2dos o s(M)~ M in G/T™1Y

Lemma?2.14
fr—

gf(M)~MingG
Now we combine Theorem 2.7 and Corollary 2.17 to state the result.

Corollary 2.19. Assume we are in the situation of Theorem 2.7 and let in
addition G and H be Krull-Schmidt categories. Then'!,

1. VN € ind(add 5" Z)g1y, the object SN has precisely one indecompo-
sable summand ¢(N) not dividing SS'T"'Y.

2. VM € ind(add S5’ Z)sg71y, the object TM has preczsely one indecom-
posable summand f(M) not dividing Y.

3. f(g(N)) = N.

4. g(f(M)) = M.

2.4.5. The situation for group rings. Again we shall follow [1] closely.
We shall apply Theorem 2.7 to the case mentioned at the beginning of sub-
section 2.4. We fix the following setting.

1. Let ‘R be a commutative Noetherian ring.
2. Let G be a finite group and let D < H < G. 2
3 VF<c indlc;' = RG ®grr — : RF — mod — RG — mod ;
’ res$ : RG — mod — RF — mod is the restriction functor.
4.

mod(G,F) = add(indG(RF — mod))

= ’direct summands of RG-modules induced from £

The objects are called relatively F-projective modules.

5. If F is a set of subgroups of G, then ind% is the smallest full additive
subcategory of RG — mod containing all modules of the form ind$ (V)
with V. € Ob(RF — mod) and F € F. mod(G,F) is the smallest full
additive subcategory of RG — mod containing mod(G, F) with F € F.

6. Let g € G and F < G. Then, 9F = gFg~! and for M € RF — mod one
forms the R 9F-module M by f - m=:gfg 'mforallmec M;f € F.

11i3dC means the class of indecomposable objects in the category C.
12To avoid technical difficulties we assume that H # G. Otherwise we shall have to deal
with unpleasant exceptions arising from empty set discussions in our formulas.



BLOCKS WITH CYCLIC DEFECT GROUPS AND GREEN CORRESPONDENCE 43

7. We take a disjoint union

G = UHginorgiEG;m:l-
i=1 -

Then, as RH-RH-bimodule,

RG=RHg:H.
i=1
8. p:RG— RH -1-RH 1s RH — RH-linear and an epimorphism.
.t:RH — RH 1-RH is RH — RH-linear and a monomorphism.
10. Set G := RG—mod, H := RH — mod, D := RD—mod.
S:=ind$, S = indB, T = res§, T' := resil.
11. For all N € Ob(RH — mod), M € Ob(RG — mod) set

(N, M) : Hompg(ind§(N), M) == Hompgg(N, res§ M)

N

by Frobenius’ reciprocity, as explained in Section 2.2.
12.

N lRH—mod — resg o indg}

by means of
ny = (N, indG N) (1,0 (ny) = (0 — 1©@n)

with N € RH — mod,n &€ N .
13. U =@;_, RHg;:RH ®rH — .
14. Since pi = lgy, we get TS = 1pg ® U .
15. ny 1s the identity, hence an isomorphism.

To apply the theorem, one has to try to construct a subcategory Y of RH —
mod such that .
S'T'Y|Y and S'T'Y|UY.
Notation 2.20. We fix for any set § of subgroups of H
X ={DNnY|Y €S} and Y :=indf .

Remark 2.21. Since ind and res result to isomorphic modules when passing
to conjugate subgroups, one may assume that S is closed under conjugation.
Since res and ind are transitive, one may furthermore assume that S is closed
under subgroups.

Proposition 2.22. 1. S'T'Y is a subcategory of ind.  Furthermore,
ind (ST Y.
2. RH ~mod/S'T'Y = RH — mod/ind%{ .
3. S'T"Y is a subcategory of V.
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Proof.
Part 1. Let N € Y. Then, N ~ indW with W € Ob(RV — mod);V € S.
We apply Mackey’s formula to obtain
T'N = restindfw = ) indB . ayrespn oy IW € Ob(ind}) .
VgDeV\G/D;g=1
Since indZind% = ind%, we get the first statement.

Let W € Ob(DNY ~mod),Y € Y, then again using Mackey’s formula,
resBindB .y W = indBy W @ @ indf(Dny)nHresZEgm:;nH YW
D#DgDED\H/D

Therefore,
indBny WiresBind® oy W = resBindB oy W = T (indBny W)
and with the transitivity of ind, one gets that
indB oy WIS'T (ind .,y W) .

Part 2. follows from 1. since by the first inclusion, every morphism factoring
through an object of S’7"Y factors also through an object of indf. On the
other hand, by the second statement, a morphism factoring through an object
of ind{l factors also through an object of S'T"Y, the latter having the object
from before as direct summand.

Part 3. follows from the transitivity of the induction and part 1.

To be able to write the result in a more concise form we introduce a new

Notation 2.23. Let F be a set of subgroups of H. We set
F'o={HnN 9F|lg e G\ H and F € F}.
Lemma 2.24. YF ¢ F with FF < H 1s
U(ind®) C andi, |U (indH) .

Proof. The ’source’ of the lemma is entirely Mackey’s formula. Therefore
the proof is a bit technical.

Of course, it is sufficient to prove the statements for F = {F}, a set with
cardinality 1. To start with we prove this statement and hence assuime that we

are given a V € RF — mod and set N := indZ V.
By definition,

U(N) =P RHg:iH @ru N .

i=2

Hence it 1s enough to prove that

RHgH ©py N € indl, for any g € G\ H.
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We first discuss what 1s meant by RHgH. We see that gRH 1s isomorphic to
the R( 9H) — RH —bimodule (RH which is RH as R—module and on which
from the left 9h € 9H acts by multiplication by Yh on RH. Now, precisely
those objects hgh' € HgH belong to {1}¢H for which h € HN 9H. Therefore,
RHgH = RH ©pign vy ¢RH as bimodule. We compute

RHgH ®rg N = RH OQpran sny ¢RH Orp N
= RH Orn sny ‘N
ind¥ . syresgl sy IN
= ndi,  yresih cyindsH 9y
[°HNH] ['eF] t

indf J oo
= indgn op @ lﬂ(l[,anHn o) PrEN 9H)
(HN 9H)t 9F

g

Furthermore, for n := g~ 'tg,

HNYHN YF=HnN "F
sincex € HN 9"F a2 € Handae € MFand 9"F = {yn-f n"l¢~'} C 9H,
taking into account that t € YH => n € H. Hence,

RHgH @Qruy N = @mdf{n gnp(resf}'}ﬁ onpy V)

n

€ 277(]_17_-{/ .

We hence proved the first statement.
We have to prove the second statement. Let ¢ € G and n € H, let V' €
Ob(RF —mod) and N := ind¥ V. Then, by the above calculation,

'Ifnd%,gg,r:j_}n gH]res%,Zg]an JH) “V | RHgH ©py N .

We just have to show that W = indﬁﬁ opQ for @ € RIHN 9F) —mod is a
direct. summand of a module of the above form.
-1 . . . s
Set indf_lHh F 9 °Q =:V € Ob(RF —mod). Then again, applying Mackey’s
~ formula,
i“'dll-{m 9F‘7’65;-1Fr‘1 QF(’in'de;] orQ)
= ind¥ ., ,¢(Q b modules from lower subgroups)
= W & modules from lower subgroups.

Hence we have shown that W is a direct summand of a module of the above
type which in turn divides U (ind¥). We have shown the lemma.

We remember that we are given the set of subgroups & and we have set
Y = ind¥ and X := {V n D|V € S}.
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Corollary 2.25. If X' C S, then S'T'Y|Y and S'T'Y|U~1Y.

Proof.

e We have just to show that U(ind¥)|ind¥, since by Proposition
2.22, S'T'Y is a subcategory of V and hence S'T'Y|Y automatically.
Also, S'T'Y|ind®. Hence, U(S'T'Y)|U(ind®) and if we show that
U(ind%)|indZ = Y, then we also get the second condition.

But, U(ind%) C ind¥l, by Lemma 2.24.

ind%,|U (indl) by Lemma 2.24.

ind!, C ind¥ since X' C S. :

Hence, ind¥,|ind¥ and even U(ind¥)|indZ.

Remark 2.26. We immediately check two situations where we may verify the
condition in Corollary 2.25.
1. IfS={V|thereisage G\ H : V< HN 9D},
then X = {X| thereisag € G\ H: X <DnN 9D} and &' C §.
2. If E is a normal subgroup of H and DN £ is a normal subgroup of G, set
S={V|V<E}. Then, ¥ = {X|X <DNE}and ¥’ <S§.
The first situation leads to the classical Green correspondence whereas the sec-
ond is a new application and leads to a theorem due to Auslander-Kleiner [1].

Summarizing the results we apply Theorem 2.7 to the above situation and
obtain the following.

Theorem 2.27. Let Z be the largest set of subgroups of D such that Z' C 8.
If X' C Y, then

1.
_ od(H, Z) -  mod(G, Z)
ndG . Mo, ) btk ek Sl
MO LA H ) moed(G, X)
1s an equivalence of categories.
2.
6sC - mod(G, Z) — mod(H, Z)
A mod(G, X) mod(H,S)

15 an equivalence of categories.
3. resG o indfGI ts induced by the identity functor on RH — mod.

Corollary 2.19 now translates to

Corollary 2.28. Assume we are in the situation of Theorem 2.27 and further-
more assume that RG—mod and RH —mod are Krull-Schmidt categories. Given
M € mod(G, Z)\ mod(G, X) indecomposable and N € mod(H, Z) \ mod(H, X)
indecomposable.

Then,
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1. ind§ (N) has a unique indecomposable direct summand g(N) in
mod(G, £) \ mod(G, X).

2. resH(M) has a unique indecomposable direct summand f(M) in
mod(H, Z) \ mod(H,S).

3. fg(N)~N.

4. gf(M) >~ M.

An application is the definition of a Brauer correspondent. Assume that we
are in the situation of Corollary 2.28.

1. The syzygy-operator Q¢ on the stable category of RG — mod and the
syzygy-operator Qg on the stable category of RH — mod commutes with
g and commutes with f. More precisely:

Qg ~ gQy and Qg f ~ Qg .

This follows since ind§; and resg are exact and send projective modules
to projective modules, hence a projective resolution to a projective reso-
lution. Then, applying Schanuel’s Lemma, we realize that syzygies are
well defined up to projective direct summands. This gives the result.

2. In the situation of the first part of Corollary 2.25 we look at the various
sets of subgroups of G more closely.

S {(V|3geG\H:V<HN 9D}
X {X|3ge G\H: X <Dn 9D}
Z = {Z<D|3g,¢d eG\H: YZNH<HN 9D},

Since D < H, we always get D € Z choosing ¢ = ¢'. If Ng(D)\ H #
0, then there is a ¢ € Ng(D)\ H. Taking this g, we conclude that
D e X. But then Z = & = § and Theorem 2.27 establishes a bijection
between the empty sets and in Corollary 2.28 there is no indecomposable
module satisfying the assumptions. If H > Ng(D), then trivially this
never happens and the theorem is non trivial.

3. Let B be a block of RG with defect group D. Let H > Ng (D). There is
a Green correspondence for G = R(G x G) and X = R(H x H) and D =
R(D x D) since Ngxg(D x D) = Ng(D) x Ng(D). Furthermore, as usual
the functors 5,5 are the induction functors. T, 7" are the corresponding
restriction functors. Now,

res@XS: RG— [ €D  RHgH|=[RH® &  RHgH]
HgHcH\G/H - HgHeH\G/H: ggH

and so a block B of RG with defect group D has a Green correspondent
. b which 1s a direct summand of the right hand side. It is now easy to
see that the Green correspondent of B is a direct summand of RH. The
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Green correspondent f(B) of B is a block of RH and is called the Brauer
correspondent of B.

3. CLASSICAL THEORY OF BLOCKS WITH CYCLIC DEFECT GROUPS AND
(GREEN’'S WALK AROUND THE BRAUER TREE

In this section we shall present the results of Green [5], Dade [2] and Michler
[13. 14].
Throughout this section we use the following notations.

1. R is a complete discrete valuation ring of characteristic 0 with residue
field k& of characteristic p. The field of fractions of R is i’

( is a finite group.

B is a block of RG with defect d.

D is a defect group of B with order ¢ = p®.

Dy is the subgroup of D of order p.

H = Ng{D1) > Ng(D).

B’ is the Brauer correspondent of B in RH.

Ca(Dy) =: C.

o0 ~1 O O v 0o N

3.1. The theory of Dade on blocks with cyclic defect group.
Definition 3.1. (Michler [13, 14]; Feit [3])

o The number e of isomorphism classes of simple B’—modules is called the
mertial index of G.

e There is a finite Galois extension & of A" such that for the ring of integers
R in K over R all the primitive |G|*" roots of unity are contained in
R/rad R. Let B be one indecomposable factor of R ©:g B’. (The others
are Galois conjugate to this.) The number e is defined to be the number
of isomorphism classes of simple B-modules.

Michler shows that e divides p — L [13, 14].

Set [:={0,1,...,(e — 1}}.

The main theorem of Dade describes the structure of the composition series of
projective kg B-modules in terms of combinatorial data, a Brauer tree. Janusz
and independently Kupisch [8], [10, 11] prove that not only the composition
series of the indecomposable projective modules are determined but also those of
all indecomposable modules. We do not need this description for Roggenkamp’s
description of blocks with cyclic defect groups and so we refrain from presenting
this theory as well.

The theory of Dade on the structure of blocks with cyclic defect groups 1s one
of the most beautiful in the theory of blocks. [t provides a complete solution
to the problem of determining the module structure of blocks with cyclic defect
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groups in terms of a combinatorial description. One of the key tools is the
Green correspondence.

Theorem 3.2. (Dader [2]) We assume that k contains all |G|-th roots of unity.
There 1s a set A of simple KG-modules, called the exceptional k ®pg B-
‘modules with the following properties. ’

1. The graph which consists of the following data is a tree:

e The vertices of the graph are the isomorphism classes of the non ex-
ceptional simple K @ g B—modules and an additional vertex; the latter
representing the set of exceptional modules, called the exceptional ver-
tex.

o There is an edge between two vertices v, w if and only if there 1s an
indecomposable projective B-module P such that K ®g P has the
modules which correspond to the vertices v and w as direct summands.

The graph is called a Brauer tree and in case frac R is a splitting field for
B, the cardinality of A 1s called the multiplicity of the exceptional vertex
and equals p = (|D]| — 1)/e.

2. Let P be a projective indecomposable k @ p B-module. Then, rad P/soc P
1s a direct sum of two uniserial modules Sp and Tp.

3. There is an embedding of the Brauer tree in the plane'® such that one
can get the composition series of Sp and Tp by the following algorithm.
Let Sp (and Tp) correspond to a vertex v (and w). By symmetry we
describe the algorithm only for Sp. Since the tree is embedded into the
plane, one has an ordering of the np projective RG—modules ) such that
K@ has composition factor KSp by a counterclockwise numeration of
the edges adjacent to v. Now, rad'(Sp)/rad**!(Sp) ~ Q;/rad(Q;:) for
i=1,2,...,n(P) e(P) — 1 where Q; is the projective indecomposable
module which is i positions after P in the counterclockwise ordering. If
v s the exceptional vertez, then e(P) = e and if v is not the exceptional
vertex then e(P) = 1. :

We illustrate the algorithm by a simple example.
We are given the following Brauer tree

[ ]
1
L] -9 L —3 0 —4 L]

|5

13This is just another way of saying that one imposes to each vertex v of the tree a cyclic

e B
ordering of the edges v — w which are incident to the vertex v.
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The second right vertex has multiplicity 2, as indicated the box. We shall
give the composition series of the projective indecomposable modules for this
example.

1 2 5 4 3

2 5 3 3 1 4
Po=| 5 [ Pa=] 3 |;P=|1|;Pa=| 4 (;P5=] 2 3

3 1 2 3 5 4

1 2 5 4 3

3.2. Green’s walk around the Brauer tree. After Dade’s paper, Green
proved the following theorem. This theorem is of fundamental importance not
only for the proof of Roggenkamp’s theory of Green orders.

Let W;; i =0,...,(e — 1) be the projective indecomposable B-modules.

Theorem 3.3. (Green [5]) We assume that k contains all |G|~th roots of unity.
Let G be a finite group, let B be an RG — block, let D be a cyclic defect group
of B and let I be the Brauer tree of B.

1. There is a family (Ap)nez of RG-lattices and a permutation § of I =
{0,...,(e—=1)} such that there erist short exact sequences of RG-modules

Ey:0— Anipy — W&(i) — Ay — 0

E21‘+1 0 — AQ.H.Z — W, — A2i+1 — 0

with Wi ~ Wiy and A; ~ A;y9e for alli € Z.
2. The Ag, A1, ..., Ase_y are mutually non isomorphic.
3. KA, 1s a vertex of T.

It is possible to reconstruct the Brauer tree from the permutation §. One
forms a path

5 Sle—
O—I)OMO—“%-‘-(B—:)o—e)oé(eo
9(

which closes to an oriented circle. Then, one glues ¢ — o to o ) g it = a(j)
and the result is the Brauer tree. Obviously it is a graph but by Dade’s Theorem,
it is in fact a free and looking at the isomorphism classes of the vertices even
the Brauer tree. ‘

Conversely one may define a permutation § of the set of edges for every
embedded tree out of which it is possible to reconstruct the tree in the above
way. This permutation depends not only on the tree but also on a starting
point:

1. One starts at a certain edge ¢ and declares this edge to be 1.
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2. Take a vertex v which is adjacent to the edge taken. The edge following
e in the circular ordering at v is defined to be §(1).

The other extremity (not the vertex v) of §(1) is w.

The edge following (1) in the circular ordering at w is 2.

To find §(2) one proceeds as in 2. )

One stops after having determined §(e).

o o

In our example

starting with the upper vertical edge one gets the assignment

L
1]565)
o S1_, . 5_6(3) o _, o
sl
[

and the permutation (123 5).
If one starts with the right most edge, one gets the assignment

and the permutation (1 5).
Michler generalized Theorem 3.3 to the case where there is a ring R as in the
imtroduction, without assuming that the residue field 1s large enough.

Theorem 3.4. (Michler 13, 14]) Let R be as in the introduction to this section.
Let G be a finite group, let B be an RG — block and let D be a cyclic defect
group of B.
1: There are precisely e pairwise non isomorphic indecomposable k &g B-
modules M; with source k, the trivial kD-module.
2. Let, foralli=1,...e, P; be the k @g B-projective cover of M; and let

0— QM; — P; — M; —> 0

be exact. Then, (1 — a)kD is the source of QM.
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3. Let, foralli=1,.. ¢, @i be the k @ p B-projective cover of QM; and let
0— O°M; —Q;, — QM; — 0

be exact. Then, one can find a numbering for the M; such that §2M1- ~

- My,

4. There are e pairwise non isomorphic indecomposable B-lattices W; with
source R, the trivial RD-lattice and k @ g W; = M;. For each i there 1is,
up to isomorphism, only one B-lattice with these properties.

5. Let, foralli=1,...¢e, P; be the projective cover of W; and let

0 —QW; — P — W; —0

be exact. Then, (1 — a)RD is the source of QW;.
6. Let, foralli=1,...e, Q; be the projective cover of QW; and let

0— W, — Qi — QW; — 0

be eract. Then, one can find a numbering for the W; such that Q*W; =
Wiy1 where the indices are taken modulo e, and k @ QW,; = QM;.

7. In the set {Q*W,|k € N} a marimal subset of pairwise non isomorphic
modules has cardinality 2e.

Following Feit [3, Chapter VII Remark after Theorem 2.11] we define the
property X
(#*) The number of characters of the group H which are afforded
by irreducible frac(R) ® g B-modules is equal to (¢ — 1)/é.

As is proved in Feit [3, Chapter VII, Corollary 6.8], the definition for a Brauer
tree as in Theorem 3.2 works also for more general R satisfying condition (x).
Feit gives also an example that it is in general not enough to adjoin all ¢ roots
of unity.

As is proved in Feit [3, Chapter VII Theorem 10.6] one can prove a theo-
rem which is analogous to Theorem 3.3 also for more general R satisfying the
assumption (*) from above.

Green shows Theorem 3.3 by first showing Theorem 3.5 below. He applies
Green correspondence with G = kG —mod,H = kH —mod and D = kD — maod.
Clearly, D; is the only minimal subgroup of D and one chooses H such that
each g € G\ H satisfies 9D; N Dy = {1}, hence, A = {1}. The block B’ of kH
1s the Brauer correspondent of B. The simple B’-modules are called Sy, ...,.S..

Theorem 3.5. 1. B contains e simple kG-modules V;; i € I such that every
simple kG-module in B is isomorphic to exactly one V;. Let W, be the
projective cover of V; as kG-module for all i € I.
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2. There is a numbering of the V; such that

b ifie
HomkH(ij,Si)ZHOmkG(Vj,gSi)={ 0 z]fc:;é? ,

and there is a permutation § of I such that

Homy i (Si, fV;) ~ Homkg (95, V;) = { ]6 Zigg; ;i

3. For all € I there are non split exact sequences
F 0 0 — Qg(gSi) — W&(i) — 95 — 0
and :
Foiz1:0 — gSip1 — Wi — Qg(gSi) — 0.

Let us interpret Theorem 3.5. The theorem says in other words that the
permutation é can be obtained by the Green correspondents of the simple B'—
modules. In fact, the Green correspondent g(S;) has the property

top(g(Si)) = Vsuy and soc(g(S;)) = Vi foralli=1,.. e

of course after a renumeration. By the discussion of the permutation § one gets
the tree back from the permutation. Therefore, the Brauer tree as abstract tree
is determined by the Green correspondence.

We shall prove Theorem 3.3 in detail in the following subsections.

3.3. Dade’s description for blocks with normal cyclic defect groups.
As illustration on the degree of completeness of the description of the module
structure as well as preparation for the proof of Theorem 3.3 we give Dade’s
results for the special case of a normal cyclic defect group D of of the block B
in this subsection.

Then, the Brauer tree is a star and the exceptional vertex is in the centre.
This is the subject of the following lemma.

We introduce some notation before. As above, the Brauer correspondent of
B in kH is called B’

Lemma 3.6. (Dade) We assume that k contains all |G|-th roots of unity. B’
contains e simple modules Sy, ..., Se_1 with projective covers Ty, ..., Te_1.

1. There is a multiplicative isomorphism — : D — Centre(kC) such that
taking a generator o of D and defining a := @ — 1 the only composition
series, which 1s also the radical series of each T; withi=1,.. e is

Ti>Ta>Ta’?> - >Ta"=0.

2. Every indecomposable kH—module is isomorphic to one of the T;, =
Ti/(Tia”) ;i =0,1,...,(e=1);0=0,1,...,(¢g = 1).
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3. There 1s a kCg{D1)-block b such that kH ®Qrcg(p,) b = B’ and all such
blocks are conjugate in H. Moreover, the stabilizer of b in H is of the
form Cq(Dy) xE for a subgroup E of Ng(D). The group. E operates on
Dy by conjugation and T is E-linear.

d=1
We take oy = of .

Then, D; =< a1 >. Since H = Ng(D;) for all h € H there is a number
n{h) defined uniquely modulo p such that,

h Y ah = arf(h).

h — n{h)

is a homomorphism and gives rise to a one dimensional module. Since ' =
Cg(Dy), we have C € ker(3) and hence PHCl = 1.

We do similar computations with E and D. We define V,cpz™'az = ™).
We use the same symbols for D; as well as for D since we used a compatible
choice for the generators of D and D;.

We compute

1

. Wby:& _07”(2) .

Lemma 3.7. (Green)
LSy =T /Ti sy =¥ ®k Si .
2. Foralln € Z set S, := So ., and then {Sp, 51, ...,Se-1} 1s a complete set
of representatives of wsomorphism classes of simple k H—modules.
3. The composition factors of Ty are Si, Siz1, ..., Sitg—1 = Si.

* Proof.

Part 1. Vier,.epit-a” 2 toz (@) 1) =t-z-a” - (1+a+a’+- -+
gl =1 z-a¥ - n(z)” since (1 +@+a’+ -+ a1 = n(z) modulo
T1 - a.

Part 2. Since ¢!# ¢l = 1 = S5, ~ S, if m = n mod |H : C|. But,
|H : C| | (p—1), then follows by part 1 that all S, are composition factors of
Ty. Hence, S, all belong to B’.

Let S be a simple B'’—module. Then, there is a sequence ig,%y,...,4, € [
such that S;; ~ So and S;, ~ S and S; ; is a composition factor of T3;_, 14 We
know that S,'j ~ Y’ @ Si]._l for all j. Hence, there is an integral number z

19This is an alternative method of describing blocks. 1In fact, we need only the ne-
* cessity. If there was not such a sequence, then we could divide the projective indecom-
posables into two disjoint sets P; and Py such that for all P, € P, and all P, € P,
Hom{P,.P,) = Hom(P,,P\) = 0 and hence B’ = End(®p ep, P @ @p,ep, P2) =
End(@p, ep, P1) & End(® p,ep, P2) decomposes.
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such that S ~ ¢" @ Sy. We know, that there are precisely e simple modules
and therefore we found all of them.
Part 3. follows from Part 1, Part 2. and Lemma 3.6.

Corollary 3.8, (Green) Leti e I v e {1,...,q}.
1. T; , s projective if and only 1f v = ¢.
2. There are non split exact sequences

0 —= Tt 490 — Ty — Ty — 0.

3.V 1§u§q—lQH(r—ri,z/] s ’I;+u,q—u-
4. Qu(QuSi) ~ Siy1.

The proof is clear.

3.4. Definition of the ’walk’ 4. In this subsection we follow closely Green
[6]. We shall prove in this subsection Theorem 3.5.

In the following we first examine the situation over k and pass then, in the
next subsection, over to R.

For the proof of Theorem 3.5 we proceed in several lemmata.

Let {V;} be a complete set of simple kG-modules. For proving Part 1 of the
theorem we have to show that there is a bijection between I and J.

Claim 3.9. fV; is indecomposable and non projective and belongs to B'.
9S; is indecomposable and non projective and belongs to B.

Proof. The only thing one has to show is that fV; and ¢S; belong to the
blocks as claimed. Since fg(N) = N and ¢f(M) = M for all N and M, we just
have to show one of the statements. _

We have the Green correspondence with G = kG — mod and H = kH — mod
and D = kD — mod on the level of the modules. The Brauer correspondence is
a Green correspondence with G = k(G x G) — mod and H = k(H x H) — mod
and D = k(D x D) — mod. Since G x G — G x 1 =~ (G 1s an epimorphism,
we can view each kG-module as k(G x G)-module. The analogous holds for H
and D. The Green correspondent for a kG-module V is the same as the Green
correspondent of V as k(G x G)—module. This proves the statement since
belonging to a block means for a module that the corresponding idempotent of
the block acts as identity on the module. Using the functoriality we obtain the
statement.

We now turn to prove Part 2 of the theorem.
For this purpose we prove that

Homy g (Si, fV) = (Homy /mod(H, 1))(S:, FVj)
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and similérly
Homig(9S;,V;) = (Hompg/mod(G, 1)) (¢Si, V;) .
More generally, let X be a non projective indecomposable module, then
Homy g (Si, X) = (Homyg /mod(H, 1))(Si, X) .

Let ¢ : S; — X be a map which is zero on the right side of the equation. Then,
¢ factors through a projective module. However, group rings are selfinjective
algebras!®. Since S; is simple, the projective module over which the mapping
factors has as direct summand the injective hull P of S; and the mapping
actually factors over P. But, soc(P) = S; and therefore, if the mapping is not
zero, 1t 1s injective. However, then the injective module P is a submodule and
hence even a direct summand of X. This leads to a contradiction.
We proved

Lemma 3.10.
Homppg (Si, fV;) ahove (Homppy /mod(H, 1)}(S;, fV;)
CTeLET (Hompa /mod(G,1))(gS:, V;)
above '

= Hompg(95:,V))

and analogously
Hompg (fV;,Si) = Hompa(Vj,¢5i) .

Lemma 3.11. There is a bijection h : J — I such that
Vie[,je.]h(j) =7 &> HomRH(fV},S,'] ;é 0.

Proof. fVj o Th(j)u() for h(j) € I,v(j) € {1,...,¢ =1} by its indecompos-
ability. But then, it is even uniserial and

Homyp (fV;,Si) = { ko if h(j) =

0 ifh(j) #i

15 An R-algebra A is called selfinjective if each projective A~module is injective. Group
rings are selfinjective since there is a linear map A : A — R such that kerA contains no
non zero left nor right ideal and V, e ar(ab) = A(ba). Such algebras are called symmet-
ric, which is a slightly stronger condition. A group algebra RG is symmetric by setting
M gec r99) 1= r1. Since M(P o eq r¢9)g ') = rq there is no ideal in ker . Taking

a4 — HomR(AA , R)
a — b—— Aab))
we realize that this mapping is injective since an element in the kernel would induce an ideal
in the kernel of A generated by this element. Going to the residue field of R we see that this
mapping is also surjective, hence an isomorphism. Thus injective modules are also projective

and vice versa. Projective modules for symmetric artinian algebras over a field have the
property that the socle and the head are isomorphic.
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by Schur's Lemma.'® Given ¢ € I and S|soc(¢S;). Since S is a B-module,
there is a j € J such that V; >~ 5. Hence, Homyg(Vj,¢Si) # 0 and therefore,
Homyp (fV;,5;) # 0 by Lemma 3.10. This proves that i(i) = j and h is
surjective.

Given j.j/ € J with h{j) = h{j’) = i." Then, we may assume without
loss of generality, interchanging j and j* if necessary that f(1j) = T;, and
F(Vp) = Tiu for some 1 < v/ < v < g— 1. Hence, there is an epimorphism

T;',u — T;',I/’ .

If this mapping would factor through a projective module it would factor
through 7; which is the projective cover of T} . Hence,!” top(T; ) is mapped
to a subquotient of rad(7; ) unless v = 0 what we excluded. Therefore. the
mapping was not surjective and this leads to a contradiction. We conclude

0 # (Homug /mod(H 1) (FV), f15) L (Hompa/mod(G, 1))(V;. Vi)
' LT Homgea(V. Vi)
= j=17.

Heuce, h 1s also injective which finishes the proof of Lemma 3.11.

From now on, we take / = J and h = id; and have fV; =T, ;) for all j € 1
and certain v(j) € {1,...,q¢— 1},

Now we use the same proof as in the lemma in the situation Homyg g (5. f17)
instead of Homgp (f1.5;) to obtain a bijection d : [ — I, which is a permu-
tation, such that Homey(S;, fV5) = k if and only if 6(¢) = j and 0 else.

This completes the proof of Part 2. of the theorem.

We are going to show Part 3.
By Part 2. we get soc(gS:) =~ Vi and top(gSi) = Vi) Therefore, there 1s a
short exact sequence

0— QySi — W(;(,') — gS',' —> 0.
Since W,y is also injective and since soc(yS;) ~ ¥ there is a short exact
sequence
00— gSipr — W — V —0

'€Schur's Lemma says that given a ring 4 and simple A~modules S and T, then

a skewfield i S~T
0 else

Hom 4(S,T) = {

The proof is easy since a kernel and an image under-an 4-isomorphisim are ideals which are
either 0 or the whole module by the simplicity of § and T.
1" We use the terminus ‘top’ synonymous to "head”
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with some AG-module V. But,
{/5’1‘+1 ~ g§225'¢ =~ Q:’gS,»
and we see that there is a non split exact sequence
0— ¢Sy — W — Q¢S — 0
with a projec‘tive kG-module W. Applying Schanuel’s Lemma gives V' ~ QgS;.
We have also proven Part 3. of the theorem.

Remark 3.12. The same proof, and statement, works for a stable equivalence
between two selfinjective k-algebras A and B such that A is serial.

3.5. Turning to characteristic 0. We now prove the main result of this sec-
tion. For the convenience of the reader we state it here again.

Theorem 3.13. (Green) Let (G be a finite group, let B be an RG — block, let
D be a cyclic defect group of B and let T be the Brauver tree of B.
L. There is a family (4,)nez of RG-lattices and a permutation § of I =
{0,.... (e =1)} such that there exist short exact sequences of RG —modules
Esi 00— f\f_vH_l — W"‘g(,j) — As; — 0
Fyiy1:0 — Anigr — W, — ;'—131:_*_1 —0

where W, ~ Wi are projective indecomposable B-modules and A; =~
x‘li+'_’c fO'l‘ all i e Z.

2. The Ag, A1, ..., Aae_y are mutually non isomorphic.

3. NA, s avertex of T.

Proof. We can lift the projective indecomposable modules W, Lo projective
indecomposable RG-modules W, such that & &g W, ~ W, for all v € 1. We
may extend this definition to i € 7, by requiring that W; ~ Wi,..

In the situation of Theorem 3.5 we define,

Ba; = g5; and Bajyy = Qg5 .

Lemma 3.14. Let m € Z and M be an RG—lattice such that k g M ~ B,,.
Then there are RG—lattices 4, with A, ~ M and short exact sequences E,
such that k ©p B, ~ F,, for alln € Z.

E, 0—4, 4y — W, — A4, — 0.

Proof. Start with A, = M.

0 — -4771-{-1 l/Vm :4177. 0
{ ¢ L koOr— { kop—
0 — Bm+1 Wm Bm 0
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where A, 41 1s just defined to be the kernel of W,, — A,,. ¢ is defined by the
universal property of the kernel. Hence, there is an 4,,41 which lifts B, and
inductively one gets all A,, for n > m.

For n < m one uses the following strategy. We apply Hompg(—. R) to the
first row and Homy(—, k) to the second. We get '

0 Ay Homg(W,,_1,R) — Hompg(4,,, R} — 0

¢ l k@r~ k©r —

0 — Homp(Bm_1,k) — Homy (W1, k) — Homy (B, k) — 0
where A _, is just defined to be the kernel of Hompg(W,,_1,R) —
Hompg (A, R) and ¢ is defined by the universal property of the kernel. Dual-
izing again,

0— A, — Homg(Wn-1, R) — Hompg(A, R) — 0
we get that
00— Ay — Wy — Hompg(4pm_o1,R) — 0
is exact and inductively we get the statement.
Lemma 3.15. If KM is a vertex of I, then all N 4,, are vertices and K A,, ~
NApgge foralln € Z and KA, ~ N Ajngae.
Proof. We get that
AW, =KA4, b NA,4, YneZ.

Hence, all A" 4, are vertices. In the Grothendieck group ~(Ah'(7) we take

n+2e

ST=IRW] = 0= (=1)"  ([KA,] = [KAupa) .

i=n

Lemma 3.16. Let A,, and M be as above. then 4, ~ A, 0.

Proof. Given n € Z. We have a unique decomposition KW, = Y,{1) &Y, (2)
where Y, (1) and Y,,{(2) are both vertices of I'. Define

X (i) =W, \ﬂ Yali) ;i={1,2}.
These are R-pure submodules of W), since
Wa /[ (W, N Yol(i)) =~ (W(n) + ')",7‘('1'.))/')",, (1) <K KW(n)/Ya (i)

the latter being R-torsion free. Furthermore, they are the only two R-pure
submodules X of J¥,, with A'X being a vertex in I'. In fact, let X be a coun-

terexample with &X' = ¥, (). Then surely X < .Y, (/). The following diagram
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15 then commutative with exact rows:

0 — X 5 W, — Q. — 0

! I 4

0 — Yal)) — W, — Ry — 0

where by the serpent lemma the right most vertical map is surjective. Also.
we assumed @, to be R-free and aga.in by the serpeut lemma also the coker-
nel of X — X, (7) is torsion free. But then, N.X # X,(i) and we reach a
contradiction. :

This proves the lemma.

Now the problem is just reduced to trying to find an A{ to start with. For
the principal block we just take A = R, the trivial module.

The general case is more complicated and uses a construction of Dade.

It remains to prove Part 2.

We have:

kg Aongr > QgSn
k GRr Ao _(lSn. . .
If ¢ =|D| > 2then S; = Ti1 ¢ Tigo1 = Q5; and cleatly S; £ S for i #
J mod e. 1f ¢ = 2 then 4g ~ A4, and since ¢|(¢ — 1) we get ¢ = 1. But,
KWy = Yo(1) @ Yo(2) which are non isomorphic and also N Wy ~ KAy % A 4,
where both are vertices of I'. This leads to a contradiction.

Hence, we proved now the whole theorem.

4. BLOCKS WITH CYCLIC DEFECT GROUPS ARE (AREEN ORDERS

We maintain the notation of Section 3. .

In this section we shall define "Green orders’ dlue to Roggenkamp and prove
that a block of the group ring RG with cyclic defect group D is a (ireen order.
Moreover, we shall describe the structure of Green orders in great detail.

We follow the exposition in {16] and mention that all the material is contained

in [16].

4.1. A small example. Let p be a rational prime number. We shall discuss
the integral group ring of the dihedral group D, of order 2p. We remark that
D, fits well in Green’s framework at the prime p. where we mean that Z,D,, is
a group ring which satisfies all the assumptions of Theorem 3.3.

Let D, =< a.bla” = b> = baba = 1 > be a presentation of Dy. Then, < a >
15 a cyclic normal subgroup of index 2 in D,. Hence, we get a surjective ring
homomorphism

Z.Dp — Z.Cs.
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This 1s induced by multiplication by the central idempotent

1~
6= - E a' e QD,.
p =1

Hence, one gets a pullback diagram

Z.D, ZDpe

o) |

Z.Dy(1 — ¢) —— Z.Dye/(TD,e N Z.D,)

which becomes
F .

7Dy — ZCy

]

A——F,Cy

where [, is the prime field of characteristic p and the right hand vertical map-
ping is just reduction modulo p. In fact, pe € ZD, and ZDye NZ D, = pZ Dye.

We have to determine A. Multiplication of ZD, by {1 — &) means that «
acts on Z[(,] as multiplication by (,, where ¢, is a primitive p** root of unity.
In fact, 1 + a4+ a4+ -+ a”~1 acts as 0 and this is the only relation among
the elements of Z < « >. However, b inverts a¢ and acts therefore as Galois
automorphism ¢, — Cp"l. The element « acts as ¢, and this means that over
the fixed ring Z[¢, + (:l,‘l] the element « satisfies the minimal polynomial

NP (GH+GTHX + 1

With basis {1,{,} the representation can be described by the accompanying

matrices
0 -1 LG+t
a—)(l Cp+<p_l)anclb—><0 1
0
1

@ : l .
Conjugating by ( 1 ) from the left one gets the representations

GGt -1 1) ( -1 0)
« —> ’ P . and b — N - ;
' ( g]) + gp 1 2 ]' Qp + Q}, 1_ 2 1

where m, := ¢, +(; ' — 2 generates the unique prime ideal above p in Z [, +¢; ']
(see [6]).
After constructing the standard idempotents in the matrix ring, one gets

A:( Zlm,) zw)

mpLlmpl  Z[ml
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and the mapping to F, C's equals reduction modulo

.]:(vrpz[wp] Zr,] )

Ll  mpZlm,)

) XZ | x—ue€milm),

u—w € mpdh[mp),
w—u €2},

Localizing at the prime p we obtain the Brauer tree

where the exceptional vertex in the centre has multiplicity {p — 1)/2. We shall
show that this structure has a feature which is comimon for all blocks of finite
groups with cyclic defect groups.

4.2. Defining Green orders. We shall define a class of orders with a structure
like in the above example. These orders are introduced by Roggenkamp [16] who
called them Green orders.

‘Throughout this subsection let R be a local Dedekind domain.

o Let I be a tree!® embedded in the plane!®.

o Choose a local R-torsion R-algebra k finitely generated as R--module.

e Assoclate to each vertex v of ' a pair (€, fi,) where Q, is a local R-order
m a semisimple algebra 4,, and where f, 1s a surjective ring homomor-
phism f, : Q, — k with kernel being a principal ideal «,,..

o If v = wis an edge, then put v.(v) := w and v.(w) := v the mapping
giving the other extremity of the edge e. Of course, v, 1s an involution.

o If ¢ is an edge incident to a vertex v of the graph I'. then set «,(e)
the edge which follows e in the cyclic ordering at the vertex v. We set

ol (e) = a7 a,(e)) and ol = a,. \

e Set n, = #{ai(e)]i € I1;¢ is an edge incident to v} for any vertex v of
the graph I

A leaf of T 15 a vertex v with n, = 1.

18 A tree is a finite, connected, undirected graph without cycles.
12This is equivalent to saying that one imposes to each vertex a cyclic ordering of the
edges incident to the vertex.
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o Attach to each vertex v of ' the order

Q. B
(@) Q

Ay = : (av)
(a) o o (a)

Nu XNy

e We denote the pullback
Qu — Qp — Q,

(%) l lf :
Qw fe k

o We form the iterated pullback of the orders A, for each vertex » under
the following iterative procedure. Set Ay := P

V€l verter Au :
. a . .
1. Fix a leaf®® v. The edge leaving v is € and w := v.(v). Form the

pullback (*) between?! (Aw)(1,1y and €,. Set Ay the subring of the
old Ay given by this pullback.

2. For each i = 2,...,n, form the subring of Ay by the pullback (*) be-
tween (A )i 4 and ("\Uc\_-—x(é)(u'))(lxl)' Put Ay the new subring formec

by these pullbacks. Call the vertices "ai;‘(e)(“’) reached. Call w sat-
urated.

3. If there is no vertex which is not yet saturated, then we define the
generic Green order to the tree I' with data (0, fu) to be Ay Stop
the algorithm! ,

4. Else there 1s a vertex v which is reached and not saturated. Since »
is reached, Ay contains a pullback between (A ) 1) and a ,,. Set ¢
to be the edge v — w. Proceed with 2.

Definition 4.1. The resulting order Ay which occurs after executing point
3 in the algorithm is called generic Green order to the tree T with data

(QU ) fv)UEFx-cr{c.r'

The reader might like to construct the generic Green order to the tree in
Section 3.1.

We remark that the isomorphism type of the generic Green order depends
only on the embedded graph and the data. This can be proved since A, contains

20 A leaf of a graph is a vertex v with n, = 1.
21 The notation M, ;) means the (i,7)~—entry of the matrix M.
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an automorphism conjugation by

01 0 ... 0
0 1

0

0 1

a, 0 0

nxn

This induces a cyclic permutation of the diagonal entries, the last becoming the
first.

In the following section we shall elaborate on the orders A, .

Definition 4.2. (Roggenkamp [16]) Let R be a Dedekind domain with field of
fractions . An R-order A in a separable A -algebra 4 is called a Green orderif
there is a finite connected tree with vertices {v;}7_, and edges {er}7_,.

1. The vertices {v;}?, correspond to (not necessarily primitive) central
idempotents {n;}j=; of A with 1= 3" ;.

2. The edges {ex}}-, correspond to a full set of indecomposable projective
A-lattices {Py}_,.

3. The tree and a starting vertex determine®® a permutation § of {1,....¢}
and there is a set of A-lattices {4;}"_, such that '

(a) KNA; = An, foralli=0,1,....n
(b) for all i = 0,...,n there are short exact sequences

Eo: 0 — Asjyr — P(s(,') 7M‘ A9y — 0

Fajpr 0 — doijyo — B l—) Aaipr — 0.

The term generic Green orderis used since in Theorem 4.3 (see also the proof
of Lemma 3.16) it will be proven that all Green orders are Morita equivalent to
generic Green orders.

FErample. Let G be a finite group and let R be a complete discrete valuation
ring of characteristic 0 with residue field of characteristic p containing all the
|GiIth voots of unity. Let B be a block of RG with cyclic defect group D. By
Theorem 3.3 B is a Green order.

Theorem 4.3. (Roggenkamp) [16] Let A be a Green order with tree T Then
A is Morita equivalent to a generie Green order with tree T.

227 the sense described in the discussion in Section 3.2,
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We shall give Roggenlkamp’s proof of Theorem 4.3 in the sequel. For this
purpose we shall mtroduce in the next section another type of orders, which
Roggenkamp calls isotypic orders in [17]. These are the orders A, in the defini-
tion of a generic Green order.

4.3. The rational components; isotypic orders. Throughout this subsec-
tion let R be a Dedekind domain with field of fractions . Let A be an R—order
in a separable A'—algebra A.

Definition 4.4. {Roggenkamp) [16] The order A is called isotypic order pro-
vided there is a twosided A-ideal J such that

1. N J=A4,

2. J is projective as left A—module,

3. A/J is a direct product of local R-algebras,

4. A is nilpotent modulo the Higman ideal H(A).*3
Then, J is called associated to A or defining ideal of the isotypic order.

One first property 1s almost immediate: :

A 1s isotypic if and only if R, © A 1s isotypic for all prime ideals g of R. Here
we denote by Rp the completion of R at p.

Proof. If A is isotypic, then Rso @ A s isotypic. In fact, 1. and 3. are clear.
2. and 4. are consequences of the 'change of rings’ theorem.

If RP ® A 1s isotypic for all prime ideals p of R, then we use the following
general property for orders A in a separable algebra 4 over a Dedekind domiain
R' B

If A/ and L are full R-lattices in the N-vector space V', then M, = L,
almost everywhere. Furthermore, for each @ let there be given for each @ a full
R,-lattice X {g) such that X(p) = M,. Then N := [ X{(p) has the property
that Ny = X(p) for all p € Spec(R).

We apply this to J. We have ideals J(g¢) for all p by the definition of
isqtypic orders. Set J(p) = A, whenever A is a maximal order. We form
J = ﬂpESpeu(R) J(g). Now, J is projective since J(p) = J, is projective for all
9. (This 15 observed most easily by seeing that Homa(J, —) 1s exact. This in
turn is seen by the 'change of rings theorem’. KN'J = A since this holds locally
and Ap/J, 1s R-torsion since NA, = K J,. Hence,

AT =][Re@ AT~ ][(Re @ A)/(Ry @) = [ Ao/
3 P ©

the latter being a direct product of local algebras by assumption.
This finishes the proof of the observation.

23The Higman ideal of an R-order A is the R-annihilator of E‘”}\@R/\"V(A’ —). For orders
A in a separable algebra we have - H(A) =0 . [18, V. 3.5]



68 ALEXANDER ZIMMERMANN

Because of this observation we may assume, to clarify the structure of 1sotypic
orders. that R 1s a complete diserete valuation domain with residue field F and
radical mR. '

Assuming this, the Higman ideal of A is a power of mnR. By a general property
of Jacobson racdicals for artinian algebras we obtain that J is nilpotent modulo
7R, ifand only if J < rad A. However, J is nilpotent modulo 7 R if and ouly if J
15 nilpotent modulo a certain power of # R. (Just multiply the nilpotency degree
by the power which was fixed at the beginning.) So Condition 4. translates to
J < rad A.

Theorem 4.5. (Roggenkamp [16]) Let R be a complete discrete valuation do-
main. Assume that A is a busic®™ isotypic R-order with associated ideal J. Let
furthermore A be indecomposable as ring.

Then, theve is « local R-order Q and a reqular non unit @ € Q such that

aQ = Qa =: (a) and Q/(aQ) s a local algebra, and a natural number n such
that
() €
A~ AQ = !\O(Q,a, II.] = (a)
((L) ((L) Q nxn

Conversely, every such order is isotypic.

Remark 4.6. 1. For Ap one can take the associated 1deal

o 1 0 ... 0 Q .. ... .. Q
0 1 (@) ©
J=1 R o )
0 R : : L
a 0 ... ... 0/ . (@) oo o (a) Q)

which is principal. We call the generating element above w.
2. The product of local algebras as in 3. in the definition of “isotypic order’
ranges over a set of pairwise isomorphic local algebras /().

Proof.
Ap s isotypic. In fact,

24 A Noetherian ring is basic if for each decomposition into a direct sum of indecomposable
left projective modules A = ;¢ Py, no two projective summands P, and Py with ¢+ # 5105 € ]
are isomorphic.
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e « is regular, hence Part 1. of the definition of an isotypic order follows.

e J is principal, generated by a regular element, hence free and Part 2.

follows. . \

o A/J = H?:l §/(a) 1s a direct product of local orders. hence we get also

Part 3.
a is not a unit. Since Q is local, J 1s contalned in the radical of A. The radical
of A is the ideal with radf in the main diagonal and in the lower triangular
matrix, §2 in the rest of the entries.

We have to prove the converse. We may order a complete set..of projective
indecomposable modules Py, Pa, ..., P, such that rankr P; < rankg P41 for all
1=1,2,...,n— L.

Since for any 7 the module 7 1s projective, there is a @; and an integer (i)
such that P, Q; ~ A™U) . But then, Jioy PidrJ ©a Q; ~ J™ which is projective
since J is projective. Hence. J iy P; is projective. Then. for any 7 the set

P; := { isomorphism classes of the modules J) Pljell}
consists of projective modules. The cardinality of this set is- k(7).

Claim 4.7. J*) =\ Py ~ Py Furthermore, k(1) = n and hence Py is «
complete set of isomorphism classes of projective modules.

Proof. Since K'J = A, we get rankg P, = rankgJ? <1y P; and we may or-
der the projective indecomposable modules such that JJ .y Py = Py, Let
Q={Q:.Qs,....Q:} be aset of representatives of isomorphism classes of inde-
composable projective modules such that the somorphism class of no element
of @ is contained in P;.

Since A is indecomposable, there exists @; with Homa (@i, Pi4+;) # 0. If not,
the endomorphism ring of A would-be the direct product of the endomorphism
rings of the direct suun of modules in ) and that of E‘g'afilo) Py

We now reduce to artinian algebras. Take 0 # ¢ € Homa(Q,, Pi4;). Then,
there exists v € I such that the composition

Qi 5 Pryj — (Pyy) /(" Piy))

is non zero. Since J < rad A, there exists y such that J# < YA But, for all &,
J¥JJ*+V s a projective A/J module. However, this is a direct product of local
algebras. Hence,
JE P IR Py .

15 a local A/J-module and has all composition factors isomorphic to
Pryj/rad Piy;. Hence, Pii;/n" Py has composition factors all isomorphic
to Py/rad Py for £ = 1,...,k(1). But. the top of @; Is isomorphic to one of
them, hence the isomorphism class of @; is in P71, which is a contradiction and
( 1s empty.
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It remains to prove that J*(1) &y Py ~ Py

If /(1) ©4 Py ~ P, for some k., then one forms the set Py instead of 7, and
{P1,..., Px_1} would be in . The analogous arguments as above lead to a
contradiction and the claim is proven.

By Morita theory, @7, F; gives a Morita bimodule inducing a Morita equiva-
lence between A and Enda (@7, P;). Since we have the Irull-Schmidt Theorem
for A and since A is basic, A >~ Enda (&2, F;).

Claim 4.8. Ends (@i, F;)
Homu (P, J" @A P1).

~ Ao for Q@ = Endp(P) and (a) =

Proof. Since K P, is simple by construction, the isomorphism P, — J" P}
is multiplication by a regular element a € Q. Hence,

Homp (P, J" QA P)=Q «a.

Any endomorphism ¢ € Q can be extended to an endomorphism of J* @, P by
id;. ® ¢. Hence,

Q< Endp(P2) < -+ < Enda(Pa_1) < Enda(Py) < Endp(J"@aPy) = a Q.

But then, all the endomorphism rings are equal, Q being noetherian.

Since when tensored by i over R, all the P; are isomorphic and simiple, any
non zero mapping ¢ : P, — Py fori=1,...,nand j=1—-14... ,n—11s
injective. Looking at the tops of the modules Piy;/J¥Piy; by the arguments
given in the proof of the preceding claim. Homa (P P;) = Q if j < { and
HOTTZ‘A(Pi,P]') =Q aifj>1i

This proves the claim and also the theorem.

4.4. Structure theorem for Green orders. Proof of Theorem 4.3. We as-
sume that A is basic. The proof will be done in several steps.

Lemma 4.9. Let A be a basic Green order with connected tree T oand let v
be a leaf. Let e be the edge joining v with some vertexr w. The projective
ndecomposable module associated with € 1s Py. Then. Enda(A/Py) s a Green
order with tree I where I, ¢pyep = Tverter \ {v} and Ty = Tegge \ {¢}.

Proof. Without loss of generality we may set Ao = Ang. Set P := A/P,.
Apply F := Homy (P, —) to E,, for all m = 0,...2n — 1. Since P is projective.
this functor is exact. However, since there is only one projective indecomposable
module, namely Py, F(Ap) = 0. But then F(Eq) fori=1,..., nand F(Ea4)
for i =0,...,n — 1 are the required exact sequences.

This finishes the proof of the lemma.

Lemima 4.10. Let A be a basic R-order in the separable algebra A. Let e be a
central idempotent of A and let P|A with P -e = 0. Put Enda(A/P) =1 Ay as
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a subring of A (not with the same unit!). Then,
Ae=Apg-eand Ag-eNA=Ag-eNAp.
Proof. To prove the first statement one observes that

."\6 = E‘_:\e
= eEndy((A/P)$ Ple

_ Enda{A)P) Homa((A/P), P)
“\ Homy(P.A/P) Enda(P) ‘

_ eEnd (A/P)e 0
- 0 0
= Aof’.

The second statement is proved as follows:
By the first statement,

Ap N {Age) = Ap N (Ae)
and clearly

AN{Ae) D AgN(Ae).
Hence we have to show that

AN (Ae) C AgN (Ae).

This 1s done by the following computation:

_ Enda(A/P) Homy ( A/P
Antde) = (Hmn,\ P.A/P)  Enda(P
e Enda(A/P)  Homa( A/P )\
Homa(P,A/P) =~ Ends(P )
Enda(A/P) Homuy ((A/P),
Homa(P,A/P) End_,\(P)
A eEnda(A/P)e 0
0 0
. Endpy(A/P) 0 A eEndy(A/P)e 0O
N 0 0 0 0

= Ao N (1\()8) .

Claim 4.11. Let A be a basic Green order with tree T'. For the idempotent
n corresponding to a vertex v the ring AJ(A N An) is a divect product of local
algebras.
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Proof. We use induction on the number of vertices.

If the Green order has only 2 vertices, then the statement is clear since there
1s just one projective indecomposable module and the Green order is local.

Let then v be a leaf of the tree I'. Let e be the edge of the tree that links
v with the rest of the tree. Let P, be the projective indecomposable which
corresponds to e. Set P = A/Py and Ay = Enda(P). Then, by Lemma 4.10
the tree I'V defined by

Prerter \ {0} =1 Terren edﬂ\{ } = Iedgr

defines a Gireen order structure on Ag.

Let v = w and let ¢ with w # ' # v be a vertex of T'. Then. for v/ the
statement is true by induction.

We need a proof for w and its central Idompolent e only. Let i, be the
central idempotent corresponding to v.

¢ :=1 =9y — Nw. We get the following pullback diagram.

A Ale 4+ 1)

A — Ae+ ) /(AN A(e + 1)) .
We see that
Ale+n,) = Aed A,
and
Ale + 1) /(AN A(e + 1)) = [/\e/A N A€l [An, /AN An,].
But, by Lemma4.10

Ae/(ANA(e)) = Ane/(Ag N Agle))

and since ¢ is also a central idempotent of A Ay, which gives rise to a pullback
diagram itself with quotient A := Age/(Ag N Ag(e)), the ring A i1s a direct
product of local R-algebras by induction.

Now we use the fact that v is a leaf. If An, was not local, it would have two
non isomorphic simple modules. Since A, is an image of A, A itself has these
two non isomorphic modules. However, there is only one simple A-module,
namely the top of Py, on which Homy(Py, =) is non zero. The two simple A-
modules constructed above however have this property, and hence they cannot
exist. We conclude, A, 1s local.

Since An, is local, Az, /{An, MA) is local.

Lemma 4.12. Let A be a basie Green order with tree I'. Let v be a vertexr of T
with corresponding central idempotent n,. Then, A, N A s a free An, module.
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Proof. Again we use induction on the munber of vertices of T.
Assume that there are only two vertices. Hence, there are short exact se-
quences

0— A — AL 49— 0

0—» Ap— A =% 4, — 0.
Thus, A(1l — n.) NA = Ag >~ A,

Assume we have more than two vert.icese.

If v is a leaf with idempotent 7, let v — w be the edge of the tree linking v
with the rest of I'. The idempotent associated with w is denoted by n,. Hence,
there is an indecomposable projective A—-module Py, and there are short exact
sequences

00— 49— Pp ™ A1 — 0
0— 41 — Po 2% 49— 0.
Let Py = Aeg for an idempotent eq of A. Since v is a leaf, n, Py = n,A\: the
proof is the same as proving that An, is local. Now, since 0, Po = (1L — 1) Py,
A NA=nPiNA=nFPiNPi~Ag=nF.

If va is a vertex different from v and w, then let 7,, be the central idempotent
associated to va. Then, since

ANy, NA = Apmy, N Ag and Any, = Apny,
for Ag = Enda(A/Py), by Lemma 4.10, the statement is true by the induction
hypothesis.
We have to prove the statement for w. Let {e1,ea,...,en} be the set of
edges adjacent to w. Let {Py, Pa,..., P,} be the corresponding projective in-

decomposable modules. Set A = En(l,\(@;.’:l P;). Then, again by Lemma
4.10

A = A and Ay, NA = An,. DAL

Hence we may prove the statement for I' being a star and w« in the centre and
number the edges in their cyclic ordering. Let {n1.792....,7,} be the idempo-
tents corresponding to the vertices adjacent to {ey.ea,...,e,} but unequal to
w. The idempotent corresponding to w is 7. By the definition of a Green order
we get short exact sequences

00— 4, — P25 4, —0
0~ Ay — Po 15 4 — 0
0— 43— P25 45 =50
0— Ay — P32y 43— 0

0——)-‘5——)P'3£—)41~—)0



=
w2

ALEXANDER ZIMMERMANN

Nn

00— Aoy — Py, = Aoy — 0
0— Ao — P =5 4oy — 0.

For computing An N A we have to s up every second kernel and get that

n n I3
Ann A~ @Agi = EB”Pi = 77@ P;
i=1 i=1 i=1
1s a progenerator. If we furthermore assume that the Green order is basic, ApnA
is a free An—module.
This proves the lemma.

To prove the theorem we just have to assemble the different parts.

We see that for each vertex v the order A, := An,. s an isotypic order with
defining ideal J, := An, NA.

In fact,
RO (An, NA) =K &g Ay,
Jy 1s a free Am,—ideal by Lemma 4.12,
and An,/(An, NA) is a direct product of local R-algebras by Lemma 4.9.
The ideal J, for all vertices v is contained in the radical of A,: Let S
be a simple A,—module. One has to show that J, acts as 0 on S. Since
A —» A,, each simple A,-module is also a simple A-module. But,
we get n simple A-modules just by the local algebras which we get in
the quotients A,/.J,, where n is the number of edges of I'. All these are
annihilated by all the J,. S is one of them.

o ¢ o o

We get the structure of A, by Theorem 4.5. The 2, in the main diagonals
of the matrices correspond to the projective indecomposable modules, as one
sees from the proof of Theorem 4.5. For Green orders these are just the 7, P
for 1, being the idempotent corresponding to v and for P being a projective
indecomposable module corresponding to an edge incident to v. The pullbacks
linking the different. A, are as constructed in the example since this is the way
the exact sequences corresponding to the tree are built.

Remark 4.13. In [19, 9] it is proven that two Green orders having the same
data (Q,, fu) but not necessarily the same underlying tree have equivalent
bounded derived module categories. An explicit twosided tilting complex which
provides this derived equivalence is given in [20].
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In the representation theory of finite groups, the concepts of derived and
stable categories turned out to be of considerable relevance during the last
years. After recalling some basic properties of algebras in section 1, we give the
definitions and fundamental properties of stable and derived categories in the
sections 2 and 3, respectively. Section 4 is then devoted to applications to the
theory of blocks of finite groups and in section 5, we go deeper in the study of
invariants of stable equivalences. Finally, section 6 sketches some results and
conjectures in the theory of blocks of finite groups.

1. GENERALITIES ON ALGEBRA

Throughout these notes we fix a prime p and a complete discrete valuation
ring @ having a residue field & with characteristic p and a quotient field K. The
case Kb = (3 = kis not excluded, unless stated explicitly otherwise. Remind that
@ has a unique maximal ideal, namely its radical J(Q), and this is a principal
ideal; we denote by 7 an element of O such that J(Q) = 7.

In most applications to finite groups however (O will have characteristic zero,
since O will be the "link™ between representations of a finite group in zero and

-non zero characteristic.

By an (—algebra we mean an assoctative unitary algebra .4 which is QO —free
of finite rank as O—module: an A—module is always a unitary finitely generated
left module (not necessarily O—free), unless stated otherwise. We denote by
J(A) the Jacobson radical of A: that is. the annihilator of all simple A—modules.
Remind that J(O)A C J(A): thus any simple A—module can be viewed as sini-
ple module over the k—algebra & L A (and, of course, vice versa). If [’ 15 an

C
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A-module, we set rad(U/) = J(A)U, called the radical of U; this 1s the intersec-
tion of all maximal submodules of U7, or, equivalently, the smallest submodule
of U for which the quotient module U//rad(l/) is semisimple (i.e. a direct sum
of simple modules). Dually, we denote by soc{lU/) the sum of all minimal (i.e.
simple) submodules of U/; this is the largest semisimple submodule of I/, called
the socle of U. This notion will play a role only in the context of k—algebras,
since if U is O—free and () # k, then U has no simple submodule: indeed, for
any non zero submodule V' of {7, multiplication by 7 is an isomorphism from V'
to its proper submodule J(QO)V

We denote by A* the group of mvertible elements in A and we will say that
two elements (or sometimes two subsets) a, a’ in A are conjugate in A, if there
is u € AX such that vau=! = '

If 4, B are O —algebras, an A — B—-bimodule M is a bimodule whose left
and right O—module structure coincicde and which hence may be regarded as
A%\Bg—module, where BY is the algebra obtained by endowing B with the

opposite product.
We remind that an A—module U is called projective if it 1s isomorphic to a
direct summand to a free A—module A” = A4 @ O for sone positive integer n
o

and it 1s called relatively O—projective if it is isomorphic to a direct summannd
of A ® V for some (not necessarily free) (?—module V. Equivalently, U/ is
relatlvely O—projective if and only if the module & ® o {7 viewed as module over
the k—algebra k %) A is projective. c

"For an O—algebra A we denote by Mod(A) the category of (finitely generated
unitary left) A—modules. Note that if U 1s an A—imodule, then its O—dual U* =
Home (U, @) becomes a right A—module through (f.a)(u) = f(au) for any
fel* a€ Aand u € U. Similarly, if A, B are O—algebras and M is an
4 — B—bhimodule, its @—dual becomes a B — A—bumodule.

If 41s a k—algebra, k—duality maps projective modules to injective right
modules and vice versa. For O—algebras, if O # k, this is no longer true since
there are no non zero injective modules but only relatively O —injective modules.

We quote now some standard properties of idempotents and projective covers.
An idempotent in an (?—algebra A is a nonzero element 7 in A satisfying i> = i;
two idempotents i, j in A are orthogonal if i = 0 = ji, and 1 is called premitive,
if it Is not the sum of two orthogonal idempotents. A primitive decomposition
of an idempotent e in A is a set [ of pairwise orthogonal primitive idempotents
m A satisfying > i =e.

i€l
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Theorem 1.1. Let A, B be O—ualgebras, { : A — B be a surjective algebra
homomorphism, i, j be primitive idempotents in A and e be any idempotent in
A.

(i) The projective indecomposable A—-modules Ai, Aj are isomorphic if and
only if i, j are conjugate in A;

(it) The correspondence sending the projective indecomposable A—module A7
to the A—module S; = AifJ(A)i induces a bijection between the sets of isomor-
phism classes of projective indecomposable and simple A—modules;

(i11) Any two primitive decompositions of e in A are conjugate;

(iv) Either f(i) =0 or f(i) is again o primitive idempotent in B: moreover,
if both f(i) and f(j) are non zero, then i, j are conjugate in A if and only if
f(2), f(5) are conjugate in B.

As a consequence of 1.1(ii) we have:

Proposition 1.2. Let A be an O—algebra. For any A—module U there is up
to tsomorphism a unique pair (Py,7y), called minimal projective cover of U7,
consisting of a projective A—module Py and a surjective A—homomorphism
mr . Pu — U which induces an isomorphism Py [rad(Py) = U/rad(U), and
then Qa(U) = ker(my) 1s contained in rad(Py).

Indeed, by 1.1(ii) there is up to isomorphism a unique projective 4—module
Pyrosuch that Py /rad(Py) = U/rad(U), and by the projectivity of Py, any such
isomorphism lifts to an A—homomorphism 7y : Py — U, which is surjective
by Nakayama’s Lemma.

The operator 24 defined by taking the kernel of a minimal projective cover
as in 1.2 1s called Heller operator of A if A = OG for some finite group G,
we write ¢ instead of Q4 and even sometimes just 2, if A is clear from the
context. In order to use the Heller operator we always assume implicitly a
choice of projective covers, but 1.2 asserts, that the Heller operator is up to
1somorphism independent of such a choice.

Using the fact that k—duality maps projective modules to injective modules,
we have a dual version of 1.2, namely

Proposition 1.3. Let A be a k—algebra. For any A—module U, there 1s up
to isomorphism a unique pair (Iy, ), called minimal injective envelope of U
consisting of an injective A—module Iy and an injective A—homomorphism vy
U — Iy mapping soc(U) onto soc(ly), and then we set QZI(U) = coker(ey).
Note that 1.1 (iii) implies the Krull-Schmidt Theorem: '
Theorem 1.4. Let A be an O—algebra and U an A—module. If U = U1 & .. H
U, = Vi®.. &V, are two decompositions of U as direct sums of indecomposable

modules U;. V. then n = m and there is a permutation o of {1.2....,n} such
that Uy & Vo) for 1 <i<n.
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Indeed, a decomposition of U as a direct sum of indecomposable modules
corresponds naturally to a primitive decomposition of Idy in Enda(U7), and so
1.4 follows from 1.1 (iii).

If Ais an O—algebra, U an A—module and o an automorphism of 4, we
denote by U the module obtained from [/ by “twisting” with o: that is, as
O—module we have U/ = U and ¢ € A acts on U/ as left multiplication
by a(a). Similarly for right modules and bimodules. Clearly “twisting by «”
extends to a functor on Mod(A), namely to the functor 442 —, and this is an

A
equivalence with inverse functor ,-1A ® —. This is a particular case of a more
A

general concept:

Theorem 1.5. If A. B are O—dlgebras with equivalent module-.categm‘z’es

Mod(A) = Mod(B), there is ¢ B— A—bimodule M and an A — B—bimodule N

such that N%M > 4 as A— A—bimodules and MGN = B as B— B—bimodules.
' A

Clearly in the situation of 1.5, the functors M & — : Mod(4) — Mod(B)
A
and N @ — : Mod(B) — Mod(A) are mutually inverse equivalences, and we
B

will say that M and N induce a Morita equivalence between 4 and B.
Most of the time we will deal with particular classes of algebras:

Definition 1.6.
(i) An O—algebra A 1s called symmetric if 4= A% as A — A=bimodules.
(i) A k—algebra A is called selfinjective if every projective A—module is also
injective.

Again, since k—duality maps projective modules to injective modules, 1t is
easy to see that a symmetric k—algebra is selfinjective. The reason why sym-
metric algebras come in is that group algebras of finite groups are symmetric:
indeed, if GG 1s a finite group, it is elementary to check, that the map sending
0 € (0G)" to 3. p(r~ N € OG is an isomorphism of OG — OG —bimodules.

r€G

We recall theE following properties of selfinjective algebras:

Proposition 1.7. Let 4 be a selfinjective k—algebra.

(i) The right and left annihilator of J(A) in A both coincide with soc(A)
and then J(A) s the left and right annihilator of soc(A); in particular, soc(4)
annthilates no non zero projective module.

(ii) For any projective indecomposable A—module VW, soc(W) is simple, and
the map sending W/rad(W) to soc(W) induces a permutation on the set of 1so-
morphism classes of simple A—modules; i particular, every simple A—module
is isomorphic to a direct summand of soc(4) as left A—module.

(i) If A is moreover symmetric, then soc(W) = W/rad(W) for any projec-
tive indecomposable A—module W .
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Remark. Detailed proofs of the material of this section can be found in
Thévenaz [27].

2. STABLE CATEGORIES AND EQUIVALENCES

The stable category C of an additive category C is the category whose objects
are the objects of C and such that the morphism space Morg(U, V") is the
quotient of More (L7, V) by the subspace of all inrorphisms from U7 to V" which
factor through a projective object in €, where U/, V" are any objects in (.

If we are dealing with O—algebras, we need a slightly different concept:

Definition 2.1. Let A be an O—algebra. The O —stable category Mod(A) of 4
15 the O—linear category whose objects are the objects of Mod(A) such that for
any two A—modules U, V. the morphism space Hom 4 ({7, V') in Mod(A) s the
quotient space of Hom (U, V') by the subspace of all A—homomorphisms from
U7 to V' which factor through a relatively O —projective A—module,

The above definition amounts to saying that we identify to zero all relatively
(O —projective modules. Clearly, if @ = k we obtain just the usual notion of a
stable category. In order to deal with stable categories, it is necessary to have
criteria, when a homomorphism between two modules does factor through a
(relatively O—) projective module:

Proposition 2.2. Let A be an O—algebra, U/, V' be indecomposable non pro-
Jective A—modules and v € Homa (U, V). If ¢ factors through a relatwely
Q—projective A—module, then Im(p) C rad(V); in particular, ¢ is not surjec-
tive. ’

Proof. We clearly may assume that @ = k. If the image of ¢ is not contained
in rad(}'), there is a simple quotient S of ¥ such that the composition {7 N
v -y S is surjective, where 7 is the canonical surjection: Moreover, this
composition T¢ factors through a projective module and hence factors through
a minimal projective cover 7g : P — 5. Since ker(mg) Is the unique maximal
submodule of Pg, this is only possible, if I/ maps onto Pg. Since any surjective
map from U/ to Ps splits, this contradicts the hypotheses, and the proposition
follows.

For selfinjective algebras we get a dual statement:

Proposition 2.3. Let 4 be a selfinjective k—algebra, U, V' be indecomposable
non projective A—modules and ¢ € Hom (U, V). If ¢ factors through a projec-
tive A—module, then Im(p) C rad(V) and soc(U) C ker(p). In particular. p
is neither surjective nor injective, and hence, if one of U or V is simple, then
Homa(U, V)= Homa (U, V).
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Definition 2.4. An O—stable equivalence between two O—algebras A. B is an
equivalence of the O—stable categories Mod(A) = Mod(B); in that case. we will
say that A and B are stably equivalent.

One of the most prominent examples of a stable equivalence arises from the
Heller operator of a self-injective algebra (see e.g.[1, ch. 20}):

Proposition 2.5. Let 4 be a self-injective k-algebra. Then Q4 and Q3" extend
to mutually inverse stable equivalences on Mod(4).

Proof. We consider diagrams of the form

0 — QU — Py o+ ¢

7[/ b l

where U, V' are A—modules. Given «, using the projectivity of P, it is easy
to see that there are § and v which make the above diagram commutative.

Conversely, given v, using the injectivity of Py, it 1s again easy to see, that
there are 5 and a which make this diagram commutative.

Moreover, it is not hard to check that if this diagram is commutative, «
factors through a projective module if and only v does so. Thus the correspon-
dence sending « to 7 induces an isomorphism Homg (U, V) & mA(QU, Qv),
and 2.5 follows.

In view of possible generalizations of 2.5 to O—algebras, we observe the
following: 1if 4 is a k—algebra and {/ an 4—module, applying k—duality to
the exact sequence 0 —— Qa(U*) — Py — U™ —— 0 yields an exact se-
quence 0 —— U —— (Py.)* — (Qa(U"))" — 0 which, compared to the
exact sequence 0 —— /! —— [y — QZI(U) —— 0 shows that [/ 1s iso-
morphic to a direct summand of (Py+)* by the uniqueness of minimal injective
envelopes and the fact that (Py.)* is injective as it is the dual of a projective
module. It follows that (Q4(U/"})* is isomorphic to the direct sum of QZI(U)
‘plus possibly some injective A—module; actually, if 4 is self-injective, neces-
sarily Q71(U) = (Qa(U*))" since any injective direct summand of the latter
module is also projective and hence splits off in the corresponding exact se-
quence above. If A is an O—algebra and ! an O—free A—module, we may
take QZI(U) = (Q4(U*))* as a definition and it is not difficult to see. that the
arguments used in the proof of 2.5 may be generalized to obtain an (—stable
equivalence on the subcategory of Mod(A) of O—free A—modules. Using suit-
able bimodules, it is possible to show, that this can be extended to the whole
category Mod(A); see 2.7 below.
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O—stable equivalences arise frequently between blocks of finite groups; the
most well-known examples are blocks with cyclic defect groups (see section 4
below). In general an equivalence between stable categories need not be induced
by a functor between the considered categories themselves. In the context of
blocks of finite groups however, all known O—stable equivalences are actually
induced by exact functors between the module categories, namely by tensoring
with suitable bimodules. This motivates the following definition of a particular
class of )—stable equivalences, due to M. Broué:

Definition 2.6. (Broué [6, section 5]} Let A, B be O—algebras, M a B —
A—bimodule and N an A — B—bimodule. We say that M, N wnduce a stable
equivalence of Morita type between A and B, if M and N are projective both as
left and right modules, and if

NoM=Ap X
B
as A — A—bimodules, where X is a projective A — A—bimodule, and
MON=ZBaY
A
as B — B—bimodules, where Y is ¢ projective B — B—bimodule.
Clearly, in that situation, the functors M @ — and N ® — induce mutually
A B

inverse equivalences between the (I—stable categories Mod(A) and Mod(B).
Another motivation for this definition comes from Broué's observation, that
if 4 and B are symmetric O-algebras. a derived equivalence D’(A4) = D*(B)
induced by a two-sided tilting complex of A — B—bimodules which are projective
as left. and right modules, induces actually a stable equivalence of Morita type.
Note that M, N induce a Morita equivalence precisely if X and Y are zero; in
fact, if one of them is zero, so is the other.

The next proposition is the expected generalization of 2.5:

Proposition 2.7. Let A be an O—algebra such that k& A s self-injectie. For
o

any non negative integer n, the A— A—bimodules Q7 . 1, (A) and (Q7 5 40(A"))"
induce a stable equivalence of Morita type on A.

As mentioned above, in block theory, there occur many examples of stable
equivalences of Morita type, though, in most cases, it is not known whether
they ”1ift” to derived equivalences. We treat the main examples in section 4
below. :

We give now the basic properties of stable equivalences of Morita type (cf.
[17],section 2 or [18], section 3).
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Theorem 2.8. Let A, B be O-—-algebras such that k& A, k@B are self-injective
o o

indecomposable non-simple k—algebras whose semi-simple quotients are separa-
ble. Let M be a B — A—bimodule and N an A — B—bimodule such that M, N
induce a stable equivalence of Morita type between A and B.
(i) The B— A—bimodule M has, up to isomorphism, a unique indecomposable
non projective direct summand M’, and then k& M’ is, up to isomorphism, the
Pl
unique indecomposable non projective direct summand of k@ M as k@ B—Lk O
o o O
A—bimodule.

(i) If M is indecomposable as B — 4—bimodule, for every simple A—module

S the B—module MOS is indecomposable and non projective as ko B—module.
fal

(i11) The functor M O from Mod(A) to Mod(B) is an equivalence if and
only if, for any simple A—module S. the B—module M S 15 again simple.
A

Proof. Let X be a projective 4 — A—bimodule and Y be a projective B —
B—bimodule such that N %) MzAEXand MON=ZBG&Y.

B
(i) (Rouquier[26]) If M = M’ & M" for some B — A—bimodules M’, M",
then Ap X = N(ig) M = (N% M e (N%\ M”}. This shows that we may assume
that N %) M" is projective as A — A—bimodule. Tensoring with M @ — again
A

yields that M" is projective, hence (i) follows.
(11) We clearly may assume that ) = k. Since the semi-simple quotients of
A, B are separable we have soc(A © B%) = soc(A) ® soc(B°), and therefore, if
ok

M has no non zero projective direct summand as B — A—bimodule, we have
{0} = soc(B)Msoc(A) = soc(B)Y M © soc(4)), thus M ® soc(A) has no non
A

zero projective direct summand as B—module, since B 1s self-injective. Since
A is self-injective, any simple A—module 15 isomorphic to a direct summand of
soc{A), which implies (ii).

(m1) If , for any simple A—module S, the B—module M %D S is simple, then

S= N® M@S by (ii), thus S =2 S@® (X ® S), which forces X = {0}. But then
A

M = ’t[ﬂ 4“’ M@’V@M (BEBY)%DME M@(Y%DM) and so ¥ = {0}.

The leU]t follows.

If a B — A—bimodule M induces an (3—stable equivalence between A and B
it is not clear, whether there is always an A — B—bimodule N such that M,
N induce a stable equivalence of Morita type between 4 and B. At least for
symmetric algebras this is true:

Proposition 2.9. Let A, B be indecomposable symmetric O—algebras and M
a B — A—bimodule which s projective as left and right module. If the functor
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The complex P = 6;3 P; with differential d = (d,), is then a right bounded
i>0

complex of projective A—modules whose homology is zero in all non zero degrees
and 1somorphic to U in degree zero; more precisely, if we consider U as complex
concentrated in degree zero, the map 7 defines a homomorphism of complexes

ds d
Py — P, — Py 0
Lk
0 0 U 0 .

which is clearly a quasi-isomorphism, since we have U = Im(mw) = Py/ker(m) =

This example has the following generalization (the proof is somewhat tech-
nical and left to the reader):

Proposition 3.2. Let 4 be an O—algebra. For any right bounded complex
C there is a right bounded complex P of projective A—modules and a quasi-
isomorphism f : P — C, and then the pair (P, f) s unique up to unique
homotopy equivalence.

Definition 3.3. Let A be an O—algebra. The bounded derived category of A
is the category D®(A) whose objects are the right bounded complezes P of pro-
Jective A—modules with bounded homology, and whose morphisms are homotopy
equivalence classes of morphisms of complexes.

Remark. Let A be an (O—algebra and denote by K®(A) the homotopy
category of bounded complexes of A—modules. It follows from 3.2 that we have
a functor _

RK®(A) — D"(4)
which maps any quasi-isomorphism in A'?(4) to an isomorphism in D°(A), and
it turns out that D®(A) with this functor is universal with this property. Thus
it is possible to show, that an equivalent definition of D°(A) goes as follows:

- the objects are the bounded complexes of 4—modules,

- the morphisms between two complexes C, €' are suitable equivalence classes
of symbols é , where f : C — D is a morphism of complexes , and s : ¢’ — D
is a quasi-isomorphism. ; A

In other words, D°(A) is obtained from ~®(A4) by a procedure formally sim-
ilar to the localization of a commutative ring at a prime ideal; that is, by
making invertible the quasi-isomorphisms, except that technical complications
arise from the fact, that this situation is “non commutative”. See e.g. [13] for
technical details.

Proposition 3.4. Let A be an O—algebra. The map sending an A—module 17
to a projective resolution P of U induces « full embedding Mod(A) — D*(4).
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Even though by the preceding proposition the module category of an (O—al-
gebra embeds into its bounded-derived category, this does not mean. that a
derived equivalence D®(A4) = D®(B) of two O—algebras -1, B implies a Morita
equivalence Mod(4) = Mod(B), since such a derived equivalence need not map
the natural image of Mod(4) in D?(4) to that of Mod(B) in D*(B). We have
the following connection with stable categories:

Proposition 3.5. Let 4 be an O—algebra such that k> A is self-wnjective.
: o

The canonical functor Mod(A) — Mod(A) eatends through the embedding
Mod(A) — DP(A4) to a functor D°(A) — Mod(A) making the following
diagram commutative:

Mod(A) — pt'(..q)
N

Mod(A)

If 4 is a self-injective k—algebra, the proof is due to J. Rickard; the idea is
as follows: if P is an object of D®(4) with differential d = (d;); , there is an
integer n such that H,,(P) = 0 for all m > n since P has bounded homology.
This means that ker(dmsy) = QUmM(dmgy)) = Qher(dy,)), and therefore, the
map sending P to Q7" (ker(d,,)) for some m > n does not depend on m and
is easily seen to extend to a functor D¥(4) — Mod(4).

If 4 1s an @—algebra such that & 7) A 1s self-Injective. one has just to check.

& - .
that “Q~!" still makes sense; by the remark following 2.5, for an O-—free
A—module U we can take (Q(U*))* as Q7!(U/) and this is sufficient in this
context, as ker(d,,) is certainly O—free (since it is a submodule of an O—free
module). See also 2.7 above.

Clearly a Morita equivalence umplies a derived equivalence, and by the pre-
ceding proposition, a derived equivalence implies an (O —stable equivalence. The
converse implications do not hold in general. However, similarly to what hap-
pens in the case of a Morita equivalence, J. Rickard proved under suitable
hypotheses, that if two O—algebras are derived equivalent, there are complexes
of bimodules inducing mutually inverse derived equivalences. More precisely:

Theorem 3.6. (Rickard) Let A, B be O—ualgebras such that k& A, k % B are
o :

self-injective.  We have an equivalence of derived categories DU(A) = DP(B)
if and only if there arve bounded complexves T of B — A—bimodules, U of -\ —
B—bimodules whose terms are projective as left and right modules such that the
compler U%T is homotopy equivalent to A as complex of A — A—=bimodules and

T o U is homotopy equivalent to B as complex of B — B—bimodules.
A
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Remarks.
(1) Clearly the functors /. @ —, ng — induce mutually inverse derived equiv-
A
alences.
(2) We recall that the tensor product {7/ @ 7" in the above theorem is the
B
complex of A — A—modules which is in degree n equal to & [; ’\ T; with
it+j=n
differential given by the maps U; @ T, — U1 0T U T4 sendlng U@t to
A B B B
dlu)®t+(—1)'u®e(t), where d and e are the differentials of U, T, respectively.

(3) By truncating the projective resolutions of U/, T', it is possible to choose
U7, T in such a way that all terms of U/, T" are projective as bimodules except
possibly in one degree.

(4) Rickard’s Theorem holds actually in a more general setting (see [24]);
we chose this slightly less general version, since it is sufficient in the context of
finite groups and since it allows us to avoid the use of the derived functors of
the tensor product in the statement.

The next proposition is Broué’s remark, that a derived equivalence given by
suitable complexes of bimodules induces a stable equivalence of Morita type:

Proposition 3.7. Let A, B be O—algebras such that A (resp. B) has non non
zero projective direct summand as A— A—bimodule (resp. B— B—bimodule). Let
T, U be bounded complexes of B— A—bimodules, A— B—bimodules, respectively.
Suppose that all terms of T, U except Ty, Uy are projective as bimodules and
that the complexes U@T TOU are homotopy equivalent to A, B, respectively.

Then Ty, Uy induce a stable equwalencc of Morita type between A and B.

Proof. On one hand, calculating the tensor product 7 © T shows that its
. / B
degree zero term is 1somorphic to the direct sum of Uy ® Ty .plus a projective
B
A — A—bimodule, and on the other hand, since U/ %} T 1s homotopy equivalent

to A, its degree zero term must have 4 as direct summand as .4 — .A—bimodule
but no other non projective summand.

The following theorem of Rouquier shows that under certain circumstances, it
is possible to “lift” a stable equivalence of Morita type to a derived equivalence:

Theorem 3.8. (Rouquier[2G]) Let A, B be symmetric O—algebras with sep-
arable semi-simple quotients, such t/mt Ko A K @ B are split semi-simple.

Let M be a B — A—bimodule such that M, M* mduce a stable equivalence of
Morita type between A and B, let P be a direct summand of a projective cover
Py of M as B — A—bimodule and let 7 be the restriction to P of a surjective
B — A—homomorphism from Py to M. Suppose that as left B—modules or as
right A—modules, P and Py /P have no non zevo isomorphic direct summands.

G
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and that the complex P —— M induces an isometry between the Grothendieck
groups of K © A—modules and K & B—modules. Then the complez P - M
o o

and its dual induce mutually inverse derived equivalences D*(4) = D(B).

4. STABLE EQUIVALENCES FOR CERTAIN BLOCKS OF FINITE GROUPS

In this section we first recall the basic notions and properties of blocks of
finite groups and show then, that stable equivalences of Morita type frequently
occur in this context.

Definition 4.1. Let G be a finite group. A block of G is a primitive idempotent
b in the center Z((OG) of the group algebra OG, and the algebra OGb is then
called the block algebra of the block b.

Thus the block algebra OGb is an indecomposable direct summand of OG as
OG—-0OG~-bimodule, and clearly, if U 1s an QG —module, then the OGb—module
b7, viewed as @G —module, 1s a direct summand of U. In particular, if [ is
indecomposable, there is a unique block b of G such that bl/-= U, and then we
say that the module U belongs to the block b. The unique block by of GG to which
the trivial OG—module (abusively denoted by O again) belongs, is called the
principal block of .

One of the most fundamental invariants of a block are the so-called defect
groups, introduced by R. Brauer in the early 1940’s (see also Brauer’s semi-
expository work [3]): ’

Definition 4.2. Let b be a block of « finite group G. A defect group of b 1s a

subgroup P of G which s minimal with rvespect to the property, that the OGbh —

OGb—bumodule homomorphism OGbh <) OGO — OGb mapping a & a’ to ad’,
oP

where a,a’ € OGb, has a section.

Note that if P is a defect group of b, OGb is isomorphic to a direct summand of

OGb @ OGb as OGb— OGb—bimodule; that is, the identity functor OGb & —
opP QGb
is isomorphic to a direct summand of the functor “restriction from QGb to

O P” followed by “induction from (P to OGb”, and hence, in particular, any

OGb—module U is isomorphic to a direct summand of OGb & U (a module
QP
with this property is called relatively P—projective).

It is easy to see, that the defect groups of the principal block by of a finite
group G are precisely the Sylow—p—subgroups of G. In general, the defect
groups of a block b of G form a unique conjugacy class of p—subgroups of (/.

There are various reformulations of the definition of a defect group involving
two fundamental tools, the relative trace map and the Brauer homomorphism,
which we recall now.
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Observe that any subgroup H of a finite group G acts on QG by conjuga-
tion, and we denote by (OG)H the subalgebra of elements ¢ € OG which are
H —stable; that is, which satisfy ah = ha for all A € H. Furthermore, we de-
note by [G/H] a set of representatives in G of the set of cosets G/H of H in
(5. For any subgroup L of H we define the relative trace map (sometimes called
" transfer”)

Tril - (0G)r — (0G)T
by Tri(a) = 3. =zaa~! for any a € (OG)L. Clearly this definition makes
z€[H/L)

sense and does not depend on the choice of [H/L] in H. We set ((’)G)f =
Im(Tr8); this is easily seen to be an ideal in (OG)#.

Among the various more or less elementary properties of relative traces (see
Green [11]) we recall the Mackey formula:

if H, K are subgroups of a finite group G, for any a € (OG)? we have

Tri(a) =) Tri .y ("a)
r

where @ runs over a set of representatives of the X' — H—double cosets in G.
Clearly, the above definition of relative traces can be generalized to the situ-
ation of a finite group G acting on an O—algebra 4 by algebra automorphisms
(such an algebra endowed with an action of G is called a G—algebra).
For any p—subgroup P of G we define the Brauer homomorphism

Brp : (OG)P — kCe(P)

as the restriction to ((OG)? of the O@—linear projection @G — kC'¢:(P) map-
ping & € C'(P) to its image in kCq(P) and 2 € G — C¢(P) to zero.
The kernel of Brp is the ideal ((’7(})5 + J(O)(OG)F and hence Brp
Q<P
1s a surjective algebra homomorphism, and again, using this description of the

kernel of Brp we may generalize this definition to G—algebras (see [19, section
1]).

Applying the lifting theorem for idempotents to Brp and the characterization
4.5 of defect groups of a block allow to prove a correspondence of blocks (a
version of Brauer’s first main Theorem in [3]; we refer to [2] for details):

Theorem 4.3. (Brauer correspondence, version given by Alperm-Broué [2])

Let G be a finite group, P a p—subgroup of G and H a subgroup of (& con-
taining NG (P). For any block b of G with P as a defect group there s a unique
block ¢ of H with P as defect group such that Brp(b) = Brp(c). and the map
sending b to ¢ 15 then a bijection between the sets of blocks of G and H with P
as a defect group.
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Proof. If x € G — H then PN*P is a proper subgroup of P, and hence,
the Mackey formula applied to H = & = P shows that Tr$(a) = Trg(a) for
all a € (OG)F. Thus we have Brp((0G)§) = Brp((0OG)4) = Brp((OH)E).
Now the blocks of G with P as a defect group are precisely the primitive idem-
potents in (OG)$ which are not contained in ker(Brp) (see 4.5 below) and
therefore correspond via Brp bijectively to the primitive idempotents contained
in Brp((OG)§) = Brp((OH)), which in turn, by the same argument. corre-
spond bijectively to the blocks of H with P as a defect group.

There is a useful reformulation of the definition of a defect group using the
relative trace map :

Lemma 4.4. Let G be a finite group, P a subgroup of G and b a block of (5.
The following are equivalent:

(i) The bimodule homomorphism OGb (E?D OGb — OGb mapping ¢ ® d’ to
a

aa’, where a,a’ € OGb, has a section.
(i) There is d € (OGb)Y such that b = Tr§(d).

Proof. 1f (i1) holds, it 1s easy to verify, that the map sending a € OGb to the

element 5. azs® z~! is a section for the bimodule homomorphism in (i).
z€[G/P] -

Conversely, if there is such a section, it maps b to a G—stable element of the

form Y. zs®a2~! for some s € (OGb)F, and 4.4 follows.
z€[G/ P}

Using the above lemma and Rosenberg’s Lemma [27, Ch. T (4.9)] it is not
hard to show the following equivalences:

Proposition 4.5. Let G be a finite group, P a subgroup of G and b a block of
G. The following are equivalent: '

(i) The group P is a defect group of b.

(ii) The group P is minimal such that b € (0G)$. .

(iii) The group P is a maximal p—subgroup of G such that Brp(b) # 0.

In that case, for any idempotent ¢ € (OGb)F satisfying Brp(e) # 0, the
algebras OGb and eQGe are Morita equivalent.

We state now a result on stable equivalences of Morita type in “TI-like”
situations (“TT” stands for “trivial intersection”):

Theorem 4.6. Let G be a finite group, b a block of G with defect group P, H
a subgroup of G satisfying PN\ P* =1 for any x € G — H and ¢ the block of
H corresponding to b.Then the OGb — O Hc—bimodule bQGc and the OHc —
OGb—brmodule cOGb induce a stable equivalence of Morita type between OGb
and QOHe. :

The “prototype” of the situation treated in 4.6 are blocks with cyclic defect
groups: if b i1s a block of a finite group G having a non trivial cyclic defect
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group P and if A is the normalizer in G of the unique subgroup of order p
of P, it 15 easy to see. that the hyvpotheses of 4.6 are fulfilled. Another such
situation arises. if p = 2, P is a generalized quaternionian 2—group and H is
the centralizer in (¢ of the unique subgroup of order 2 of P.

We do not know in general. whether this stable equivalence of Morita type
“lifts” in general to a derived equivalence (we expect it does). The answer is
positive if P is cyclic, since, as Rouquier showed in[26], it is then possible to
apply his Theorem 3.8 above.

The proof of 4.6 requires the following technical result:

Lemma 4.7. With the notation and hypotheses of 4.6. for any non trivial sub-
group Q of P we have Brg(b) = Bro(c); in particular, ¢ ~ be € (OG)H.

Proof. Let @ be a non trivial subgroup of P and a € (OG)F. We have
Tr§(a) = ETW’ng,((l-f) . where z runs over a set of representatives of the

double cosezs P\G/Q in G. As PPNQ = 11if » € G — H, applying Brg
yields B?’Q(T'r‘g(a.)) = Brq(Tr (@), thus Bro((OG)$) = Bro((OG)E) =
Bro((OH)E), where the last equality holds since C(P) C H. Consequently,
Brg(b) and Brg(c) are primitive idempotents in the ideal B?'Q((@G)g) of the
commutative subalgebra Bro((OG)%) of kC'¢(Q) and therefore are either equal
or orthogonal. Since Brp(Brg(b)) = Brp(b) = Brp(c) = Brp(Brg(c)) they
cannot be orthogonal. As ¢ — hc € (OG){;’ and ¢ — be € ker(Brg) for any non
trivial subgroup @ of P. the last statement follows easily.

Proof of {.6. Cleatly bQG¢ and eQGbh are projective as left and right mod-
ules. We show first, that the OHc¢ — O He~bimodule (:OGI)_)(-G",bbC)(}'(- = cQGbe
has (PH e as unique nou projective indecomposable dirvect st?mma,ncl, up to iso-
morphism. Since QH is a direct summand of QG as OH — OH —bimodule.
clearly OHc 1s a direct summand of cOGe as OHe — O e—bimodule.

Ifz e G—H we have PN PY = 1, thus it follows easily that the P x
P—permutation module O[HaH] is projective as P x P—module and there-
fore cQ[HxH)c is projective as OHe — (OHe—Dbimodule, since it is relatively
P x P— projective and projective as P x P-module. Consequently. ¢QOG¢
has (OHc as unique non projective indecomposable direct summand, up to
isomorphism. Now ¢OGe = cOGbe % cOG (¢ — be). and we only have to ob-
serve that OHc is not a direct summand of c(G' (¢ — be). This however fol-
lows easily, using Higman's criterion, as ¢ — be € (OG)H by 4.7, and there-
fore c(OG(c — ¢b) is projective as OHe — O He—bimodule. It remains to show

that the QGb — OGb—bimodule 6QGe @ cOGb has OGH as unique indecom-
: OHce
posable non projective direct summand, up to isomorphism. Since Brp(b) =

Brp(c). by 4.5, multiplication by ¢ induces a Morita equivalence between ¢/
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and ¢QGbe. It suffices thus to show that cOQGbe o cOGbe has cOQGbe as
OHe
unique non projective indecomposable direct summand. up to isomorphism,

as ¢cOGbe — cOGbec—himodule. Now multiplication induces a surjective hi-

module homomorphism cQGhe O cOQGhe — ¢O0Gbe, which has a section as
GHe
OHc — c@Ghe—bimodule homomorphism, namely the map sending a € cOGbe

to be@a. Thus it has a section as a cQGbe — cQGbe—~bimodule homomorphism.
since any cOGbe — cOGbe—bimodule is relatively O H ¢ — cOQGbe—projective: n

particular, cOGbe 1s a direct summand of cOGbe @ cQGbe. There is no other
QHe

non projective direct summand, since even as O Hc¢ — O He—bimodule, OHe is.
up to isomorphism, the unique non projective direct summand of ¢QGbe. thus
of cGbe & cOGhe, too.

3]

He

Observe that the bimodules bQGe and ¢(3Gb need not be indecomposable,
since the idempotent cb need not be primitive in (QG)A

Proposition 4.8. With the notation of 4.6, let f be a primitive idempotent in
(OGbY such that Brp(f) = Brp(b).

(1) Multiplication by f induces o Morita equivalence between OGb and fOGf.

(iz) The OGb — OHc—bimodule bOGf and the OH ¢ — OGb—bimodule fOGDH
are indecomposable and induce a stable equivalence of Morita type between QG
and QOHc.

(11) Multiplication by f on OHc is an injective homomorphism OHe —
fOG [ of interior H—algebras which induces a slable equivalence of Morita type
between OHce and fOGS.

Proof. Since Brp(f) = Brp(b), (i) follows from 4.5. Statement (ii) follows
easily from 4.6 and the observation that bQOGf and fQOGH are, up to isomor-
phism, the unique indecomposable non projective direct summands of bQGe and
cOGh, since f is primitive in (OGH) and not contained in (G4 . Statement
(iii) is an immediate consequence of (i) and (i1).

The 1dempotent fin 4.8 need not be unique, but it is unique up to conJugaq
in (OGh)H.

Remark. Further applications of stable equivalences of Morita type to finite
groups can be found in [17]: we determine there all stable equivalences of Morita
type between finite p—groups and the automorphism groups of blocks with cyclic
defect groups (see also [18]).

5. INVARIANTS OF STABLE, DERIVED AND MORITA EQUIVALENCES

Recall that for any algebra A there 1s a canonical isomorphism Z(A4) =
End sz 40(4) mapping = € Z(4) to left multiplication by = on A whose inverse

maps any 434" —endomorphism ¢ of 4 to (1).
QO
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Definition 5.1. Let A be an O—algebra. The projective ideal of Z(A) is the

tdeal ZP"(A) consisting of all elements z of Z{A) whose image in Endaga0(A)

factors through a projective A® A°—module, and the stable center of A is the
o

corresponding quotient Z(A) = Z(A)/ZP" (A).

Observe that Z(A) = Endagao(A).
We recall the following standard results:

Proposition 5.2. Let A, B be O—algebras, M a B — A—bimodule, N an A —
B—bimodule such that M, N induce a Morita equivalence between A and B.
Then

Z(A) = Z(B).

Proof. The mapsending ¢ € Endagao(A) to Idp@p@Idy € Endpgpo (M
A
A® N) = Endggpe(B) is easily seen to be an isomorphism whose inverse is

A
obtained by exchanging the roles of A and B.

Proposition 5.3. Let A, B be O—algebrus such that D’(A) = D®(B). Then
Z(A) 2 Z(B).

Proof.This follows from the well-known fact, that Z(A) is naturally isomor-
phic to the center of the category D?(A) (which is the algebra of natural trans-
formations of the identity functor on D?(A)).

In the case of a stable equivalence of Morita type, we are unfortunately not
able to prove an isomorphism of the centers (even though in all examples known
to us at present the centers are isomorphic in that case). Still, we have:

Proposition 5.4. (Broué [6, 5.{]} A stable equivalence of Morita type between
two O—algebras A and B induces an tsomorphism of the stuble centers Z(A) =
Z(B).

Proof.Let M be a B— A—bimodule, N an 4A— B-bimodule such that M@ N =
' A
B @Y for some projective B — B—bimodule Y. Tensoring with M on the left
and N on the right induces homomorphisms Endagac(A) — Endpgpe(M ©
- A
A® N) = Endpgpe(B ®Y) = Endpggpo(B), where the last isomorphism
A

comes from the fact that Y is projective as B®B®—module. Exchanging the
o)
roles of A and B shows then easily that the induced map Z{4) — Z(B) is an

1sornorphism.

We do not know what is the center of Mod(A) in general.
The next theorem describes a link between derived equivalences and ordinary
characters of finite groups.
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Let G be a finite group; assume that K is “large enoug‘h” and that char(K) =
0. We have then
KG =Y M)(K)
X

where in this sum y runs over the set [rrx (G) of ordinary irreducible characters
of G; thus in particular, Z(KG) = ZK& , where e(x) is the unit element

of M

1)(K) (note that e( Jis a blocl\ of KG). If b is a block of OG, we set
]17/\,( b)

= {x € Irrc(G)|x(b) # 0}. We have then deally b= > e(v)
x€lrrx (G)
and therefore

KGb= & M (1) (K).
X€Irrc(G,b)
If U is an O—1free OG—module, we denote by [U] its character (or, equiva-
lently, its image in the Grothendieck group of KXG—modules). If T is a bounded
complex of O—free OG—modules, we set

=> (-1)[T;

1€Z
Observe that if T i1s homotopic to zero we have [T] = 0, since in that case, T is

a finite direct sum of comple‘(es of the form U X4 U Fmally, 1fx is a character
of G, we denote by x* its conjugate character (i.e., x*(¢g) = x(97') for g € G),
and if 7 is a character of another finite group H, we denote by ny* the character
of H x G mapping (h,g) € H x G to n{h)x*(9).

Theorem 5.5. Let G, H be finite groups, b. ¢ blocks of G, H, respectively, and
let T be a bounded complex of left and right projective O Hc — OGb—bimodules
such that the complex T* & T 1s homotopy equivalent to OGb as complex of
OHce

OGb— OGb—bimodules, and such that T ® T is homotopy equivalent to OHc.
Suppose that K is a splitting field for G and H.

Then there is a bijection Irric(G,b) — Irri(H, ) mapping x to n,, and,
for any x € Irric(G,b), a sign €, € {1, =1} such that

(7] = Z e X"
XNElrrc(G,b)
and then the isomorphism Z(KGb) — Z(K Hc) mapping e(x) to e(ny) induces
an somorphism
Z(OGb) =2 Z(OH¢).
Remark. A “bijection with signs” between the sets of ordinary irreducible

characters of blocks of finite groups as in the above theorem is called a perfect
1sometry, a concept, which has been introduced by M. Broué (see e.g. [4]).
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Proof.Since the “character” of a zero homotopic complex vanishes. the hy-
potheses imply that
[T & TI=[0G= Y "
OQHc \Ell"l')c(G,b)
and then the result follows from an explicit computation of the character of

T* @& T using the standard orthogonality relations.
OHe

6. COMPLEMENTS

At this stage it is important to point out, that so far, we studied blocks
of finite groups as O —algebras. But this is only one half of the picture, since
a block b of a finite group GG has many invariants which cannot, a priori, be
deduced from the (@—algebra structure of OGb such as the defect groups of b.
It 1s, for instance, not known, whether two blocks of finite groups which are
Morita equivalent have isomorphic defect groups.

Another type of such invariants is the so-called local structure of a block,
which can, for instance, be described in terms of Brauer pairs (see Alperin-
Broué[2]) or in terms of local pointed groups (see Puig [19]).

Any of the three levels of equivalences mentioned so far has then a refinement
taking into account the local structure of the considered blocks:

Morita equivalences lead to Putg equivalences; that is, to isomorphisms be-
tween the source algebras of the considered blocks (see e.g. [20] for a definition
and fundamental properties of the local structure of block source algebras and
[16], sections 2 - 7 for a short overview on some of Puig’s concepts without
proofs; a very detailed and comprehensive presentation of important parts of
Puig’s work is contained in Thévenaz’ book [27]).

Derived equivalences lead to Rickard equivalences, called also splendid derived
equivalences; here the major reference is Rickard’s paper [25].

In a similar way, one gets a refinement for stable equivalences of Morita type.

At the level of ordinary characters of finite groups, Broué's notion of a perfect
isometry refines to what he calls an isotypy (see Broué [4] and also[25] for a
connection between isotypies and Rickard equivalences)

We describe now briefly (without any attempt of completeness) for which
finite p—groups P the structure of the block algebras OGb of a block b having
P as a defect group is known (at least, up to Morita equivalence, but we point
out. that in many of the cases mentioned below, even the source algebras are
known; see [16], [18]). For simplicity, we assume that @ is large enough:

P = 1: In that case, OGb is a separable () —algebra, whence a matrix algebra
over (J by our assumption on .

P is a Klein four group (and necessarily p = 2) : The algebra QOGb 1s Morita
equivalent to either OP. (044 or OAdshy (¢f. [16]). Moreover, Oy and OAgb,
are derived equivalent (this has first been proved by Rickard; see also Rouquier
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[26]). The classification over O relies heavily on Erdmann’s classification over
k of these blocks (see [9]).

P 1s cyclic © The Morita equivalence class of OGb is determined by the so-
called Brauer tree of the block (this is a tree with some additional combinatorial
information). The source algebras are determined in [18] (relying again on
previous work of many authors). Moreover, any two blocks with isomorphic
cyclic defect groups and the same number of isomorphism classes of simple
modules are derived equivalent (this has first been proved by Rickard in [20]
over k., then generalized in [15] over @ and the construction of an explicit two-
sided tilting complex realizing such a derived equivaleuce is due to Rouquier
[26], as we mentioned earlier).

By Erdmann’s work (see her book [9] for a detailed account and further
references), the Morita equivalence classes over k are known for P being a
2—group with tame representation type (in some cases up Lo certain scalars
occurring in the relations which describe the algebra structure).

Furthermore, many results are available for blocks of certain classes of finite
groups (symmetric groups, finite groups of Lie type, p—solvable groups) as well
as for blocks with a certain given local structure (e.g. nilpotent blocks 7], {21]
and their extensions [14]).

We finish this section by some of the most prominent

Conjectures.

Alperin’s Conjecture relates the number [{G) of isomorphism classes of simple
kG —modules, where G 1s a finite group, to the local structure of G, claiming
that

HG) = ko(Na(Q)/Q)
Q

where @ runs over a set of representatives of the G—conjugacy classes of p—sub-
groups 11 G and ko(H) 15 the number of blocks of defect zero of a finite group
H. This conjecture can also be formulated for blocks.

Broué’s Conjecture claims that if b is a block of a finite group ¢ having an
abelian defect group P and if ¢ is the corresponding block of Ng(P), then OGbH
and ONg(P)c are derived equivalent.

Broué's Conjecture imiplies Alperin’s Conjecture i the case of blocks with
abelian defect groups.

Donovan's Conjecture says that given a finite p—group P, there are only
finitely many Morita equivalence classes of blocks (over k) of finite groups having
a defect group isomorphic to P.

Puig’s Congecture refines the preceding conjecture, asserting that there are
only finitely many isomorphism classes of source algebras of blocks of finite
groups with defect groups isomorphic to a given p—group P.
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Puig’s Conjecture holds for blocks with cyclic defect groups; Donovan’s Con-
Jecture holds also for blocks with a Klein four defect group, but it is not yet
proved, whether Puig’s Conjecture holds in this case. -

(16]
(17]
(18]
(19)
(20}
[21]
[22]
(23]
(24]

[25]
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ABSTRACT. We introduce the reader to Clifford theory; i. e. how to obtain
integral (p-adic) representations of the group G from representations of a
normal subgroup, whose order is a unit in the base ring. We formulate a
version of Clifford theory for automorphisms and apply this to construct
a group and a non inner automorphism of it, which becomes inner in an
integral group-ring. This is then used to show that there are two (infinite)
non-isomorphic poly-cyclic groups, which have isomorphic integral group-
rings.

1. CLIFFORD THEORY

In ordinary representation theory CLIFFORD THEORY is used to construct char-
acters of the finite group G from the characters of a normal subgroup.

In integral representation theory — R is the ring of algebraic integers in a p-adic
number fleld K - it 1s used to construct irreducible RG-lattices from those of a
normal subgroup N with ([N, p) = 1. it can even be used to describe certain

blocks of RG from those of RN .

Clifford theory is a very powerful tool to describe parts of the group-ring RG .
and it is used heavily in CONSTRUCTING A COUNTEREXAMPLE TO THE ZAS-
SENHAUS C'ONJECTURE (cf. the article [Ro; 96,111]).

In case A is a splitting field! for ¢ and all of its subgroups. the argument is due
to P. Schmidt [Scly; 88 1, Sch; 83, Sch; 88 ‘2]2. However, the version we prove
here holds more generally.
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Volkswagen Stiftung.
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'This is for example satisfied if \' contains a primitive |[(7]-th root of unity.
21 have learnt it from L. L. Scott.
a3
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Before we can state the main result, we have to introduce some ;more NOTATIONS.

We now FIX FOR THE REST OF THIS SECTION an indecomposable RN-lattice M
which corresponds to a block Bof RN , B ~ Mat,(S), where Endpy(M) =5,
and S — with field of fractions L — is a finite unramified extension of R, since
[N|is a unit in R (cf. [Ro; 96,1], Example 3.16, 2.).
M can also be viewed as SN-module, which we shall denote by Mg . If we view
M as SN-module. we get the ordinary Clifford theory: however, when we view
M as RN-module, then the situation is quite different. Note also that
EndSN(A[,g) =35.
Definition 1.1. 1. For g € G we have the CONJUGATE MODULE
9N, which is M as R-module with the action n gy m = 9n-m?3.
We note that 90 ~pn M and M ~sn Mg ifg € N .
2. The INERTIA GROUP of M as RN -module 1s defined as
3. The INERTIA GROUP of Ms as SN -module is defined us
Is(MY={9e G:9Ms ~sny Ms}.

I{M) and Is{M) are surely subgroups of G ; moreover, I(M) > Is(Mg), since
RCS.

We are now in the position to formulate the main result:

Theorem 1.2. Assume that

1. N is a normal subgroup of the finite group G,

2. with |[N|-R=R and (IN|,|G: N|)=1. ’

3. Let M be an irreducible RN -lattice with Endpy (M) = S a finite unrami-
fied extension of R.

4. Put n = dimg(M) .

5. Let I{M) and Is{M) be the inertia groups of M as RN-module and SN -
module resp. Then I[s(M) 1s normal in I{M) , and the quotient T(M) acts

~as group of R-Galows automorphisms on S .

6. Assume furthermore that I5(M) has a complement To(M) in I(M) ;1. €.

T(M) = To(M) < 1(M) and I¢(M) » To(M) = I(M) .

. Denote by S{(Is(M)/N)® the RI(M)-module. which is as S-module the
group-ring S(Ig(M)/N) . and the action is given as follows: Is(M) acts
by left multiplication and Ty(M) acts by conjugation.

=1

F9n=g.n-g7t.

iSend n-m to m.
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8. 5° is the RTp(M )-module, where Ty(M) acts via T(M) as Galois auto-
morphisms.
Then the group-ring RG conlains a ring direct summand of the form
B = Matig.ro(myn (H(To(M), R(Is(M)/N)°) @r S°),
where H(—, ) is the fized points functor (cf. [Ro; 96,1], Definition 5.1, 1.).

The proof will proceed in several steps.
Definition 1.3. Let G = {gi}1<i<s -
1. For each g; € Is(Ms) we fir an SN-isomorphism
é(g:) - 9 Ms — Mg.
Then ¢(gi) € Ends(M), and we have
#(g:)(9n-m)=n-¢(g;)(m) foralln € N and allme M,
i e.
6(g1)%n $(gi)"" = n foreachne N,
viewing n in its action on Mg, 1. e. interpretingn € N as an element
in Endg(M) . Since Mg is irreducible, ¢(g;) is uniquely determined up to

scalar multiples in S .
2. For each g; € I(M) we fir an RN -isomorphism

Wig:) 1 IM — M.
Then ¥(g;) € Endr(M), and we have
Ygi)(@n-m) =n-y(g)(m) foralne N, me M,

¥(g:)9n ()" = n foreachne N,
viewing n wn its action on M : «. e. interpreting n € N as an element
in Endg(M) . Since M is irveducible, ¥(g;) s uniquely determined up to
scalar multiples in S .

We choose these homomorphisms such that

for gi € Is{(M) we have ¢(g;) = ¥(g:) - (1
We point out that for ¢; € I(M) \ Is(M) the homomorphism ¥(g;) IS DEFI-
NITELY NOT AN SN-ISOMORPHISM.

We refer now to section 1.1 for an example concerning the change of the ring
structure, if one extends the coefficient domain.
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Note 1.4. Since the above maps ¢ and ¥ are only determined up to scalar
multiples, they are “representatives of projective representations” and hence
determine a 2-cocycle (cf. [Ro; 96,1], Definition 5.3).

We shall elaborate on this next: :

Assume for the moment that G = [(M) and put

p(gi,95) = ¥(gi) ™" ¥(g;) ™" - lgi - g5) .

Note that this measures how far i is from being a homomorphism®. Let g;-g; =
gk . Then for every n € N we have

gy, 90) - T nplgy, 0™ = (g T (e T - w(gs) - “_*n-u'(gk)_' g(g:) - Wlgy)
= Ylgy) " (g n - d{gi) - lgy)
= g Sna(g) = Y0in = S,

Thus p(g;,g;) centralizes N in its action on the irreducible RN-module M ,
and hence it is scalar multiplication with a diagonal matrix with entries in S*,
the group of units in .S — recall that S = Endry (M) .

Lemma 1.5. The quotient-group T(M) = I(M)/Is(M) injects naturally into
Gal(S/R), the group of R-automorphisms of S. Note that S is a Galois exten-
sion of R with cyclic Galois group, S being unramified over R° . '

Tuus T(M) IS A CYCLIC GROUP.

By Ry we denote the subring of S fized by T . Via the action of T on the R-
module S it becomes an RI(M)-module. Since T also acts on the abelian group
S* of units in S, we can view S* as a ZI(M)-module.

The action is given — as the proof will show - by

Is = (g) -s-Plg)~", where Y is defined in Definition 1.1.

Proof: The RN-isomorphism #(g) : 9M — M induces an isomorphism

plg) : Endpy(fM) — Endpn (M) via

a € Endpn(M) — ¥(g)-a-9(9)”" € Endpn(M).

Since Endpy(9M) = S = Endpn (M), the map p(g) can be interpreted as an
automorphism - also denoted by p(g) : S — S

In order to complete the argument we show:

5Since we have written maps on the left, 4 is a homomorphism if and only if ¥(gh) =
Y(h)P(g) .

6 The Galois group is isomorphic to that of the field extensions corresponding to the residue
fields of R and S and is therefore generated by the FROBENIUS HOMOMORPHISM (cf. [Has: 49]).
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Claim 1.6. The map
p (M) — Aut(S).
plg) s —lg) s (o)™ |
1$ « homomorphism of groups with kernel Is(M) , and its image lies in Gal(S/R) .

Proof: Since ¥{g) is an RN-isomorphism, the automorphism p(yg) is surely R-
linear. Moreover, if g € I5(M), then ¢(g) is S-linear, and then p(y) = idy i3
the identity. Conversely, if p(g) = ids we have that ¥(g) commutes with all
elements in S and thus is S-linear.

[t remains to show that p is a homomorphism of groups. However, for

o € Endgn (9" M) we have (cf. Note 1.4)

plgh)(a) = %(gh) - -w(gh)™
= (h) - @(g) - plg Ry e plg )T w(g) T w ()T

But, « is scalar multiplication with an element sp € S, and since p(—, —) also
lies in the commutative ring S, we conclude p(gh) = p(h)-p(g) and p is a group
homomorphism. q.e.d. Claim 1.6 :
We now return to the proof of Lemma 1.5: Since [s(M) is the kernel of the
homomorphism g, the group 75(M) is normal in /(M) and the quotient T =
I{M )/ 16 (M) is cyclic, since Gal(S/R) is cyclic.
q.e.d. Lemma 1.5

The “cocycle” u from Note 1.4 will play a crucial role in the structure of the
block of RG associated to A :
Proposition 1.7. Assume that I{M) = G . As above we put

wlgs.9i) = 0(g) ™" (e wles - 9i)
Then

n: GxG —» 8§

is a 2-cocycle of G with coefficients in the G-module S* (cf. Section § in [Ro; 96.1],
Definition 5.3), which is uniquely determined up to 2-coboundaries. It vanishes
on N and hence defines a unique element in H*(G/N,S*).
Moreover, if (|[Is(M)/N|.[N|) =1, then p restricted to Ts(M) is a 2-coboundary.
and consequently, M can be extended to an Sls(M)-module. In particuler. we
may assume that p s the identity on I (M) .

Proof: By Lemma 1.5, (G acts on 5* by conjugation with ¥ (g), and thus we
have to show that p from Note 1.4 is a multiplicative 2-cocycle. Recall that

plg h) = ¢lg)™ (k)™ - (gh) € 57
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and
Mg =plg) - s-lg) L s€S.

We thus have to show:

97 (k) - ulg, k) = p(g, B - ulgh, k)

T

However,
Y(g - (hk)) = ¢(hk)-¢(g) - p(g, hk)
= P(k) - p(h) - pu(h, k) - Y(g) - (g, hk)
U((gh) k) = (k) -P(gh) - p(gh, k)
= (k) -(h)-P(g) - plg, k) - pulgh, k).

But ¥(g - (hk}) = ¥({gh) - k) and so we obtain
plh, k) - 9lg) - plg, hk) = d(g) - pulg, h) - plgh, k),
since we can cancel.

The uniqueness is shown as follows:
Take another AN-isomorphism x(g) : YA/ — M . Then (g} = ¢(g) - 54 for
an automorphism '
sq € Endan(M) =5,
and one gets an associated 2-cocycle
v(hog) = (B)7H\(g) T\ (gh)
= i ()T st (e) ™ w(gh) - sgn
-_— -1 -_— 1 —_— N —
= sy YT (AT ()T k) - sgn
—_— ) -1 _—
Shl v (Sg 1) ,U(hvg] “Sgh
however, i(g, h) € S commutes with 54, , and so
vih,g)=s5" - O (s71) sgn - plhig).

Hence p and v differ by a 2-coboundary, and so p gives rise to a uniqﬁe element
in H*(G,S").

In order to continue with the proof, we note:
Claim 1.8. pu gives rise to a unique element win H*(G/N S*) defined by
Ai(Ng, Nh) =: (g, h)

“Note that our multiplication is contravariant.
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Proof: We have to show that this is well defined. Let

G = U IVgi
be the decomposition into cosets. First we can arrange the isomorphisms 1 such
that ¥(ng;) = ¢¥(gi) - ¥(n) for all n € N and all . In fact we have

P(n)(m) =n"tm

forallm e M,n € N (cf. Definition 1.1, 1. footnote), but then ¢(n) also induces
an 1somorphism from "9 M to 9 M and thus ¥ (g;)-¥(n) is an RN-isomorphism
from "9 M to M .

By definition we have the relation
W(g) - In=n-y(g)
for all ¢ € G,n € N . Let us now compute for ny,ns € N :

p(n1gi, nagy) = d’(nlgz) ll’(”'d;) 11!’(‘”1%"”;‘)
= P(n1) (g )7 (g5) T (ny P nagig;)
P(ny)™! (g) W’(m) Y(g;) " 0 (gig;) %y 9ina)
= ()" (P (n2)) " plgi, 95)0( I ma)(na)
(

= ulgi. 95),
since (9 ng) = 9 1h(na) 15 multiplication by g'n;l and since p has values in
S. ’
This proves the claim. q.e.d.

Note 1.9. If @ is a coboundary, then so is p as one sees from the definition.

In order to complete the proof, we recall from Definition 1.3, that for g €
Is(M), ¥(g9) = ¢(g) {cf. Equation 1) is an SN-isomorphism; in particular,
#(g) centralizes 5.

) = 1 and the
assumption of Proposition 1.7 was that G = I(M). Hence. if we put F =
Is(M)/N, then (|N],|E|) = 1 and we have for &, y € E ~ note that p vanishes
on N -

ple,y) = (@)™ - ely) ™ Pl y).
We interpret this as an equation of S-linear maps on M . Taking determinants
we get with d = dimp (LM ), where L is the quotient field of S:

ple,y)? = det((2)) - det(P(y)) - det(p(z - y))™*.

-L‘
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Now all factors lie in S*, and the right hand side is exactly the condition for
1% being a 2-coboundary as one sees from the definition above. (Note that ¢(g)
centralizes S .) ‘

On the other hand, the cohomology group H?(E,S5*) is annihilated by |E)|
(cf. [Ro; 96,1], Remark 3.15, 1.) Since the degrees of the characters {irreducible
complex representations) divide the group order, the dimension d divides |N].
However, |E| and |N| are relatively prime, and so g must be a coboundary, since
it is annihilated by |N| and |E|. Say for g, h € Is(M) we have p(g, h) = sg- 55 -
9;}3 - note‘that ¢(g) centralizes S'. If we now replace ¥(g) by \(g) := ¥(g) s ,
then y(g¢) is an SM-isomorphism from 9M to M, and an easy calculation —
as above — shows that x : I¢(M) — Ends(M) is a homomorphism; i. e. M
extends to an S/g(M)-module. The modified cocycle associated to \ vanishes
on Is(M). q.e.d.

Claim 1.10. Let {g;}1<i<¢ be a set of coset representatives of Is(M) in I(M) .
Then the RG-homomorphisms {¥(g:) }r<i<e are in fact Ro-1somorphisms, where
Ro is the fized ring of S under T(M) acting via p. Moreover, the SN -module
9 M s the Galois conjugate module to M under p(g;) . In addition, as SI(M)-
module we have an isomorphism

s 1
5 ®Ro A/[ ’:51(5{) Af Tli‘l(vf&) .

Proof: By the definition of ¥{g;) : ¥ M — M we have for s € 5 the relation

s (o) = wloi) - s

however, w907 g = 975 is the Galois action. In particular, if s € Ry, then
this shows that {g;) 1s an Ro/N-isomorplism.

CONSEQUENTLY, WE DO NOT LOOSE ANYTHING, IF WE ASSUME FOR THE TIME
BEING, THAT

R= Ro .
Recall that M is an RN-module corresponding to the simple component B =

(S)n -

Then S®g M decomposes into the Galois conjugate modules #(91) Af correspond-
ing to the ¢ simple components of

t

S©Or B~ [[(S)u, with t = |T(M)[;

1
note that S @g B is separable with ¢ non-isomorphic modules, each occuring
with multiplicity n .
These Galois conjugate modules are all RN-isomorphic to M : but as SN-
modules they are non isomorphic. Now, the conjugate SN-modules {9 M}, <;<;
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have the same property. But the group-ring SN has exactly ¢ non isomorphic
modules, which become isomorphic as RN-modules, namely one column from
each of the t copies of (S), . Our construction of p then shows that #(9) M ~cp
9 M | as claimed. This also shows that

o~ p M
Sop M XSI(M) M T[_(c(f\)l) .
q.e.d.

Lemma 1.11. We keep the assumptz'o.ns of Lemma 1.5, and assume that M is
an Ig(M)-module. Assume furthermore that G = I(M). Then M can be ez-
tended to an RG-module, also denoted by M , and the induced module M Tf"c(M)

decomposes as RG-module into t copies of M wheret = |I[(M) : Is(M)].

Proof: Let Ry be the fixed ring of S under the Galois action of T'. We have

seen in Claim 1.10 that — up to now — there is no loss of generality, if we ASSUME

that R = Ry .

Because of Claim 1.10 and its proof, the SG-lattice M T?’ is irreducible® More-

over, by Frobenius reciprocity (cf. [Ro; 96,1], Proposition 4.2), we have
Endsc(M 1§) ~ Homs (M. M 1715,

where the restriction of the induced module MIC’ to I is by Mackey's formula
given as

t
M 4§ 1F~s €D @ M,
=1
the direct sum of the conjugate modules 9iM for coset representatives {g;}
of I in G ~ note that [ = Is(M) is normal in /(M) = G. According to the
definition, 9" M ~g; M if and only if g; = 1. Hence Endsq(M Tf) =S, since
Endgr(M) = S - recall that ¢(g) is S-linear. On the other hand,

Endp,c(M 1§) ~ Homp,r(M, M 1§1§), with
M 1§V >Ror ®i2) & M
the direct sum of the conjugate modules 9* M for coset representatives {g;} of

I'in G. According to the definition, 9" M ~pg,;y M for all 1 < i < t. Hence
A = Endr,a(M 1§) = 5.
By the change of rings theorem we have for Ry(i-lattices X and Y :
SORr, Homp,c(X.Y) ~ Homsa(S @Rr, X.5 Or, Y) .
Thus
S ©nr, S' ~ Endsa((S ©r, M) 1¥).

8This also follows from ordinary Clifford theory.
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Claim 1.12.

t
(S Or, M) 1§~ >~ M 1§ as SN-modules,
1

and hence Endsg((S ®ry M) 1¢) = (S)e, and S @p, A ~ (S): .

Proof: We have seen in Claim 1.10 that the ‘group conjugate’ module ¥ M
is SN-isomorphic to the ‘Galois conjugate’ module #(9) M . Since S Cig, M is
RN-isomorphic to the direct sum of the Galois conjugate modules {M;}1<i<,
we conclude, -

S®re M ~sny M 1§ .

In particular, (M;) 1§~sc M 1§ . Thus SOM 1§~ T\ M 1§, and Claim 1.12
1s proved. : ~qed.

Recall, A = Endgg(M T?‘), and S ®r, A >~ (5),, where S i1s an unramified
extension of Rg. Thus S ®pg, rad(A) = rad(S &g, A). Since rad(S Gpr, A) ~
S®Rr, A as modules S®@p, A, (S®R, A being isomorphic to the full ¢ by # matrix
ring over S), we can invoke the Noether-Deuring Theorem [Ro; 96,1] 2.2 to con-
clude 7ad(A) ~ A . But then A is hereditary (cf. Proposition [Ro; 96,1] 3.5)°.
If now P is an indecomposable projective left A-module, then P ~ rad(A),
since this holds when extended to S. Thus A is a maximal order with S ®g,
(A/rad(A)) ~ (S/rad(S)): , and we conclude, that A decomposes into { isomor-
phic left modules. ‘

Moreover, Ry lies in the center of A . and dimg, (A) = dimp,(S"")) = ¢>. Hence
the only possibility for A is A ~ (Rp): . Since A = Endpg(M T?) , this shows
that as RG-module, M T? decomposes into t RG-modules, say X;,1 < i < t;
however, as RI-module, M Tf: MW and we conclude that M T? 1s the direct

sum of ¢ isomorphic RG-modules, which when restricted to I are isomorphic to
M.

Thus M extends to an RG-module. It is also an RgG-module. This completes
the proof of Lemma 1.11. q.e.d.

Remark 1.13. We shall now treat the situations “'sp]it.t.ing field” or “non split-
ting field” separately, and we shall first deal with the split situation, which is
the classical set up for Clifford theory [C-R1; 82, (11.1)] -

M is as above an irreducible SN-lattice with Endgy (M) = S and inertia group
Is(M). Moreover, (|[I¢(M) : N|,|N|) =1, and so M extends as S-module to
its inertia group [g(M) (see Proposition L.7).

9Every A-lattice is projective [Ro; 96,1] 3.1.
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Theorem 1.14. [Mo; 58, Ga; 79] With the above assumptions, the group-ring
S5G has a ring direct summand of the form

By = Maticroany(SIs(M)/N ©s Apr) ~ Matig.rom)n(SIs(M)/N) .
where Ayy ~ Endg(M) = Mat,, (S) is the two sided ideal of SN corresponding
to M .

In particular,

SG =[] Matic.rso(SUs(M)/N) ®s An),

where the product is taken over representatives of indecomposable SN -lattices.
which are not G-conjugate. Thus SG is Morita equivalent to [[ S(Is(M)/N).

Proof: Casg 1: First let &G = Is(M).

Let eps be the central primitive idempotent of SN, which corresponds to the
indecomposable SN-lattice M ;1. e. SN -ep = Ends(M) = (S)n . According
to the definition of the inertia group, eps is also a central idempotent in SG,
not necessarily primitive. In fact, the conjugate idempotents Yepr are central
idempotents in RN , which are all equivalent to ey , since G is the inertia group
of M.

We shall now focus our attention first on the ring direct summand SG - eps of
SG.
We claim that the module — the ordinary tensor product of SG-modules —

Py = SG/N ®s M is projective for SG . _
For this it suffices to show that the restriction to a Sylow p-subgroup P is
projective 4.4; however, (|G/N|,|N|) = 1 and |[N|-S = 5. Hence G is a
semidirect product of G/N and N, and G/N contains a Sylow p-subgroup
of G. Consequently, SG/N is SG-projective. But then the tensor product
SG/N &s M is projective (cf. [Ro; 96,1], Note 1.3) as SG-module, it is even a
cvchic SC_:’-module, generated by 1 & mg, 0 # my € M.

We now compute the ring of SG-endomorphisms of Py :
Endsc(SG/N s M) = (Endsn (SG/N s M))GIN

= (En([sN(SG/N) s Eﬂ.d,g;v(/\'f))G/N

= (SG/N ©s 5),
(N acts trivially on SG/N) where X/ are the G/N fixed pointson X . G/N
acts on SG/N from the left and on S it acts trivially. Hence

Endgq;(SG/N 25 M) ~ SG/N .

We now have to compute the multiplicity of Pyy in SG . The group-ring SG' is
a twisted tensor product 3.16, SG ~ SG/N g SN | and since €, 15 a central
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idempotent of SG, the two sided
SG ~ SG/N 2 SN —module SG/N Og Ay

is a ring direct summand of SG', which is as left module isomorphic to PA'I’)
- recall Ayy = Ends(M). Thus the group-ring SG- has a ring direct sum-
mand isomorphic to (SG/N), , which is the statement of Theorem 1.14 in case
Is(M)=G. :

Case 2: N < Is(M)<G.
Let
G= U gi - Is(M)

1<i<n

be a system of left coset representatives of I¢(M) in G. epr is the central
primitive idempotent in SN corresponding to M . Since we are outside of
the inertia group of M, the idempotents {9 epr} 1 <i<n are different primitive
orthogonal central idempotents of SN - note that N is normal.

YV? put ¢; = 9ep, 1 <i<s. Thene= Zlgign e; 15 a central idempotent in
SG.

We recall from above that ey 1s also a central idempotent in SIg(M). The
group G acts on the idempotents e; as follows:

If gj9: = gex, x € I(M), then gje; = epx and hence if L is an STs (M )-module
on which eys acts as identity, then @ e; L is the induced module L Ti(M) )

Claim 1.15. SG contains @ ring divect summand, which 1s Morita equivalent
to

T:= SIs(M)/N ©s Ends(M),

which in turn s Morita equivalent to SIs(M)/N .

Proof: The idempotents {e;}<i<n are surely orthogonal and their sum ¢ :=
> 1<ics € 15 a central idempotent in SG . Thus we have a Pierce decomposition

e1-5G e1 ... €-SG-¢; ... e1-5C ¢
B = Ei-S'G~€1 61'-5(_-1'-6‘7' ei'SG~€_¢

e SGer .. e SGe; L0 e -SG e
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On the other hand, the module induced to G from the projective Is{M )-module
Py = 515(/\/[)/]\7 s Endg(]\/[) 18

PO = (515 )/N ®s Endq( )) T1<(1\1)
~ SG ®sis(m) (SIs(M)/N @5 Ends(M))

~ @1<1<n€1 Sls(M}/N ®s Ends(M).

This latter isomorphism is a consequence of the discussion preceding Claim 1.15.

Moreover, e acts as identity. Surely the modules Py - ¢; are isomorphic to Py,
1 < j < s, and hence their direct sum is a two sided direct summand of SG,
and it is e - SG . So the claim is proved. q.ed.

THIS FINISHES THE ARGUMENT IN THE SPLITTING SITUATION. WE NOW TURN
TO THE GENERAL SET UP:

1. M is an irreducible RN-lattice, with Endgny (M) = S5, and hence can be
viewed as an SN-module.

2. I(M) is the inertia group of A as RN-module, [s(M) is the inertia
group of M as SN-module. /s(M) is a normal subgroup in (M) with
cyclic quotient T(M) = I(M)/Is(M), which injects into Gal(S/R) (see
Lemma 1.5). T(M) has in S the fixed ring Rg .

3. We assume as above that ({I¢(M) : N|,|[N]) = 1. By Theorem 1.14
the module M extends to an S/(M)-module, with Endgra(M) = S,
it extends to an R/(M)-module with Endgrary(M) = Ro. Moreover,

the induced SI(M)-module M Tﬁi:’f&) is irreducible; as SI(M)-module

M Tﬁ(l(vaf) is the direct sum of the Galois conjugates {cf. Claim (1.10}),

whereas the induced RI(M) (even Rol(M))-module M Tr lgv)” decom-

poses in ¢t = [T(M)] copies of M (see Lemma 1.11).
4. By Theorem 1.14 the group-ring SI{M) contains a ring direct summand

As(M) == (SIs(M)/N ®s (S)n)e ~ (SIs(M)/N)n.. (2)

5. Moreover, we have seen in Theorem 1.14 that the S/(M)-module
(SIs(M)/N ®s M)1; 44, and hence also (SIs (M)/N& Endr(M)) 17
are projective over SI(M) . But since

I(M

S R (RIs(M)/N G M) 100 = (STs(MY/N o5 M) 1]

we conclude that (RIs(M)/N @p M) 1)), is a projective RI(M)-
module.
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Remark 1.16. In general I can not say any more but that RG contains a ring
direct summand, which is a full matrix ring over

Endrra((RIs(M)/N ©r M) 11500).

However, the situation is much more transparent, if we ASSUME THAT THE
GROUP EXTENSION /(M)/N oVER Ig(M)/N IS SPLIT.

That this need not always be so shows an example in Section 1.1, Example 2. In
the non split situation, the 2-cocycle v € H*(T(M), S*) will play an important
role.

Assumption 1.17. The exact sequence of groups
1 = Is(M) - (M) - IM)Y/Is(M) — 1

is split. Let Tp(M) be a subgroup of I(M), which is mapped isomorphically
onto T(M) = I(M)/Is(M).

Recall that the RyTo(M)-module S° is S with To(M) acting as Galois auto-
morphism.

Lemma 1.18. 5° s as left module RoTo(M)-1somorphic to RoTo(M). Let
Ro(Is{M)°®) is the free left Rols(M)-module of rank one with To(M) acting by
conjugation. Then the Ryl(M)-module

SIg(M)° := 5° @R, Ro(Is(M)°)
is as left Rol(M)-module isomorphic to Rol(M) .

Proof: The fact that S° is free as RoGal(S/Ry) ~ RyoTo(M )-module is a result
of David Hilbert [Que; 80, p.219] [Hil; 1897], since S is unramified over Rq. The
remaining statement is the general fact about semidirect products [Ro; 96.1]
3.16: Let A x B be a semidirect product of groups, with B acting on A by
conjugation, then R(A°) @r RB with B acting on R(A°) by conjugation is
isomorphic to RG .

q.e.d.
N°® is the group N but T(M) acting via conjugation.
Lemma 1.19. The RI(M)-module RIs(M)/N® ©Qr M, where I(M) is the

semidirect product I(M) = Is(M) x To(M) and To(M) acts on RIg(M)/N°®
by conjugation, is a projective RI(M)-module.

Proof: Since the Sylow p-subgroup of [{Af) injects into the Sylow p-subgroup
of I(M)/N , the module SIs(M)/N° is a projective Rol(M }-module by Lemma
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1.18, and hence the tensor product SIg(M)/N°®gr, M is a projective Rgl(M)-
module, and hence also a projective RI{A )-module. However, we have the
following chain of isomorphisms

SIs(M)/N°Op M ~p,rary SIs(M)/N® ©gr Ro or, M
~pot(M) (RoOrS)Is(M)/N°® &g, M
porvy SRS (M)/N® @R, M
~prv) SRI(M)/N° ®r, M.

The third isomorphism holds since S is unramified over R. Thus the statement
of the lemma follows. q.e.d.

The tensor product .X := R(Ig(M)/N°) ©r S is then a To(M )-module, where
Ty(AM) acts as Galols automorphisms via T(M) on S and by conjugation on
Is(M). Then Endrya)(X) = HYTo(M), R(Is(M)/N°) ®g S) is the ring of
fixed points in R([s(M)/N°)®pg S under the diagonal action of To(M) .

Lemma 1.20. The RI(M)-module Y := RIs(M)/N°® Or M has
Endpion(Y) = HY(To(M), R(Is(M)/N°) Gr S) .

Proof: We compute the endomorphism ring of Y as
Endpyay(Y) = Endpyan(RIs(M)/N®Or M)
= (Endproan(RIs(M)/N® @g M))Te()
= (RIs(M)/N° @p §°)Te(M)
H(To(M), RIs(M)/N°® ©g S°).

I

q.e.d.
We now can state the main theorem in this section:

Theorem 1.21. Assume that N is a normal subgroup of the finite group G,
with [Nl R = R and (|N|,|G: N} = 1. Let M be an irreducible RN -lattice
with Endpn (M) = S « finite unramified extension of R; let n = dimg (M),
and denote by I(M) and Is(M) the inertia groups of M as RN-module and
SN-module resp. Then Is(M) < I(M) with quotient T'(M), which acts as
group of R-Galots automorphisms on S. Assume furthermore that Is(M) has
a complement To(M) in [(M). Denote by SIs(M)/N° the RI{M)-module,
where Is(M) acts by left multiplication and To(M) acts by conjugation. S° is
the RTy(M)-module, where To(M) acts via T(M) as Galois automorphism.

Then the group-ring RG contains a ring direct summand of the form

B = Mati.reann(HO(To(M), RIs(M)/N° Gg 5°)).
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Proof: Putting together the statements from the Lemmata 1.18, 1.19, 1.20 we
conclude that the group-ring RI(M) contains a ring direct summand of the
form :

By = Mat iy remyn (H(To(M). RIs(M)/N°® Gg S°)) .

Passing from (M) to G 1s done exactly as in the proof of Theorem 1.14, where
one passed from the inertia group of M, Is(Af), to G. This process gives a

full |G @ I(M)|- matrix ring over By - g.e.d.
1.1. Examples for Clifford theory.
EXAMPLE 1: The structure of the inertia groups and also the structure of blocks
is quite different in case R = Z, and in case R has a field of fractions which is
a splitting field for the underlying group and all of its subgroups, as shows the
following EXAMPLE, which arose in a discussion with Gerhard Hiss: .
Let ,

G=<ab.c|a* b3 c [a.b],a=a"t b=b"1>,
and put R = Zs and S = Z»[(], where ¢ is a primitive 3-rd root of unity.
We observe that Oa/(G), the largest normal subgroup of order prime to 2, is
cyclic of order 3, generated by b. Now the group-ring SG or RG has two bhlocks,
the principal block By generated by {«, ¢} and a block B, where we can apply
Clifford theory, since b does not act trivially.
Let M; = S be the non-trivial R(< b >) module with & acting via ¢* for
i =1,-1. As R(< b >)-modules M; ~ M_; but as S(< b >)-modules we

have M, not isomorphic to M_; . Since the Galois automorphism of S over R |

1s moving M; to M_,, and since this action is also achieved by ¢, we conclude:

1. The inertia group I(M,) over Ris G.

2. The- inertia group Is(Ady) i1s just < a,b > .

3. The group T := I(M)/Is(M) =< ¢ > is just isomorphic to the Galois-
group of S over R.

So we apply the theory: We have to compute H%(< ¢ > SIs{M)/ < b >"); but
¢ 1s the Galois action. Hence it acts just on S, and so the fixed points are

H(< ¢ >,58I(M)/ <b>)=RIs(M)] <b>~R(<a>).
We now have to tensor over R with 5 under the Galois-action and what we get
is S(< a >)°. Hence the group ring RG has a direct summand of the form:
Br = (S(< a >)%),.

Similar calculation show that SG' — now we are doing Clifford theory for SG' -
has a ring direct summand of the form Bg = (S(< a >))2.

U
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Note that on Bg the group < ¢ > acts trivially but on Bp it does not: as
a matter of fact not even the rational rings are isomorphic, since Bg has an
epimorphic image Z,[¢] and B has an epimorphic image Z»[C, ]2, where A
is the diagonal involution in Gal(hatZ-[¢,7]) and i is a primitive 4-th root of
unity.

This example shows at the same time that the THEOREM oF PuiIc for nilpotent
blocks [Pu; 81], which in our case states that in the splitting case B is Morita
equivalent to the group-ring of the defect group < @ > DOES NOT HOLD IN THE
NON SPLITTING SITUATION.

EXAMPLE 2: We next shall give an example that the splitting of /(M) over
Is{M) is not automatic:

Let H = F7 x % be the affine group of the line over 7. Then C3 < F*
leads to the semidirect product K := F; % (3. We form the pull-back along
a (9 — ('3 to get the central extension of i, the group G =F7 % Ca.

Let M be a faithful irreducible ZsC7 lattice. Since its dimension over Z3 is G,
it is unique. We choose for Clifford’s Theorem N = F; and R = Z3. Then
S = EndZ;Q(M) = Z3[C7] with 7 a primitive 7" root of unity. The exact
sequences

0 — I(N) t$— RG — RCy — 0 and
4

0 — I(N)15/“— RG/C5 — RC3 — 0

are two sided split. Since I(N) 16/ is a block of defect 0. which contains A
the block I(N) T,C\'} 1s a block of defect at most 1. Hence Is(M) = F; x (s,
however I(M) = (, since M has no conjugates over R. Therefore I5(Af) has
no complement in I(M) .

2. AN OUTER AUTOMORPHISM OF A GROUP BECOMES INNER IN THE
INTEGRAL GROUP-RING AND A COUNTEREXAMPLE TO THE ISOMORPHISM
PROBLEM FOR POLY-CYCLIC GROUPS

2.1. Introduction. The results in this section were obtained in joint work with
Alexander Zimmermann [RoZil; 95], [RoZi2; 95].

Iu this section we shall construct a finite group G which has an AUTOMORPHISM
a OF (G, WHICH IS NOT INNER; however, the INDUCED AUTOMORPHISM ON S(
IS INNER. where S5 is the ring of algebraic integers in a suitably chosen algebraic
number field. A consequence of our arguments is that o is inner in NG for
every field K .
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We shall apply this then to CONSTRUCT TWO POLY-CYCLIC (INFINITE) GROUPS
Hi AND H,, WHICH ARE NOT ISOMORPHIC, BUT THE GROUP-RING SH; AND
SH> ARE ISOMORPHIC for S as above.

It is a RESULT OF COLEMAN [Co; 64] that the natural map
® : Out(G) — Out(SG)

is injective for p—groups!®. Here S is the ring of integers in a global or a local
number field K, in which p is not invertible.

Remark 2.1. J. Krempa proved that there can at most be an elementary
abelian two group in the kernel of the group homomorphism from Qutcent(()
to Quicent(ZG) (cf. [JaMa;87]).

It is a question of Jackowski and Marciniak {[JaMa;87]) whether it happens that
® is injective for all finite groups G and coefficient ring Z = S. Our example is
not directly a counterexample, since S is a finite extension of Z . Using algebraic
K-theory as in [RoSc; 87] one surely can also construct a counterexample for
the coefficient ring Z.. We did though not elaborate on this.

[f one wants to construct an automorphism o € Aut(G) such that $(«) becomes
mner on SG, then

1. o must be the identity on the conjugacy classes of G,
2. a must be inner in G on the Sylow p-subgroups, combining Sylow Theo-
rems and the result of Coleman (cf. [Co: 64]).

These are PURELY GROUP THEORETICAL PROPERTIES, and it is relatively easy
to construct such an o. However, in order to show that o becomes inner on SG
we have to use the following INGREDIENTS FROM INTEGRAL REPRESENTATION
THEORY: :

1. We show that « is Inner on ZG semi-locally. From this, one can not
automatically conclude that « is inner on Z(G. The OBSTRUCTION is an
element in the cLASS GROUP of Z(. We use CLASS FIELD THEORY - this
is where the field K and its ring of integers enter — to kill this obstruc-
tion [Ro; 96,I], Section 2.

2. The passage from the LOCAL TO THE SEMI-LOCAL situation becomes pos-
sible by INTERPRETING AUTOMORPHISMS AS INVERTIBLE BIMODULES
and using Frohlich’s exact sequence of Picard groups [Fr; 73].

100 utcent( X ) denotes for a group the conjugacy preserving automorphisms modulo the
inner automorphisms, for a ring the automorphisms leaving the center element-wise fixed
modulo conjugation by units.
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Finally we are in the local respectively complete situation'!. Here - in
the complete situation — we use Clifford theory (cf. Section 2.2) to show,
that o acts as inner automorphism on the inertia groups, after having
applied the theorem of Noether-Deuring (cf. Lemma [Ro; 96.1] 2.2), to
pass to a SPLITTING FIELD. The key point in our construction is to involve
quaternion groups in order to keep the inertia groups small.

. Let now K\ be any field, then there exists a rational prime p, such that

KG ~ K ®z,ZyG. Thus « induces an inner automorphism on K'G.

2.2. Clifford theory for automorphisms. Cliflord theory will be essential
for our arguments later on. We recall the setup (cf. Section 1). The HYPOTHESES
ARE THE FOLLOWING.

Assumption 2.2. 1. N isanormal complemented subgroup of a finite group

2.

9.

G with (|G/N|,|N|)=1.

R is a complete local Dedekind domain of characteristic 0 with resicue
field & of characteristic p > 0 such that the quotient field k' of R is a
SPLITTING FIELD for G and all of its subgroups.

p does not divide the order of N .

I{M) is the inertia group of an irreducible RN-lattice M in G (cf. Sec-
tion 1 1.1).

I(M) is normal in G

. epr is the central primitive idempotent of RN which 1s the identity on A .

For each ¢ in J(M), the conjugate t - e5; -1~ is again a central primitive
idempotent of RN which acts trivially on M , hence ¢ -ep -t7! = ea7.
Thus epr is centralized by I(M). )

{g1..-.,9s} is a set of left coset representatives of (M) in &. Then

-1 .
e =gi-eyp-g; t=1...5

are the DIFFERENT conjugates of ejy; in RG. Since the {g;} form a
transversal with respect to the inertia group of M, the conjugates e; are
pairwise orthogonal idempotents in RG, and ) ;| e; =: ¢ is a CENTRAL
IDEMPOTENT IN RG. Thus RG - e is isomorphic to an (s x s}-matrix ring,
whose (4, 7)-entry equals

Bi’j Z:E;”R.G-Ej for 1 Si,jSS,

the Pierce decomposition:

.« Is a central group automorphism, which thus induces an inner automor-

phism of NG .
« acts as the identity on N and so a(epr) = epr .

I Recall that lattices are locally isomorphic if and only if they are isomorphic over the
completion.



CLIFFORD THEORY 117

10. 7! - a(z) € I(M) for all z € G. This implies
ale) = algi-ep -g7") = algi) - alen) - alg) ™ =&
WE LOOK AT B;j MORE CLOSELY:

¢ € G can be written as n - h with n € N and h € G/N . Then h = g5 -t with
tel(M).

We denote by \; THE CHARACTER OF N AFFORDED BY e;.
Using the normality of I(A) we calculate
e,--n-h»ej = ,\i(n.)-e,'-gk-t-ej

xi(n) - gi-en 97 gk-gjen gy L

I

If gp - g5 & gi - I(M) . which is equivalent to gp & ¢; -gj'l - I(M) . then - again
by the normality of J{(M) — the above equals 0. Hence,
Bii=gi-exRI(M) -er g7
More precisely, the above calculations show
ei-RG-e;j =gi-eny RI(M) -ep ~gj‘1 :
THIS ALLOWS US TO DESCRIBE EXPLICITLY THE ACTION OF « ON Bi,j :

aigi-en-x-enr g7t — alg) ear-a(e)-en - alg ) (3)

for ¢ € RI(M). A central automorphism o of RG fixes B;; as set for all
1 <i.j < sifand only if it is given by conjugation with an element of the form

Uy 0 0
0

. -0

0 ' 0

with elements {u; € (RI(M) - ep) VU (KI(M) -epr) i =1, .. s} 1%

IF & ACTS AS THE IDENTITY ON [(AM ) AND IF MOREOVER «(g;) € ¢g;- Z{I(M)) .
then it acts as identity on g;-ear - RI(M)-eps Ag;l ,and then w; € Z(RI(M) epr)
forall i = 1,....s. Since R is local,

Qutcent(RI(M) -enr) ~ Outcent{Mat,(RI(M) - err)) .
Consequently, there is an iner automorphism v of Mat, (RI(M) ep) = RG -€
such that

a =50 (5

12Note that this can always be achieved by multiplication with a central elemnent.
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with a central automorphism § acting via the identification
Bij=¢i-RG-ej=gi em RI(M) -ep-gj"
on each of the entries B; ;. Since 4 is then conjugation by an element
v € (RIM) ey )NU(RI(M) - ep),
the unit v has to have a diagonal form analogous to that of a. Thus there are
elements v; € U(RI(M) - epr) such that
U =y -v €EZ(RI(M)  em).
Consequently,

1ti-u;1 EU(RI(M) -epy) forall 1 <4,7<s.

We summarize these observations, which we shall apply in the next section, as

Proposition 2.3. With the above notation, assume that one of the elements u;
can be chosen to be a unit in RI(M) - ey, then the automorphism « is inner.

2.3. The construction of the group and the automorphism. We con-
struct our group G step by step. The construction is done very carefully, having
the goal described in Section 2.1 in mind:

Let H be the semidirect product of the cyclic group of order 8, generated by «,
with its automorphism group Ca x (', generated by b and ¢, where b inverts «
and ¢ raises a to the third power.

H has a central automorphism o sending @ to a*¢ and fixing b and a. This
automorphism is NOT INNER.

Let now
Ho=(Cagx (Cox Co))n < o> .
We note that < a, ¢ > is a normal subgroup of Hy .

The next step is to involve quaternion groups. Let Qg =< b, ¢ > be the
quaternion group of order 8. Modulo its center, @g maps onto Cs X (s, say via
Ty . We can thus identify the image of b with b and that of ¢ with . We thus
can form the pull-back

1 — C’g — Hy — C-'QXC-'QX<O'> — 1

|| T T TQ X id<a>
1 » (g — H — Qs x Co - 1.

Up to now we have constructed a two group. Next we form the sendirect
product with two finite irreducible modules of odd order: Both modules are
fixed by < a >. We note that H/ < a >~ Qzx < ¢ >. We choose odd primes
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p1, p2 and let M; be the irreducible 2-dimensional IF,,,.Qg-modulela. o fixes M,
and inverts M .

Finally G is the semidirect product of M with H :
G = (M; x Ma) x H.

We shall construct — again very carefully - our automorphism aof G.

a will be conjugation with ¢ on A 1. e. 1t is inner on H . Since ¢ is the identity
modulo < a >, and since a acts trivially on M;, we may extend the conjugation
with ¢ to an automorphism « on G, by letting it act trivially on M; .

Lemma 2.4. « s a central automorphism of GG, which is not inner.

In fact, on H the elements h and «(h), which are conjugate by ¢ are also
conjugate by either « or a® or 1. All these elements centralize M; x M, , and
therefore, o as automorphism of G is central. In fact, for every integers ¢ and j
the elements @' -b-¢ ¢/ and a* - b3 - ¢ - ¢/ are centralized by a - ¢ . the elements
a'-c o) and @t -b%-c- o7 are centralized by a®- o and the rest of H is centralized
by o itself.

From the above considerations it also follows that a can not be inner. However,
this can also be checked with the group theory computer-system GAP, which
has been introduced at this conference.

2.4. The automorphism is semi-locally inner. We shall show that the
automorphism « of G is inner on RG for a suitable semi-local ring of integers
R, where neither 2 nor p; nor p, are invertible. Since we interpret the question
of whether o is inner as a question on invertible bimodules, by the validity
of the Noether-Deuring Theorem (cf. [Ro; 96,I] Lemma 2.2), it is NO LOSS OF
GENERALITY IF WE ASSUME THAT THE QUOTIENT FIELD OF R IS A SPLITTING
FIELD FOR G AND ALL SUBGROUPS.

Using Frohlich’s result ([Fr; 73]) for semi-local domains R
Outcent(RG) ~ H Outcent(R,G)
wESpec(R)

and interpreting « as an invertible bimodule IT IS ENOUGH TO SHOW THAT «
IS INNER FOR ALL COMPLETIONS OF R AT FINITE PRIMES 0.

For a global Dedekind domain R the 0BSTRUCTION to globalize local automor-
philsms 1s a certain subgroup of the cLASS GROUP of the center of the group-ring.

13Recall that Fp,Qs = (Fp, )2 [T1_, Fp, .
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In fact, denoting by CI(A) the locally free class group of the order A, the se-
quence

1 = Cl(centre(RG)) — Picent(RG) — e spec(r) Picent(R,G) — 1
is exact (cf. [Fr; 73]).
Using class field theory (cf. [Ja; 68a]) this implies that there exists a ring of
algebraic integers S in an algebraic number field L, L being finite over the
quotient field of R, such that « becomes inner as an automorphism of SG .
2.5. The crucial calculation. We now come to the central point in the proof:
We shall indicate in the next subsection that the following three groups will

occur as inertia groups at various primes g :

1. Iy :=< M,a,0 > is normal in GG .
2. Iy =< M,a,0-b%> is normal in G.
3. i =< Ma>=0LNI.
We take this for granted for the moment.
At the prime p the group-ring has a ring direct factor of the form
(9i-em - Rpl -ep '9’]1)19,]'55

with 7 € {I1, ]2, I3} (cf. 1 1.14). Recall that e; = 9ep for g; € Hy and Hy
suitably chosen according to the inertia groups I, .

We now consider the three cases I , I and I3 separately.
In case I = I; we can choose the transversal

Hy = {1,0,b 6% c,chcb® b’} = H{ Uc- HY .
In case [ = I» we can choose the same transversal

Ha = {1,b,b% 0% c.ch cb® cb®} = HS U ¢ HY.
In case [ = I3 we can choose the transversal
Hi = {1,0,0% b3 0,bo, b, b%0, ¢, cb, cb?, cb®, ca, cbo, cb®o, eb3c} = HY U c-HY.
We have seen that

ei - RpG e =gi-enr- Ryl ey ~gj_l .

Thus, by the above formula, in case I = I} and in case [ = [ the action of o
on (e; - RpG - €j)1<i,j<¢ 1s multiplication by a* if 4 < | — j| and the identity
otherwise, hence, conjugation by the matrix

1-al><4 0
0 (L4' 14)(4 '



CLIFFORD THEORY . 121

Here we denote by 1,,x,, the m x m unit matrix. Therefore, o acts as inner
autoriorphism on the ring direct factor corresponding to eps .

In case I = I3 a similar observation yields that o acts as conjugation by

Isxs 0
0 (1.‘1 . lgxg ’

Hence, by Proposition 2.3, o acts as inuer automorphism on the ring direct
factor corresponding to eps as well .14

2.6. Determination of the inertia groups. We choose a prime p € Spec(R) ,
then there are various possibilities for the inertia groups. We shall only discuss
one case in detail:

2€p.
Then the group-ring decomposes as

RyG = Ig, (M)G x RoH .

On Ry H the automorphism « is conjugation by o . For Ig (MG we apply
Clifford theory (Section 1). Let \ be an irreducible nontrivial character of AM
as abelian groups (the quotient field of R is a splitting field for M) with kernel
K g A’[l X A[g -

For \ there are three cases which have to be considered separately:

1. If Ms C I, then the inertia group I contains M, o and «. If h € H lies
in [, , we observe that the sequence

] — <a,0> H Qs 1

splits. Hence, we may assume that A € @3, but there are no fixed points
on either M or M, , a contradiction. Thus.

[, =< M,a,0 >=1;,

and o is inner,
2. If My C K, then obviously I, D< M.a,b? o >. Similar arguments as
above show that

(=< M, a,b* c>=1.

Hence o is inner.
3. If neither M, nor M4 is contained in A", then the inertia group

Iy =< M a>=13

14 Note how sensitive this construction is with respect to the group G .
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15 the intersection of the two inertia groups of the previous cases, since
M = M; x Ms and (p,|M]|) = 1. Again we see that o acts as inner
automorphism on the factor corresponding to that character y of M .

Our automorphism « from Section 2.3 now acts as inner automorphism on each
of the factors and ay, is inner in R, G provided 2 € p.

The cases p1 € p, p2 € p and |G|R, = Ry, are treated similarly.

This shows that o is an inner automorphism of RG .
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ABSTRACT. We introduce some kind of C'fech-c(:)homology which is very
well suited to treat the Zassenhaus Conjecture, which states that in ZG
all group bases are rationally conjugate. For solvable groups we then dis-
cuss several applications to the Isomorphism problem and the Zassenhaus
Conjecture. In particular. we can give a necessary andl sufficient condition.
purely in terms of the group &, for when the Isomorphism problem is true
for a large quotient of the integral group ring.

1. ZassENHAUS CONJECTURE

The origins of these results go back to joint work with L. .. Scott and are
obtained in collaboration with W. Kimmerle [KiRo: 93].

1.1, Introduction.
Problem 1.1. [IP:] The ISOMORPHISM PROBLEM asks: Does
ZG=2H
imply that there is a group isomorphism
p:G— H?
We note that every isomorphisin between integral group-rings can be modified

to an augmented automorphism, i. e, it commutes with the augmentations of &
and H resp.

In the sequel we shall always ASSUME THAT HOMOMORPHISMS BETWEEN GROUP
RINGS ARE AUGMENTED.

This researclh was partially supported by the Deutsche f'\n's«.‘l.lungsgmneinsc]naf[ and the
Volkswagen Stiftung.
Received by the editors November 1995.
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Remark 1.2. The CLASS SUM CORRESPONDENCE implies, that there exists a
BIJECTION - not necessarily an isomorphism

8:6G — H with Ky = RNy .

where Kg =37 ccicaig "9 18 the CLASS SUM OF g IN ZG.
Problem 1.3. [ZC]

1. The ZasSENHAUS C'ONJECTURE asks whether the above map
3 can be chosen to be an isomorphism of groups.
This 1s equivalent to the existence of
¢« € PG witha-G-a"' = H,

since on the center @ is the identity. Here QG* denotes the units in Q¢ .

This is a very strong positive answer to the Isomorphism problem. As a

matter of fact, it is too strong, as was shown 1n collaboration with L. L.

Scott, by constructing a COUNTEREXAMPLE ([RoSc; 87]: see also [Ro: &9]

[Ro; 92dmv], Chapter IX and [KI; 91]). We should point out here, that

our COUNTEREXAMPLE IS A METABELIAN GROUP . '

Using a trick of Kimmerle, one can show that the Zassenhaus Conjecture

15 more or less equivalent to:

(a) The Isomorphism problem has a positive answer.

(b) Every augmented automorphism a of ZG has the forma = v p,
where v 1s a central automorphism of ZG and p 1s an automorphism
of (,'1' .

2. The p-VERSION OF THE ZASSENHAUS C'ONJECTURE , asks whether there
exists an isomorphism (in particular the Isomorphism problem has a pos-
itive answer)

p=pp:G— H,
such that on a Sylow p-subgroup P C ZG = ZH of G the isomorphism p,
is given by conjugation with an element ap € Q@G> ; 1. e. it induces J on
the class sums of p-power elements.

The most far reaching result thus far, which was obtained by L. L. Scott when
collaborating with the author in 1987, is the following, which I shall ounly for-
mulate for SOLVABLE groups:

Theorem 1.4 (Scott [Sc; 87], [Sc; 90]). Let & be a solvable group with O (G) =
1, then the Zassenhaus Conjecture is true. (Note that since (7 is solvable,
Op () = 1 s equivalent to the fact that ZG0 consists only of the principal
block. )
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Remark 1.5. 1. In order to deal with the Zassenhaus Conjecture for solv-
able groups in general, we may thus assume that O, (G) # 1 for every
prime divisor p of the order |G| of G.

For a solvable group we are thus in the following situation:
For every prime divisor p of G, we have an epimorphism

¢p: G — G/Op(

On each of the images the Zassenhaus Comecture 1s true. We are going
to develop an OBSTRUCTION THEORY for the Zassenhaus Conjecture resp.
the Isomorphism problem to hold for G .

2. We shall deal here with the ISOMORPHISM PROBLEM ., the ZASSENHAUS
CONJECTURE and certain p-VERSION OF THE ZASSENHAUS CONJECTURE
from a conceptional point of view by defining a Cech style cohomology set
- this 1dea goes back to the collaboration of L. L. Scott with the author -
which yields obstructions for these conjectures to be true.

Using this we can give a criterion on the structure of H purely in terms of the
group theory of GG, provided ZG = ZH (cf. Theorem 2.4).

Moreover, we have the folowing new class of groups, for which the Isomorphism
Problem has a positive answer - here we do not necessarily require that G is
solvable. For the TERMINOLOGY, we shall write

Auty (G)

for those automorphisms p of G such that for every p and every p- powe1 element.
z € G the elements x and xp are conjugate.

Aut (G)

stands for the group of conjugacy class preserving automorphisms of (. Then
surely Aut.(G) C Aul,(G) C Aut(G) .

Theorem 1.6 [[KiRo; 93]). Assume that

1. G has a nilpotent normal subgroup N such that G/N is nilpotent,

2. for each quotient X of G/N , the group Aut,(X) consists of inner auto-
morphisms only. (Note that this is a group theoretical condition. More-
over, since G/N is nilpotent, we have Autp{G) = Aul(G).)

Then the p-version of the Zassenhaus Conjecture holds for G and all p. In
particular, the Isomorphism problem has a posilive answer.

Corollary 1.7. Assume that G/F(G) s abelian, where the Fitting subgroup
F(G) is the largest nilpotent normal subgroup of G'. Then the p-version of
the Zassenhaus Conjecture holds for G and all p. (We point out that a cor-
responding result for the Zassenhaus Conjecture in case of an abelion normal
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subgroup with nilpotent quotient was proved by L.. L. Scott [Sc; 85] und the au-
thor [RoSc; 85, and was extended by A. Zimmermann [Zi; 90].)

Remark 1.8. We point out that the counterexample to the Zassenhaus Con-
jecture is metabelian, and hence for this example the p-version of the Zassenhaus
Conjecture is true. ’

Theorem 1.9 ([KiRo; 93]). If G is a Frobenius group or a 2-Frobenius group,
then the p-version of the Zassenhaus Conjecture holds for G and all p.

Recall that a Frobenius group is a group G with a non trivial subgroup H such
that H O *H = 1 for every @ € G\ H. Then there exists a normal subgroup
N of G, the Frobenius kernel of G with G/N ~ H . A 2-Frobenius group has a
chain of normal subgroups

I<N<T <G,

such that T is a Frobenius group with kernel N, and G/N is a Frobenius group
with kernel T/N .

Let me point out that the class of solvable groups, for which the integral augmen-
tation ideal decomposes, consists exactly of the Frobenius and the 2-Frobenius -
groups (cf. [GRI1; 75], [GR2: 76], [GR3; 75]) - an interesting coincidence?

2. CECH COHOMOLOGY

2.1. Projective limits. We shall assume from now on that G is solvable.

In order to set up our obstruction theory, we TRY to describe a finite group

(G as PROJECTIVE LIMIT with respect to certain families of normal subgroups

{Niti<i<n . We put G; := G/N;. The projective limit is then defined as
lLim.proj (G;)y ={(g1,... .gn) g €Gi : gi = g; in G/(N; - Nj)}. (1)

We then have an induced natural map G —— lim.proj.(G;) .

We do not have a general criterion for when this map is an isomorphism; how-
ever, we have

Lemma 2.1 ([KiRo; 93]). The map in Equation 1 is an isomorphism, provided
(M, Ni =1 and for every p € m(G) ' there is an index i with (p,|N;]) = 1.
This applies in particular, of

N; = 0,/(G), where {pi} = n(G).

'For the finite group G we denote by m(G) the set of rational prime divisors of |G].
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The basic questions around the Zassenhaus Conjecture, mentioned above, should
also be seen as a COMPARISON BETWEEN THE CATEGORY OF GROUPS AND THE
CATEGORY OF GROUP-RINGS.

THE BEHAVIOR OF PROJECTIVE LIMITS IS QUITE DIFFERENT IN BOTH CASES.

If G is the projective limit of the quotients G; := G/N;, then the projective
limit
T :=Te({Gi}) = limproj (ZG)) (2)

of the group-rings Z(; does not coincide with Z(G. As a matter of fact,
Te({Gi}) = {(v1,-- W) 7% €ZG; : v = v W ZG/(N; - Nj)},

and over the rationals it is in general a relatively small proper quotient of ZG'.
The map o induced from the universal property of projective limits, o : ZG —
['(G) has kernel

Ker(o) = icicn I(G, M), , (3)
where [{(, N;) is the kernel of the natural map ZG — ZG; .
We should point out that ¢ EMBEDS INTO ['(G), and in many cases I'(()

determines . For example we have

Lemma 2.2. If G =T[;_, Pi is a finite nipotent group with Sylow p;-subgroup
P; for | < i< s. then the projective limil T ({P;}) determines G uniquely, up
to wsomorphism. It should be noted that P; = G/Op.

Proof: In fact, & is uniquely determined by P; and I'¢(F;) projects onto ZF;.
q.e.d.

Example 2.3. Let ¢ := [[1<i<» (Pi) be a nilpotent group with P; a Sylow
pi-subgroup. Since direct products are special cases of projective limits,

Go=limprojaci<n P

is a projective limit, and I'((¥) is the product of {Z P}, ¢, <,, in the category of Z-
augmented algebras. This shows that I'(G) is a VERY NATURAL CONSTRUCTION.
The corresponding group-ring is the tensor procuct, which is the PRODUCT IN
THE CATEGORY OF Z-ALGEBRAS. More precisely, if ¢ : ZG — 7 is the
augmentation, then

D(G) = {(xi)i<icn - v € TP |ep (0:) = €p, ()}

i. e., rationally, I'(() consists only of those irreducible representations, where
at most one Sylow p-subgroup acts non trivially.
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The MAIN RESULT GIVES AN EXPLICIT DESCRIPTION OF H IN TERMS OF (G
PROVIDED ZG = ZH as augmented algebras, in case G is solvable. Before we
can state it, we have to introduce some more notation:

We know that G is the projective limit of the groups G; = G/0,/(G), and we
put

Gij = G/(Op(G) - Op (G)) .
WE DENOTE THIS PROJECTIVE LIMIT OF THE GROUP-RINGS ZG,; BY ['¢(0).
Assume that we are given a ‘central cocycle’
p=1(pij); 1.e. pi=1and p;; = pj"i1 .
where p;; are conjugacy class preserving automorphisms of Gy;; i. e. p; €
Autc(Gi5) , the group of conjugacy class preserving automorphisms of G . Then
Glp)={(g:) € [[ Gillgi-Gij)pis = (g; - Gij) )
1<i<n
18 a group.

One of the main results is then as follows. The crucial application is-given in
Proposition 3.3, where this is used to give a necessary and sufficient. condition
for the Zassenhaus Conjecture to hold for T".

Theorem 2.4 ([KiRo; 93]). 1. Assume that I'(O) = Ty (O) as augmented
algebras and that G is solvable. Then there exists a central cocycle p such
that H ~ G(p) .

2. Moreover, G(p) ~ G 1f, and only if there are automorphisms p; € Aut(Gy)
- not necessarily in Aut (G;) - with
pij = pi-p;’

Hence the obstruction is « question of lifting automorphisms.

LET US POINT OUT THAT THE ABOVE IS A PURELY GROUP THEORETICAL

DESCRIPTION.

Note that the hypothesis of Theorem 2.4 is in particular satisfied, if ZG = ZH .
So the result shows that then

H ~ G(p),

which shows in particular that G AND H SHARE MANY PROPERTIES.
We point out that the p;; are CENTRAL automorphisms.

This theorem can be used to construct examples:
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Example 2.5. There are TWO NON ISOMORPHIC GROUPS (¢ AND H written
as projective limits, such that semi-locally - Zi; () 1s the semi-localization of Z
at the primes dividing |G| -

Zin(cy©z Tc(0) = Zniy 9z TH(0),

showing that the Isomorphism problem has a negative answer for projective
limits of these group rings. We shall describe this example in subsection 3.3.

Using class field theory, we then can find a ring of algebraic integers R such
that

lim.proj.(RG;) ~ R®z I'¢(0) ~ R®z Tu(O) ~ lim.proj. (RH;) .
We do not know, whether or not for these groups Zr(¢)G =~ Zq(gyH ; the groups

are just too big.

Remark 2.6. The counterexample to the Zassenhaus Conjecture constructed
by L. L. Scott and the author shows that the Zassenhaus Conjecture may fail
for ZG but hold for I'¢(A) .

The 1mportance of the p-version of the Zassenhaus Conjecture lies in the fol-
lowing property:

Proposition 2.7 ([KiRo; 93]). Let ZG' = ZH as augmenled algebras. Then
the p-version of the Zassenhaus Conjecture holds for the pair of groups G and
H , if and only if it holds for T¢(O) =Ty (O).

In the above proposition we have to start with ZG = Z H though.

Unfortunately we do not have a similar result for the Isomorphism problem.

2.2. Cech Cohomology. We shall set up the Clech cohomology i a geneyal
setting: Let K be either the category of groups, or of rings or of modules.

Definition 2.8. Assume that for each X € 0b(K) we are given a ‘natural’ sub-
group Aut.(X) < Aut(X) - e. g. inner automorphism or central automorphisms
etc. Let us be given objects and surjective epimorphisms

{Xi, Xij =X, X = Xi |+ Xi — X5, 1 <4, j<n}.
Then we can form the projective lymit
X={(e;) 2 € Xy |zigs; = 2505} .
In addition, we assume that the kernels of the maps ¢;; are x-characteristic
. €. they are preserved under the automorphisms in Aut.(X).

Ve shall use X to stress that we are working with a projective limat.
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1. The cOCYCLES are defined as:

Z(X, Autu (X)) = {(p) = (pij) : pij € Autu(Xij) | pis = p3i°  pis = idx, ).
2. The COBOUNDARIES are defined as
B(X, Aut. (X)) = {(pij) € Z(X, Auta (X)) | pij =

pi -pj_l for p; € Aut, (X;)}.
3. Two cocycles are said to be EQUIVALENT,
(pij) ~ (i) = pi - pij - p; " = ply for pi € Aut.(G).

(Here we mean the maps induced on the quotients.)
4. The equivalence classes of the cocycles are denoted by

H(X, Aut. (X))

This is a pointed set, with point the class of the coboundaries: it vs called
('’ECH COHOMOLOGY CLASS OF X WITH RESPECT TO Aut.(X).
5. For p=(piy;) € Z{X, :’\ut*(X)) we define -

X(p) = {(2:i) 2s € Xi|wighsj - pij = 2505:} -
This definition should be compared with the Cech cohomology of a topological
space with respect to an open covering.

We point out that these definitions depend strongly on the specially chosen
subgroup Aut.(—) < Aut(-)!

Direct calculations show:
Lemma 2.9 ([KiRo; 93]). There is an isomorphism of projective limits

o= (0;): X(p) — X(p) witho; € Aut, (X;) <= p~p in Z(X, Aut. (X)) .

3. [SOMORPHISM PROBLEM
3.1. The Isomorphism problem and projective limits. Assume that G =
lim.proj.| <;<,(G;) with common quotients ;; , where
N; = ker(G — Gy)
are characteristic subgroups, and assume furthermore that the relative augmen-
tation ideals I(G, N;) are characteristic in ZG'.

We assume that the Isomorphism problem holds for the groups ;. We denote
by ' the corresponding projective limit of the group-rings ZG,; . We note that
['¢ 1s an augmented algebra.
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Assume that ZG = ZH as augmented algebras. Then the hypothesis implies
that we obtain ISOMORPHISMS

B3 . G; — H; and hence AUTOMORPHISMS f3; -,5’].‘1 =: pi; € Aut(Gy;),

which gives rise to a cocycle p € Z(G, Aut(G)). The above Lemma 2.9 now
translates to:
Proposition 3.1 ([KiRo; 93]). 1. H = G(p).

2. H~G <= pe€ B(G, Aut(G)) .

3. Tg=Type€ B(E,Alltaugm(r_G)) .

We can formulate this more conceptually for the projective limit I'g as follows:
We have a natural map

®: Z2(G, Aut(G)) — Z(Tg, Aut(Tg)) -
Lemma 3.2 ([KiRo; 93]). Given p € B(I'g, Autaugm(Lg)) N Im(®). Then
T ~Tg and G~ G(p) < p € ®(B(G, Aut(G))) .

3.2. Zassenhaus Conjecture. Let G be solvable and put N; := G/Oy (G).
Then G is the projective limit G = lim.proj., ;. ,(G;) with G; = G/N; and
common quotients G;; . Then the groups N; are characteristic subgroups; and
also the ideals /(G, Oy:) are characteristic.

Thus the Zassenhaus Conjecture is true for the groups G; (cf. [Sc; 87], [Sc; 90]).
We denote by I'¢(Q) the corresponding projective limit of the group rings ZG; .
Let o : ZG — Z G be an augmented automorphism. Then we obtain from the
validity of the Zassenhaus Conjecture a family of ISOMORPHISMS

Q; = i PP (Z4G; — 2Gy,
where the maps v; are central automorphisms of ZG; and p; € Aut(G;) . Since

«; and «j are induced from the automorphism « on ZG, the maps «; and «o;
must coincide on ZGyj: -

Vi pi =50 pi o0 LGy

i.e. the map p;; := p; - p; ' =] ! -7; is a CENTRAL AUTOMORPHISM of Gij .
Hence we have associated to an automorphism a of ZG an element

p = (pi;) € H(G, Aute(G)) . (4)
Here Aut.(—) stands for the group of conjugacy class preserving automorphisius;
note that this is a very small subgroup of Aut(—).
It should be noted that

H(G, 4wt (G))

is a purely GROUP THEORETICAL INVARIANT.
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Similar arguments as above hold, if we start with an automorphism of the
projective limits « : I'g(Q) — T'¢(O) . The above Lemma 2.9 here translates
to:

Proposition 3.3 ([KiRo; 93]). The Zussenhuus Congecture holds for our auto-
morphism a : T (0) = T (O) if and only if p is a coboundary. (I. e. there are
pi € Aut (Gy) with pi; = ps -pj_1 )

Note again that this is a purely GROUP THEORETICAL QUESTION.

This can now be used to construct a semi-local counterexample for the Zassen-
haus Conjecture for I'¢:(O) .

It 1s more complicated to get similar results for the p-version of the Zassenhaus
Conjecture.

Also in this situation we have similar results as 1n Proposition 3.1 and Lemma 3.2:
We have a natural map

® : Z(G, Aut(G)) — Z(LcO, Aut(LcQ)) .

We also have a natural map
Z: Z(G, Aut(G)) — Z(G, Aut(G)) -
Lemma 3.4 ([KiRo; 93]). Given p € Z(G, Aut.(G)) (cf. Equation /).

1. Then Tg(0) ~ Lgp)(0) <= pZ- @ € B(I'c(0), Autaugm(T¢(0))) .
2. G~ Gp) = pZ € B(G, Aut(Q)) .
3. The Zassenhaus Conjecture holds for

Ia(0) = pe Z(G, Aut.(G)).

3.3. A counterexample to the Isomorphism problem for I'y(G).

Theorem 3.5. There are two non isomoﬁvhic solvable groups G and H such
that

Zon @7, To(G) = Zn @z To(H) .

Remark 3.6. This is a slight modification of the construction which was used
to find a counterexample to the Zassenhaus Conjecture for the integral group-
rings by L. L. Scott and the author [RoSc; 87].

We define the group

Hy =

o O
< = %
*
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as a subgroup of GL(3,4). Three elements will play an important role in our
construction:

110 1 00 1 01
s==1 0 1 0 andi:=1| 0 1 1 andc:=] 0 1 0 :
0 0 1 0 0 1 0 0 1

these matrices all lie in GL(3,2).
If Fy is the field with four elements with a Z/2- Z-basis {1, 7}, then the group

1 d-» =«
K:=10 1 4 ,
0 0 1

where § is either 1 or 0, is a normal subgroup of Hy with quotient generated
by s and ¢ .

The group Hy has an automorphism og , defined via the map

¢:Ho— Ho/N — Hp : s —cand t — ¢ as go(h) = h - ¢(h).
Then oo € Aut.(Ho); i. e. for every h € Hy the elements h and og(h) are
conjugate in Hy . :

We now define three modules for Hy:

1. On < m|m?* > the normal subgroup K centralizes m , but m = m~1! and
tm = m~!. We denote by H the semidirect product H :=<m > x Hy.
2. On D :=< d|d® > the normal subgroup K centralizes f, but *f = d and
‘d = d~!. We denote by Hz the semidirect product D »x H .
. On F =< f|f® > the normal subgroup K centralizes f, but *f = f~!
and ¢ f = f. We denote by Hs the semidirect product F x H .

[V

The following result was shown in [RoSc; 87] cf. also [Ro; 89].

Lemma 3.7. 1. og can be extended to o € Aut . (H) . by letting o centralize

m.
2. o can be extended to o; € Aut(H;), by letting o, centralize d and f resp.
i=1,2.

3. o does not extend to an automorphism in Aut.(H;). Even more is true:
4. There do not exist v € Aul.(H;), 1 = 3,5 such that

T =758
n the common quotient H .

We now look at all possibilities of pairs

(p5, p%) € Aut(H3) x Aut(Hs) such that ¢ = p§ - pf k=1, .n.



ZASSENHAUS CONJECTURE AND CECH COHOMOLOGY 135

By the above lemma, not both pz and ps can lie in Aut.(H3) and Aut.(Hs)
resp. "After renumbering we may assume that

{ph 1<k <n}C Aut(Hs)\ Aut.(Hs) and
{pf iny +1<k<n}C Aut(Hs)\ Aut.(Hs) .

We now let p and ¢ be primes such that Qp is a splitting field for Hz and Qq is
a splitting field for Hs . For each p§ , 1 <k < n; we pick an irreducible Z3H3-
lattice M;f such that Mi’," and #3 M: are non isomorphic. This can be done,
since these p§ move conjugacy classes of Hz. We now choose a large enough
power of p, say p* such that these modules stay non isomorphic after reduction
modulo p¥ . Let

BE = M/ M),

The point now is that by a result of [Zi; 90] ph does not extend to an AUTO-
MORPHISM of M;f x Hz. We now put

My:=( @ M)+ Mo,
1<k<n,y ’

where the only purpose of My is to make M, a faithful H3-module.

In a similar fashion we construct the Zqu-module M, .

Let us recall, where we stand:

Definition 3.8. We put N, := M, x D and Ny := M, x F and then G, =
Ny, x H and G4 := Ng x H. We now define GG as the pull-back

Gy — H
1 T
G — G,

Then it is clear that O,/ (G) = Ny and Oy (G) = N, , O3:(G) = Ny and Os/(G) =
N, . Moreover Qu/(() = N, x Ng. Since G/(N, x N,) =~ H the above diagram
is the projective limit of the various G/Op (G) .

Claim 3.9. The groups G and G(o) are not isomorphic. But the pull-backs of
To(G) and T'o(G{a)) are isomorphic.

Proof: Assume there are automorphisms 7, € Aut(G)p) and 7, € Aut(Gy) such
that 7, - 7, = o on the common quotient H . Then p3 := 7, mod(M,) and
ps = Tgmod(My) lie in pg € Aut(Hs) and ps € Aut{Hs) and they form a pair
with p3-ps = o on H .

However, our construction of M, and M, shows that p3 or ps does not extend
to (&, or iy, a contradiction. As for T'o(() . our construction is such that the
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central automorphism ¢ does extend to Z3G, by Proposition 3.1, and so [o(g)
and I'o(G(0)) are semi-locally isomorphic at Z (3 35,5 4} - q.ed.
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ABSTRACT. Given a ring, say R, two of its most important invariants are
its module category R — Mod and, coarser, its derived module category
DP®(R — Mod). This is an introduction into various techniques which have
been developed to study these categories, in particular for finite dimen-
sional algebras.

This is a survey paper (written by a non-expert), thus there will be
no proofs, and only a few recent results will be mentioned. The emphasis
is on explaining important notions by means of examples. Thus we will
not try to present statements in their most general forms. Instead we
will restrict to finite dimensional algebras over algebraically closed fields.
where the theorems have their easiest form.

There are four sections: First we define path algebras, which are both
important examples and important tools for the development of the whole
theory. In section two we discuss the approach of Auslander and Reiten
to the first main question; how to view (or even compute) a module cat-
egory or a combinatorial picture of it, or how to organize the information
contained in a module category. The second question is, how to compare
module categories; in section three we discuss the approach via tilting the-
ory. This leads us naturally to the final topic, derived equivalences, which
is discussed in section four. '

There are no dramatic assurnptions on the knowledge of the reader; a
little elementary ring theory and elementary homological algebra clearly
will be enough to understand all definitions and assertions (but, of course,
more work has to be done in order to understand the proofs which will be
omitted here).

These lectures being given in Constantza — the former Tomis, where
Ovid had to spent his last years — it seems appropriate to see the ideas
which are recorded here as a collection of metamorphoses.
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A consequence of this result is the fact that the representation theory of
kI does not really depend on the orientation of I', although for two different
orientations one does not get equivalent representation theories. This surprising
fact has been studied by Bernstein, Gelfand, and Ponomarev [9], and their
results can be seen as the starting point both of Auslander-Reiten theory and
of tilting theory. We will come back to this point later on.

Quivers which do not have Dynkin diagrams as underlying graphs, are of
infinite representation type. That is, however, not the end of the story. In
fact, infinite type decomposes into two rather different situations, called tame
and wild representation type. Tame representation type is somehow similar to
Jordan normal form {which is the representation theory of a polynomial ring,
that is, a quiver with one vertex, one loop, and no relation): By definition, for
any fixed dimension n, each indecomposable n—dimensional representation M
(up to finitely many exceptional representations) of a tame algebra 4 can be
written as M; @[]V where V runs through the indecomposable representations
of k[T (which is the prototype of a tame algebra) and M; runs through finitely
many A — k[T]-bimodules, which are finitely generated and free over #[77]. This
says, in a fixed dimension the representation theory of a tame algebra looks
like finitely many Jordan normal forms (but, of course, when changing the
fixed dimension n, the number of needed Jordan normal forms may change
as well). In contrast, the representation theory of a wild algebra contains
as a subproblem the representation theory of a free algebra in two variables,
hence (by a result of S. Brenner [11]) the representation theory of any finite
dimensional algebra. An algebra cannot be both tame and wild (but tame as
defined here of course includes finite type). A deep result of Drozd says that
there are no other algebras.

Theorem 1.4. (Drozd [21]) A finite dimensional algebra is either tame or

wild.

The rather complicated proof by Drozd uses a metamorphosis of algebras,
the so called bocses (or boxes, as they tend to be called now). A variation on
Drozd’s proof has been given by Crawley—Boevey [16]. A rather different and
more explicit proof (using another generalization of algebras, the so called sub-
space categories of vector space categories) recently has been given by Gabriel,
Nagzarova, Roiter, Sergeijchuk, and Vossieck [26].

There are (rather involved) algorithms to decide whether a finite dimensional
algebra is of finite or infinite type (we will see one in the next subsection), but
there are no algorithms known to decide (in general) between tame and wild.

For group algebras of finite groups, the situation is much easier:

Theorem 1.5. (Higman [36], Bondarenko and Drozd [10]) Let G be a finite
group and k a field whose characteristic p diwvides the order of G. Then the
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group algebra kG 1is of finite representation type if and only if the p-Sylow
subgroups of G are cyclic. It is of tame vepresentation type if and only p equals
2 and in addition the p-Sylow subgroups are elements of a small and special list
of groups (dihedral, semidihedral, Klein’s four group, and generalized quaternion
groups). In all other cases, the group algebra kG is wild.

The tame group algebras have been studied and their basic algebras have
been more or less classified (in terms of quivers and relations) by K. Erdmann,
and their representation theory has been determined by various authors [43, 17,
22]. Recall that any of the groups occuring in the theorem has precisely two
generators, say a and b, and the relations are as follows: for dihedral groups,
a® = b® = (ab)? = 1, for semidihedral groups, a?"™ = b2 = 1 and bab~! =
a?"~%, and, finally, for generalized quaternion groups, a®*™ = 1, b = a™, and
bab= = a~! (where n, m,{ are parameters).

1.6. To have an example for later use, we compute the dimension vectors of the
indecomposable representations of any quiver with underlying graph the Dynkin
diagram As. By Gabriel’s Theorem, these dimension vectors are precisely the
positive roots of the corresponding semisimple complex Lie algebra.

A convenilent way to compute positive roots, is to use, that a positive root
is a vector with non-negative integral entries which has value one under the
quadratic form associated with the Dynkin diagram. Thus we first have to
compute the quadratic form. It is ¢(,y, 2) = 2% — zy + ¥ — yz + 2% (since we
have vertices at z, y, and =, and edges between 2 and y and between y and )
We can rewrite g as (@ —y/2)* +y*/2+ (y/2 — 2)* (which implies that the form
is positive definite). It is now easy to check that the following is a complete list
of all positive roots of this quadratic form:

100,110,111,011, 010,001

In the next section we will continue this example by writing down the corre-
sponding indecomposable modules for some fixed orientation.

1.7. A classical example of the representation theory of an Euclidean diagram
is the Kronecker quiver ®=—®(which is the smallest quiver in the series

Ap). Tts representations V W—’—?) W are determined by pairs of matrices (y, %),
and isomorphism of representations means simultaneous conjugation of both
matrices (that is, changes of the bases of V and W). That is, classifying inde-
composable representations is equivalent to classifying pairs of matrices modulo
simultaneous conjugation. Thus one can see this problem either as a problem of
linear algebra or as a problem in representation theory. In fact, linear algebra
is enough to solve it; the first solution has been achieved by Kronecker [38] (for
a short elegant version of his proof, see [8], section 4.3). Using the representa-
tion theoretic tools we will discuss in the next chapter, one can save a lot of
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computational effort, and one can generalize this solution to a solution of the
whole class of problems given by Euclidean diagrams (see [19] for a complete
solution).

Now we list all the indecomposable representations of the Kronecker quiver:
There are three different cases. If we fix a natural number n, and assume
dim(V) = n then dim(W) is either n+ 1 or n or n — 1. In the first case, there is
up to isomorphism precisely one indecomposable representation; the two maps
V =k - W = k**! are as follows: o(v;) = w; and ¥(v;) = w;4) where {v;}
and {w;} are bases of V and W. The third case of dim(W) = dim(V')—1 is dual
to the first one; thus again, there is precisely one indecomposable representation
for each dimension vector. A much larger set of indecomposable representations
arises for the dimension vectors (n,n). Here, we can identify the vector spaces
V' and W. If ¢ is an isomorphism we can choose a basis, such that ¢ is the
identity map; in that case, ¥ can be represented by a Jordan block

A 1 0
0 A 1 0
0 ... 0
0 A1

The only indecomposable representation with yp not invertible is the one having
(up to isomorphism) ¥ = id and ¢ represented by the Jordan block

0 1 0
0 0 1 0
0 .0
0 0 1

2. ALMOST SPLIT SEQUENCES

In this section we define almost split sequences (which sometimes are called
Auslander—Reiten sequences) and explain their importance. They tell us how
to view (and in many cases, how to compute} a module category, or how to
organize information we have on a module category.

Throughout we will work (for simplicity) with a finite dimensional algebra A
over an algebraically closed field £. Modules always are finitely generated (=
finite dimensional), sometimes left, sometimes right modules. (The k-duality
Homy(—, k) 1s an antiequivalence between the categories of left and of right
modules over a k-algebra, thus it does not matter which kind of modules we
study.)



-

AUSLANDER-REITEN SEQUENCES AND TILTING THEORY 147

2.1. In order to have an example at hand, we first compute the modules over
the upper 3 x 3-triangular matrices, that is, the representations of the quiver
¢ — o — o with underlying graph As. By Gabriel’'s Theorem 1.3 we know
the dimension vectors of the indecomposable modules. Hence it is enough to
find one indecomposable module for each of the dimension vectors in the list
given above. If we deal with right modules, then the first projective module
(the first row in the 3 x 3—matrices) has dimension three and dimension vector
111. The second projective module has dimension vector 011, the third one has
001. Of course, the first and the second projective have unique simple quotients
Ly = 100 = P /P> and Ly = 010 = P»/P3. There remains just one dimension
vector 110 in the list, which belongs to the indecomposable module M = P,/ Ps.

Now we know all the indecomposable modules, thus by Ixrull-Remak-Schmidt
all the finitely generated modules (which are in a unique way direct sums of
indecomposable ones). But this of course does not mean that we know now the
whole module category. The homomorphisms are missing! Going through the
list of indecomposable modules we can check that they all have endomorphism
ring k. For example, the endomorphisms of the projective representation P; =
kS kM koare triples {a,b,c) of field elements, that is 1 x 1-matrices which
make the following diagram commutative:

T

la 1o le

I S L
And we also can find some other homomorphisms hetween these modules, as is
shown in the following picture:

FAI P,

P, M

Pa : Lo L,

Here, the maps indicated by arrows are the obvious inclusions or projections.
There are more than these maps, for example one can compose some of them to
get other non-zero homomorphisms. But trying to find more maps one gets the
impression, that any homomorphism between these modules is a composition
of isomorphisms with some of the maps in the picture. Thus the maps in the
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picture deserve special attention. They will be called irreducible maps, and
will be seen to be the maps in the almost split sequences which will be defined
later on. What properties do the maps in the picture have? They are not
isomorphisms, but they generate (multiplicatively) all the non-isomorphisms
(in this special example as well as in the case of finite representation type in
general). '

Definition 2.1. (Auslander-Reiten [4, 5]) Let X and ¥ be A-modules and
f:X =Y an A-homomorphism. Then f is called irreducible if it is neither
a split monomorphism nor a split epimorphism, but in any factorization f =
gh: X Szhy (for Z any finitely generated A-module) the map g is split
mono or the map A is split epi.

In other words, an irreducible map is a non-isomorphism which cannot be
factored in any non-trivial way. Clearly, an irreducible map must be either
injective or surjective (factor the map over its image).

Now let us look at the example again in order to see how the irreducible
maps are organized. Surprisingly, it turns out that they form exact sequences.
More precisely, there are exact sequences

0— P3— Py Ly — 0
0P, P&l M0

02 Lo—>M-—->L; >0

which contain all irreducible maps occuring in the picture, and all maps in these
sequences (except the zero maps) are irreducible.

This gives us a first definition of almost split sequences. It can be shown
to be equivalent to another definition (the original one) which will be given in
the next subsection and which provides a way to prove the existence of such
sequences and hence the existence of enough irreducible maps.

Definition 2.2. An exact sequence 0 - M — E — N — 0 of A-modules, with
indecomposable starting and ending terms, is called an almost split sequence
(short: ass) if and only if all non—zero maps in the sequence are irreducible .

Sometimes, almost split sequences are called Auslander-Reiten sequences.

Later on, we will see that almost all irreducible maps occur in such sequences.
In particular, for any module M there are finitely many irreducible maps start-
ing in M and finitely many irreducible maps ending in M. This tells us how to
view the module category as a quiver:



AUSLANDER-REITEN SEQUENCES AND TILTING THEORY 149

Definition 2.3. The Auslander—Reiten quiver of A is an oriented graph
having as vertices the isomorphism classes of indecomposable A-modules, and
containing n arrows from M to N if and only the space of irreducible maps
from M to N is n—-dimensional.

The picture given above is the Auslander~Reiten quiver of the path algebra
of the quiver ¢ — o — .

If the module M is projective, then it is easy to find all irreducible maps
ending in M; they are just the direct summands of the inclusion of rad(M)
into M. Dually, if M is injective, the irreducible maps starting at M are the
summands of the projection M — M/soc(M). All other irreducible maps can
be found via almost split sequences.

Note that we encounter here two more metamorphoses; irreducible maps are
turned into almost split sequences, and the module category is turned into the
Auslander-Reiten quiver (the latter change may cause some loss of information,
since we cannot recover maps from the AR quiver which can be factored into
an infinitely long chain of irreducible maps; such maps exist in case of infinite
representation type).

2.2.

Definition 2.4. (Auslander-Reiten [4, 5]) Let 0 - M % E % N — 0 be an
exact sequence with indecomposable starting and ending terms. It is called an
almost split sequence if and only if f is left almost split, that is, f is not
split mono, and any homomorphism M — X which is not split monomorphism,
factors via E, and g is right almost split, that is, g is not split epi, and any
homomorphism Y — N which is not split epimorphism, factors via E.

Note that it 1s necessary to require that the maps to be factored are not split,
since otherwise the sequence itself would split, which we do not want.

Theorem 2.5. (Auslander—Reiten) If N is indecomposeble and not projective,
then there is an almost split sequence 0 &> M — E — N — 0 ending in N. If
M s indecomposable and not injective, then there is an almost split sequence
0> M— FE— N0 starting in M.

For lattices over orders (over a discrete valuation domain) there is a com-
pletely analogous theorem, independently due to Auslander and to Roggenkamp
[46]; the construction of almost split sequences differs, however, in a rather
subtle way from that for modules over finite dimensional algebras. For other
modules over orders, or for other classes of modules over more general rings,
almost split sequences usually do not exist.

Together with the previous remarks on irreducible maps ending in projective
or starting in injective modules, this shows that for any indecomposable module
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in a later subsection implies that these modules are all the indecomposable
B-modules (since B is indecomposable as a ring).

Note that there is one almost split sequence (and also one indecomposable
module) less than in the previous example. However, the two module categories
of A and B look rather similar. This similarity will be explained in the section
on tilting theory.

2.4. In order to have an example of an infinite Auslander—Reiten quiver, we
look at the Kronecker quiver. Recall that its representations are of the

form V ((p_,;p) W, that is, they are pairs of matrices. The list of indecom-
posable representations we gave before, distinguishes three kinds of indecom-
posable representations, which have dimension vectors (n,n 4+ 1) or (n,n) or
(n,n — 1), respectively. The first kind of representations includes the projec-
tive ones, which have dimension vectors (0,1) and (1,2); these representations
are called preprojective. For each n, there is precisely one indecomposable
preprojective representation of dimension vector (n,n 4 1). How do their al-
most split sequences look like? Let us start with the projective representation
(0,1); it has two irreducible maps into (1,2), the cokernel is (2,3) which is
the Auslander-Reiten translate of (0,1). Hence the almost split sequence is
0-(0,1) = (1,2)®(1,2) — (2,3) = 0. Continuing in that way, one can
produce an infinite component of the Auslander-Reiten quiver, which contains
precisely all the preprojective representations:

0,)3(1,2)3(23)313493 S+ )3m+1,n+2). ..

The representation {n,n 4 1) has two linear independent irreducible maps into
(n+ 1,7+ 2) (which send v; to v; or to vy, respectively), and the almost split
sequence looks like

0= (nn+l)=(n+1,n+2)®(n+1,n+2) > (n+2,n+3) >0

Of course, the representations (n+ 1, n) form another Auslander—Reiten com-
ponent; they are called preinjective (and include the injective representations).

How many components do we need for the remaining representations (which
are called regular)? They are not uniquely determined by their dimension
vector, thus to fix them we have to add a parameter A (which fixes the Jordan
block defining ¢, and where we follow the convention that A = oo gives the
representation with ¥ = id). Computing Auslander—Reiten translates one sees,
that each (n,n, A) is sent to itself. Thus there are modules, which are starting
and ending term of the same almost split sequence. There are two irreducible
maps (n,n,A) = (n+1,n+1,A) and (n,n,A) = (n— 1,n— 1, A) (the latter in
case n > 1 only), one of them injective, the other surjective. They fit into an

S
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exact sequence, which thus is the almost split sequence
0= (nnA)=n+lL,n+,)En-1,n-1X1 >{nnA) -0

So for each A we get an Auslander—Reiten component, which contains precisely
the representations (n,n, A) (where n runs and A is fixed). The shape of these
Auslander—Reiten components is as follows:

(LLA) & 2,20 & - & mnX)&m+l,n+1,0) &

A good way to imagine these components is as tubes with (1,1, A} at the mouth
of the tube.

In general, many other shapes of Auslander-Reiten components can occur;
the shapes occuring for a given algebra can be used to get information on this
algebra (for group algebras this method has been used by Erdmann [22]).

The other Euclidean diagrams have similar representation theories; always
there are two exceptional components contaming preprojective and preinjective
modules and all the other modules lie in tubes (up to three of these tubes may
look different from the above ones by having more than one indecomposable
module at the mouth). This is the typical behaviour of a tame algebra (by a
result of Crawley—Boevey [17]). For wild algebras completely different shapes
of Auslander Reiten components do occur (but there also may be many tubes).

Once one has such a precise knowledge on the representation theory of a
certain algebra, one can use it to study other algebras which are somehow
related. In the section on tilting theory we will review a method for doing
so. However, using ad hoc methods one can for example relate the Klein four
group to the Kronecker quiver and arrive (by some clever computations, see [8],
4.3) at a complete classification of the representations of this group (which in
characteristic two has a tame representation theory).

2.5.  An important application of the existence of almost split sequences is to
provide an easy proof of Brauer Thrall I. Before we give that proof we have
to recall the contents of the Brauer Thrall Conjectures (which have not been
stated as conjectures by Brauer or Thrall). They have been central problems
in the area for a long time.

An algebra can be either of finite or of infinite representation type. There
are two possible reasons, why it could be of infinite representation type: Ei-
ther there are indecomposable modules of arbitrary large dimension, or there
are infinitely many non-isomorphic indecomposable modules having the same
dimension. Brauer Thrall I says that the first possibility always must occur.
Brauer Thrall 1T says that in fact a combination of both possibilities must oc-
cur: there are infinitely many natural numbers such that for each of them there
exist infinitely many pairwise non-isomorphic indecomposable modules having
this number as their dimension. Recall the examiple of the Kronecker quiver:
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Here (over an algebraically closed field!), for each even dimension 2n there is an
infinite series of pairwise non-isomorphic indecomposable representations given
by V = k" = W and ¢ represented by a Jordan block

A 1 0 ...
0 A 1 o0 ...
o ... ... 0
0 A 1

0 A

{there are infinitely many A, since k is algebraically closed).

Brauer Thrall I was proved by Roiter [47] using a very tricky argument.
Brauer Thrall II follows from another big theorem (due to Bautista, Gabriel,
Roiter, and Salmeron [7]), the multiplicative basis theorem, saying that a large
class of algebras — including algebras of finite type and algebras of minimal
infinite type (the latter being the ones important for Brauer Thrall II) — have
bases which are multiplicativein the sense that the product of two basis elements
is either zero or a basis element again. Brauer Thrall II has been proved [6, 23,
14] ounly for finite dimensional algebras over algebraically closed fields, whereas
Brauer Thrall I has been shown for arbitrary artin algebras by an argument of
Auslander which we are going to discuss now.

Now we sketch a version of Auslander’s proof of Roiter’s result. It makes use
of the Harada-Sai Lemma:

Lemma 2.6. (Harada-Sai, [35]) Let n be a natural number and My, ..., Man_3
be indecomposable A-modules (not necessarily pairwise different), each of dimen-
sion n, and pick non-isomorphisms f; : M;_y — M;. Then the composition
frooo-- fan_1 equals zero.

The proof is clever, but elementary.

Now we prove Roiter’s Theorem. Assume that all indecomposable A-modules
have dimension less than a fixed natural number n. We have to show that A4
has finite representation type.

Let M be any indecomposable module and f : N — M a non—zero homomor-
phism which is not a split epimorphism. Clearly, M is not simple projective.
If f is not irreducible, then f factors over an irreducible map f; ending in M:
f = gfi1 {where fi either occurs in the almost split sequence ending in M, or
if M is projective, fi is the inclusion rad(M) — M). If f; starts in a module
which is not semisimple projective and g i1s not a split homomorphism (that is,
neither a split monomorphism nor a split epimorphism), then g factors, too.
Continuing by induction we arrive at one of three possibilities: Either at some
step, g becomes a split homomorphism — then we have connected N and A
by a finite chain of irreducible maps having non-zero composition. Or we can
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continue factoring for ever — this contradicts the Harada-Sai Lemma. Or at
some step we arrive at a simple projective module @, which then must be a
direct summand of N (which maps non-trivially to Q). Hence again, N and M
are connected by a finite chain of irreducible homomorphisms having non-zero
composition. Since for any M there exists an indecomposable projective module
P = N mapping non-trivially to M, we see that any indecomposable module is
connected by a finite chain of irreducible maps with an indecomposable projec-
tive module. And this chain can be chosen in such a way that its composition is
not zero. By Harada-Sai it follows that the chain has length bounded by 2" —1.
By the theorem of Auslander and Reiten, the Auslander—-Reiten quiver is a lo-
cally bounded graph. Hence we can reach only finitely many indecomposable
modules by chains of irreducible maps having non-zero composition, which start
in one of the finitely many indecomposable projective modules. Thus we have
finite representation type. This finishes the proof of Roiter’s Theorem.

If the algebra A 1s connected, that is indecomposable as a ring, then its pro-
jective modules can be connected by chains of non—zero maps. Then repeating
the above argument gives a stronger statement:

Theorem 2.7. (Auslander) Let A be connected. Assume there is a component
in the Auslander—Reiten quiver of A such that the length of the modules in
this component is bounded. Then A is of finite representation type, and the
Auslander-Reiten quiver has precisely one connected component.

Thus the best way to prove Brauer Thrall I is to prove its metamorphosis in
Auslander’s Theorem.

So, if one is given an algebra, one may try to compute the Auslander Reiten
components containing indecomposable projective modules. If these compo-
nents turn out to be finite (since the process of computing almost split sequences
stops at.a certain time) one has shown that the algebra has finite representation
type, and at the same time one knows already all the indecomposable modules.
This is precisely the argument we need for shogmg in our example that we have
found all indecomposable B—modules.

By a result of Bongartz, in case of finite representation type, the number
of indecomposable modules is bounded by a number which only depends on
the dimension of A. Hence the above test for finite representation type really
is an algorithm. There are however much better (and much more involved)
techniques to decide whether or not an algebra has finite representation type,
using certain lists compiled by Bongartz and by Happel and Vossieck.

2.6. In the case of group algebras the computation of DT is very canonical:
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Proposition 2.8. Let kG be the group algebra of a finite group. Then for M
indecomposable and not projective, there is an isomorphism DTr(M) ~ Q*(M),
where the latter module. i1s the second syzygy, that is the second kernel in the
minimal projective resolution of M.

A connection to defect groups (see Zimumermann'’s lectures) is given by:

Proposition 2.9. Let A = kG be the group algebra of a finite group G. Then
an almost split sequence 0 — M — E — N — 0 splits after restriction to «
subgroup H of G if and only if the subgroup H does not contain a vertexr of M
(or equivalently of N ).

3. TILTING THEORY

The aim of this section is to discuss how to compare the module categories
of two algebras. The starting point of course is the classical result of Morita
which settles the case of equivalence of two module categories (see for example
the book [1]). The development of tilting theory can be seen as a sequence of
metamorphoses of this result.

3.1.

Theorem 3.1. (Morita [39]) Let R and S be two rings (with unit) and assume
there are additive functors F: R—Mod — S—Mod and G: R—Mod — S—Mod
which are mutually inverse equivalences. Set P = F(R), which is an S — R-
bumodule, and @ = G(S), which is an R — S-bimodule. Then the following
statements are true:

(a) The natural ring homomorphisms R — Endg(P) and S — Endp(Q) are
isomorphisms.

(b) The modules Pr, sP, rQ and Qg are finitely genevated projective gen-
erators. '

(c) There are isomorphisms of bimodules ¢Pr ~ Homg(rQs,S) =~
Hompg(r@s, R) and rQs >~ Hompg(s Pr, R) @ Homs(sPr,S).

(d) There are natural isomorphisms '~ Hompg(rQ,—) =~ Pgr Gp — and
G~ Homs(sP,—)~Qs@s—. .

Conversely, given bimodules salisfying the conditions in (¢} and (b), the func-
tors in (d) define equivalences between R — Mod and S — Mod.

This result gives a complete characterization of when two rings have equiv-
alent module categories. Starting with one of the rings, it is by condition (a)
enough to know one of the modules P or @ in order to find the other ring.

There are three conditions on the module s P in order-to define an equivalence
between S — Mod and Endg(P) — Mod: P must be finitely generated, it must
be projective, and it must be a generator.
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If there is"an equivalence, then it has a very special form: it is given by a
Hom or a ® functor with the module P.

A typical example of a Morita equivalence is between a ring R and the ma-
trix ring M, (R) of n x n—-matrices with entries in R (a special case of that 1s
Wedderburn theory which has been known long before Morita’s result).

3.2. Morita’s result looks like finishing the subject, so it is surprising enough
that this is actually the starting point of a new development. The next step
which is important for us was not done before 1973, when Bernstein, Gelfand
and Ponomarev [9] gave a new proof of Gabriel's Theorem 1.3. When discussing
Gabriel’s Theorem we observed already that it implies that for all orientations of
a fixed Dynkin diagram one gets similar representation theories; the dimension
vectors of the indecomposable modules over any of these algebras are indepen-
dent of the orientation (although the modules themselves are not). So there is
a need to explain this éimilarity. In their proof, Bernstein, Gelfand, and Pono-
marev introduced what has been called reflection functors and what is just a
metamorphosis of the classical Weyl group. They are functors hetween A —mod
aid A’ — mod, where 4 and A’ are path algebras of the same quiver, but with
different orientation such that the change of orientation is done by a reflection
at a sink (where no arrow starts) or at a source (where no arrow ends). It
turns out that via this correspondence almost all indecomposable 4-modules
"are’ indecomposable A’-modules and vice versa. So the reflection functors are
almost equivalences. Pictorially, the situation is as follows:

A— Mod:

A" — Mod:

Let us look at our above example. We compare the two path algebras 4 =
k(e — o — o) and 4’ = k(e — o + o). A representation of 4 is a triple of
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vector spaces with a pair of linear maps:
IR
What we have to do is to reverse the arrow 2 — 3. The functor doing that

~on the level of representations is the veflection functor S¥; it takes the above
representation and sends it to a representation of A” which is defined as follows:

Vi i) Vo e kernel(yg).

On morphisms, St does the obvious thing. To go back from A’ to A we have
a reflection functor S~ which uses a cokernel to define the vector space at
vertex 3. Check now what these functors do on representations; they send an
indecomposable representation to another indecomposable representation with
only one exception: ST sends the simple mocdule at vertex 3 (where the arrow
is reversed) to zero, and S~ does the same with the simple representation at
3 (where again the arrow is reversed). So if we remove these simples from the
module categories, the reflection functors give an equivalence of what remains.

I‘AOPA:: [ ]

For defining reflection functors one just needs a sink or a source (the vertex,
where all arrows are reversed). If the graph underlying I' is a tree, then there
must be a sink or a source. Reflection functors can be composed in order to
give a functor from A — mod into itself. It turns out that the resulting com-
binatorial operation {called Coxeter transformation) on dimension vectors
coincides with the action of the Auslander—Reiten translation DT+ on dimension
vectors (for indecomposable non—-projective representations of path algebras).
This purely combinatorial way to do Auslander Reiten theory is an important
tool of representation theory of path algebras of quivers (see the book [45]).

The idea of Bernstein, Gelfand, and Ponomarev has been to prove Gabriel’s
Theorem by looking at the group generated by reflections. In the case of a
Dynkin diagram, this is just the Weyl group of the corresponding semisimple
complex Lie algebra. Now the positive roots can be produced from the sim-
ple roots by applying a sequence of reflections, and conversely, a positive root
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can be transformed into a simple one by applying the inverse sequence of re-
flections. Reflection functors do precisely the same on dimension vectors of
indecomposable modules. Hence one can prove the theorem by induction, the
main point being to have full control about when a positive root or an inde-
composable module are being sent to a negative root or the zero module by a
reflection or a reflection functor respectively. An exposition of the Bernstein—
Gelfand—-Ponomarev proof of Gabriel’s Theorem can be found in chapter 8 of
[41].

3.3.  The next step in the development of tilting-theory is due to Auslander,
Platzeck, and Reiten [3] who interpreted reflection functors in a module theo-
retical way. We describe this metamorphosis (which is a special case of tiiting)
and check it in our example. Recall the Auslander-Reiten quiver of the path

/\
/\/\

There are three indecomposable projective modules, the third of them, Ps,
being simple. Morita’s Theorem tells us that we get algebras with equivalent
module categories by taking endomorphism rings of copies of these projective
modules. Now to get 'almost’ an equivalence we replace the projective module

3 (the one at the vertex, where the arrows are reversed) by its TrD which
is the representation L; = 0k0. The endomorphism algebra of the module
T:=P &P, Ly = kkk ®0kk & 0k0 is the algebra

‘FAZ

k kO
0 k£ 0
0 &k k

which is the path algebra A’ of the quiver ¢ — o « o. Now there is an
obvious functor from A — mod to A’ — mod, namely Homa (T, —). Let us make
a table with its values:
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A-mod | A’-mod
00k 000
Okk 0k0
kkk kk0
0k0 Okk
kkO kkk
k00 k00

Looking at the Auslander—Reiten quiver, one observes that all indecompos-
ables except the simple at vertex 3 are mapped 'in an equivalent way’ (that is,
preserving homomorphisms) to the other Auslander—Reiten quiver (where the
simple at 3 1s not in the image).

We can even improve the situation a little bit, if we use another natural
functor, which also sends A-modules to A’-modules: the functor Fatl (T, —)
sends the simple at vertex 3 to the simple at vertex 3 and everything else to zero.
Thus this second functor corrects the 'mistake’ made by Hom(T,—)! Observe
that it 'moves’ the simple module at vertex 3 from the left hand side of the
Auslander-Reiten quiver to the right hand side. This is why this process is
called tilting.

3.4. Reflection functors and APR-tilting functors provide a link between two
module categories which are not equivalent but ‘very similar’. This is a very
speclal case of a more general behaviour which has been discovered by Bren-
ner and Butler [13] and extended by Happel and Ringel [33]. They generalize
Morita’s Theorem by replacing the progenerator P from Morita’s Theorem with
a tilting module T' (generalizing the APR tilting we saw before). Thus a tilting
module is just a metamorphosis of a progenerator.

Definition 3.2. Let A be a finite dimensional algebra. An A-module T is
called a tilting module if and only if it satisfies the following conditions:

{a) T 1s finitely generated,

(b) its projective dimension is 0 or 1 (that is, there is a short exact sequence
0= A; = 4o » T — 0 with 4; and A» being projective),

(c) it has no self-extensions (that is Extl (T, T) = 0),

(d) there i1s an exact sequence 0 - A — T} — T5» — 0 with 7} and 75 heing
direct summands of finite direct sums of copies of T'.

Comparing these conditions with those of Morita’s Theorem, we have again
a condition saying that 7" 1s finitely generated, as well as homological conditions
and a condition which says that 7 is large enough.

With a projective generator comes an equivalence between module categories,
with a tilting module come equivalences between subcategories:



AUSLANDER-REITEN SEQUENCES AND TILTING THEORY ~ 161

Theorem 3.3. (Brenner-Butler) Let A be a finite dimensional algebra, T
a tilting module and B its endomorphism ring Enda(T). Then the functors
Homa(T,-) and T ®p — provide mutually inverse equivalences between the
subcategory T(aT) = {aM € 4 — mod | Exty (T, M) = 0} of A — mod and the
subcategory Y(Tg) = {Np € B — mod | Tor?(N,T) =0} of B — mod. 4nd
the functors Ext} (T, —) and Tor® (-, T) provide mutually inverse equivalences
between the subcategories F(aT) = {aM € A—mod | Homa(T, M) = 0} and
X(TB) = {BNEB—mod|T®B N:O}

A — Mod: 7

T\
B — Mod: Y

If T'= P is a projective generator, then the second pair of subcategories is
trivial and the statement on the first pair just repeats the statement of Morita’s
Theorem.

In general; the subcategories do not exhaust neither A — mod nor B — mod.
But if A is hereditary, the two subcategories X and Y together give all of B~
mod; so the knowledge of the representation theory of A can be used for giving
a complete picture of B-mod.

The tilting module T itself lies in 7(7") and is mapped to Hom4 (T, T) = B.
thus its image is a projective generator.

An algebra 4 and the endomorphism algebra B of an A-tilting module may
look quite different. For example, they may have different global dimension (as
the next example shows) or different representation types, and none of them
need to be a subalgebra or a quotient of the other (as APR tilting shows).

Using this general version of tilting theory we can now include our second
example, that is, we can apply tilting in order to come from the path algebra
A to its quotient B = A/rad?(A). Recall the two Auslander-Reiten quivers:
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Fa: Py

N

P L,

A Xa Xs

NS

X

A tilting module which brings us from A to Bis T = P3&® P; @ Ly (which
has endomorphism ring B). The subcategory 7 contains the indecomposable
modules Pz, Py, M, and L; {(which are mapped to Xy, X3, X3, and X4). The
subcategory F (which is tilted from left to right) has just one indecomposable
object, La, which is sent to Xs.

The theorem of Brenner and Butler can be further generalized to tilting
modules which have finite global dimension (possibly bigger than one); then one
has to use all the functors Exty (T, —),... and a whole bunch of subcategories.
Tilting modules of global dimension one thus may be called classical tilting
modules.

I'p:

3.5.  One of the reasons to be interested in tilting theory is that starting with
some algebras one has a good knowledge of the representation theory of, one
can construct new algebras and study their module categories. The most impor-
tant class of examples 1s obtained by looking at tilting modules over hereditary
algebras. The algebras obtained in this way are called tilted algebras. A
more general class, that of quasitilted algebras, has been studied by Hap-
pel, Reiten, and Smalg [31]. A quasitilted algebra is the endomorphism algebra
of a tilting object in a hereditary abelian k-category. This includes tilted al-
gebras, but also canonical algebras and other algebras obtained by tilting in
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certain categories of sheaves. So the module category of a quasitilted algebra is
a metamorphosis of a hereditary abelian category.
These algebras have a nice homological characterization:

Theorem 3.4. (Happel, Reiten, Smalp [31]) A finite dimensional algebra A is
quasttilted if and only iof its global dimension is less than or equal to two and in
addition each indecomposable A-module has projective dimension or (not: and!)
injective dimension less than or equal to one.

4. DERIVED CATEGORIES

During the last decade, tilting theory has become a very intensively studied
area, which is the source of many examples. A new metamorphosis of tilting
theory has been found by Happel [28, 29] who brought derived categories into
the game: ‘

4.1.

Theorem 4.1. (Happel) Let A be a finite dimensional algebra and T a tilting
module over A with endomorphism ring B. Then the derived module categories
Db(A) and D®(B) are equivalent as triangulated categories. Equivalences are
given by the functors derived from Homa(T,—) and T Gp —.

X X1

The equivalence between the derived categories restricts to equivalences be-
tween the categories 7 and Y and between the categories F[1] and .

Thus equivalence of derived categories is a handy and elegant formulation
for the ‘similarity’ of module categories.
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The two derived categories of the path algebra A of ¢ — ¢ — e and of its
quotient B = A/rad?(A) look as follows:

DP(A) I[=1] P Pl Lo[1] L1}
NSNS
NSNS N O,

D*(B) Xa[-1] X (1] X (1]
NS NN N\
NSNS N N\,

It is clear from the picture that they are equivalent! v

In D?(A) all indecomposable objects are — up to shift — modules. In
contrast, In Db[B) there is a new indecomposable object, called Y, which is
not a module. It is the complex Y = (P> — P;), which makes the sequence
Y — Xy& X;5[-1] — X3 into a triangle. One may check the equivalence by first
applying the derived functor of Hom(T, —) to the A-modules inside the two sub-
categories appearing in the Brenner Butler Theorem (since for these modules,
the derived functor coincides with the functors Hom(T, —) and Exth (T,—) in
the Brenner Butler Theorem). The only A~module which is left is P;. Since the
equivalence is one of triangulated categories, Py must be mapped to Y (which
can be checked by chosing a triangle containing P, and two objects with known
images, and then looking at the image of the triangle).

4.2. The derived category of a hereditary-algebra is especially easy; its inde-
composable objects are just . shlfted indecomposable modules, that is, an inde-
composable complex is 1somorph1c to a stalk complex with only one non-zero
entry. Thus 1t is not surprising, that there is an Auslander Reiten structure
on the indecomposable complexes. Of course, this derived Auslander—Reiten
quiver contains as subquivers shifted versions of the Auslander—Reiten quiver
of the path algebra itself. But there are additional Auslander-Reiten triangles
relating shifted projective modules P[n] and shifted injective modules I[n — 1],
as one can see in the above example (note that inserting these additional irre-
ducible maps ’twists’ the shifted copies of the Auslander-Reiten quiver). On
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dimension vectors, this additional Auslander—Reiten translation is still given by
the Coxeter transformation (except that one has to change a sign). For example,
we have a new Auslander Reiten triangle

0= P) 'Y (P Py =M Y (P 5 0) = Py[1]

which uses the obvious maps. All of the new Auslander-Reiten triangles are of
that easy shape. A

In general, the construction of Auslander—Reiten sequences can be modified
to a construction of Auslander-Reiten triangles of finite complexes, either by
working directly in the derived category {Happel [30]) or by working in the
category of complexes (Roggenkamp) and then passing to the quotient. How-
ever, this works only for finite complexes. In fact, Happel [30] has shown that
Auslander-Reiten triangles X = Y — Z — X[1] exist precisely for Z and X
being bounded complexes of finitely generated projective modules. All other
complexes are neither starting nor ending terms of Auslander—Reiten triangles.
(Note that the almost split sequences for modules need not he Auslander—Reiten
triangles, as one can see in the example of D?(B).) A consequence is:

Theorem 4.2. (Happel [29]) The bounded derived category D®(A — mod) of a
finite dimensional algebra A has Auslander-Reiten triangles if and only if the
global dimension of A is finite.

This applies in particular to tilted algebras. More general, applying a derived
equivalence to a hereditary algebra one gets what is called a piecewise here-
ditary algebra. Happel, Rickard, and Schofield [32] have shown that the class
of piecewise hereditary algebras coincides with the class of iterated tilted alge-
bras which are obtained by starting with a hereditary algebra and then apply
classical tilting finitely many times. Brenner [12] found an algorithm which al-
lows us to find the (unoriented) graph of the original hereditary algebra (which
is uniquely determined) within the derived category of a piecewise hereditary
algebra.

An important technique used in the proof of the result of Happel, Rickard,
and Schofleld — and in many other papers — is to consider perpendicular
categories. Let us restrict to the case of a hereditary algebra A and a fi-
nite dimensional A—-module X: The right perpendicular category Xt is the full
subcategory of A — mod having objects M which satisfy Hom (X, M) =0 =
Ezty (X, M). If X is indecomposable without selfextensions, then its perpen-
dicular category X1 is the module category of a hereditary algebra B which
has one simple module less than A. (This is the special case of a much more
general result.) And the embedding B — mod — A — mod is fully faithful and
exact. This allows us to proceed by induction.
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4.3. The existence of a tilting module T over A with End4(T) = B is sufficient
but not necessary for the existence of a derived equivalence D?(A — mod) ~
D*(B — mod).

So the next step in tilting theory was to develop a Morita theory for derived
categories. This has been done by Rickard [42] {and also by Keller). Here, the
final metamorphosis of progenerators, the tilting complexes, appear:

Definition 4.3. Let R be a ring (with unit) and T a complex over R, that
is T € K(R), the category of complexes over R with homomorphisms modulo
homotopy. Then T is called a tilting complex if and only if it satisfies the
following conditions:

(a} T is a bounded complex of finitely generated projective R-moclules,

(b) for all ¢ # 0, the homomorphism set Homg g)(T,T[¢]) is 0, that is, all
homomorphisms from 7" to its i—th translate are homotopic to zero,

(c) add(T) generates K°(proj — R), the category of bounded complexes of
finitely generated projective R—modules, as a triangulated category.

Theorem 4.4. (Rickard [42]) Let R and S be two rings. Then there is an
equivalence between D°(R — Mod) and Db(S — Mod) if and only if there is a
tilting complex T over R which has (in the derived category) endomorphism ring
S.

In contrast to the previous results, there is no statement about the functors
giving the derived equivalence. The obvious choices of functors do not work in
general (since S acts on T only up to homotopy). Hence in order to prove this
theorem one has to find a new construction of functors, which invelves solving
hard technical problems. - :

In special cases, e.g. for finite dimensional algebras over fields, it has been
shown by Rickard that in case there is a derived equivalence. there is another
one which is a derived Hom or & functor.

Rickard’s fundamental theorem is not only appealing from an aesthetic point
of view, it also opens a way to completely new applications. The reason is
that there are lots of rings, even finite dimensional algebras, which are derived
equivalent, but not iterated tilting equivalent. Selfinjective algebras provide the
most prominent examples: Over a selfinjective algebra, each module of finite
projective dimension, in particular each tilting module, 1s projective. Thus
tilting theory in the sense of Brenner and Butler reduces to classical Morita
theory. However, there are many examples of selfinjective algebras A and B
which are derived equivalent, but not Morita equivalent. Prominent examples
are blocks of cyclic defect, that is, Brauer tree algebras.

From the existence of a derived equivalence between two rings, one gets
back various kind of information on these rings. Among derived invanants
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are the Grothendieck groups, the center, and several homologies, in particular
Hochschild cohomology and cyclic homology.

4.4. Let us finish by an example of a tilting complex. Let A be an algebra we
met before, given by quiver and relations as follows:

a “, b . ¢
[ ] L J ®
3 )

modulo the relations: o-y=0,§-8=0,8 a=~-4.

This is a Brauer tree algebra with Brauer tree being a stem consisting of
three edges. We will define a tilting complex which has endomorphism ring
being a Brauer tree algebra associated with a star with three edges.

By P(a), P(b), P{c) we denote the indecomposable projective A-modules.

Let us consider the following complex P{a) @& P(b) & P(b) (oﬁif) P(c) where
f : P(b) = P(c) is a non-zero homomorphism. This is a bounded complex
of finitely generated projective A-modules. We check that it does not have
selfextensions (which are just shifted endomorphisms): The only possibility
to get selfextensions would be in degree one; but there 1s no homomorphism
P(a) — P(c), and any homomorphism P(b) = P(c) factors via f. Moreover,
T has P(a) and P(b) as direct summands. And there is a triangle (P(b) —
0) 9 (P(b) = P(c)) which has suspension P(c), hence the direct summands of
T generate the same triangulated subcategory of D°(A) as the indecomposable
projective modules. Thus T' is a tilting complex. Up to homotopy, the set of
homomorphisms between any two different direct summands of T 1s precisely £,
wlereas the endomorphisins up to homotopy in all cases are two—dimensional.
Thus we get a Brauer tree algebra associated with a star (with three edges).

This example illustrates a result of Rickard, saying that each Brauer tree
algebra is derived equivalent to another one, which has Brauer tree a star {(with
the same number of edges as the original Brauer tree).

4.5. Acknowledgment. These are the slightly extended notes of lectures which
have been given at a workshop in Constantza (Romania) in September 1995.
I would like to thank the organizers, K. W. Roggenkamp and M. Stefanescu,
for inviting me to this unusually pleasant and well-organized conference. I
am grateful to the Romanian colleagues for their hospitality and their interest,
- and to Henning Krause for allowing me to borrow some TgXfiles of Auslander-
Reiten quivers from the notes of his lecture given at a workshop in Pappenheim
in 1994.
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4.6. Representation theory of finite dimensional algebras is too huge a subject
to make a complete list of references possible. Thus before starting the ordinary
references we give a list of books which are related to these lectures.

The best and most extensive introduction into almost split sequences and
related topics is the recent book of M.Auslander, I.Reiten, and S.Smalg (Cam-
bridge University Press). More of a survey nature and oriented towards applica-
tions to finite groups are the very readable two volumes of D.Benson (Cambridge
University Press). Different in style and in terminology is the book of P.Gabriel
and A.Roiter (Springer, Algebra VIII in the Encyclopedia).

More specialized are the following books: C.M.Ringel (Springer Lecture
Notes) discusses tame algebras. K.Erdmann (Springer Lecture Notes) concen-
trates on tame group algebras (giving a more or less complete classification).
Both books contain lots of examples. D.Happel (Cambridge University Press)
surveys tilting theory and introduces into derived categories. D.Simson (Gordon
and Breach) is interested in representations of partially ordered sets, that is, in
a very special but important class of algebras (the incidence algebras of par-
tially ordered sets). U.Jensen and H.Lenzing {Gordon and Breach) and M.Prest
{Cambridge University Press) discuss connections to model theory which are
important for studying infinite dimensional modules.

A good source for information on research topics are various conference pro-
ceedings, usually entitled Representations of algebras or Representation theory
of algebras (older ones: Springer Lecture Notes, most recent ones: AMS and
Kluwer, two new ones to be published in 1996 by the AMS).
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ABSTRACT. This is an extended version of four lectures given at the work-
shop on representation theory of groups, orders and algebras at Constanta
in September 1995.

INTRODUCTION

Computer algebra is 4n expanding subject in many areas of mathematics. Even,
if one restricts oneself to the interaction of computer algebra and representation
theory, it is impossible to describe the present research and activities in that
area completely in four lectures. Thus the object of these lectures is the attempt
to give a flavour of this topic to an audience which is not specialized in it, which
wishes however to be presented with typical parts of the topic starting from the
foundations and ending by questions which are in the middle of present research.

In section 1 we shall discuss some statements about sense and nonsense of
computers in mathematics. We try to find some answers to such questions by
looking at specific projects and problems which at the same time give a rough
oversight about the actual research going on in computer algebra.

Sectlon 2 deals with the classical question how ordinary character tables of finite
groups may be calculated. The development of character theory dates back to
the end of the 19th century and is due to Frobenius, Burnside and Schur. Al-
ready Burnside's results allow in principle the calculation of ordinary character
tables. Starting with these origins we describe the Dixon - Schneider algorithm
which is nowadays implemented in computer algebra systems like GAP for the
calculation with characters. At the end of the section we sketch very briefly
other methods like Clifford matrices and methods for modular representations.

Received by the editors 20.2.96.
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In section 3 we describe the Grobner basis algorithm, often also called Buch-
berger algorithm, in its rudimentary basic form. This algorithm situated inside
the commutative algebra and the algebraic geometry should be seen as a typical
general tool of computer algebra which always enters the picture when systems
of algebraic equations have to be solved. Many questions in the representation
theory of group rings lead directly to such algebraic questions. A typical ex-
ample for this has been given by M. Wursthorn in his MAPLE demonstration,
cf. [54]. :

Finally section 4 is devoted to an application of computer algebra methods to
a conjecture of Hans Zassenhaus concerning the unit group of integral group
rings. The method developed in [7] represents an interplay between modular
and ordinary representation theory. As starting point it uses the information
available from the ordinary character table. In this sense it continues section 2
but under a different aspect. It will become clear that computer algebra is not
only a topic the task of which 1s the calculation of mathematical objects or the
computation of complicated examples. Section 4 demonstrates in which way
computers may be used in order to get and to prove theorems. The point is
that generic methods allow calculations for infinitely many objects and not only
for one specific example. Finally we survey results on the isomorphism problem
of integral group rings which have been obtained very recently with support of
computer algebra.

1. ABOUT SENSE AND NONSENSE OF COMPUTERS
1.1. The central questions are as follows.

e Can you produce mathematics with a computer? If yes, what kind of
mathematics can you produce with a computer?
e What is the part of computer algebra within mathematics?

1.2. Possible answers and provocative statements.

(a) A computer is mainly an algebraic machine. Thus it is primarily made
for algebra.

(b) With a computer you can only produce and calculate examples or say
better counterexamples.

(¢) Computer algebra is a constructive part of mathematics. This means it is
not sufficient to know there is a solution. You want to be able to compute
this solution.

(d) Computer algebra should be applied also to problems where an algorithmic
solution 1s unknown.
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(e) It is impossible to prove theorems (solely) with computers or, if you really
need a computer for a proof, you would at least have doubts about the
correctuess of the result.

(f) The task of computer algebra splits into two parts.

o The quick computation of an object.

¢ The development and the finding of algorithms for a given problem.
This means in particular that as a first step for the solution of the
problem a constructive proof has to be given.

1.3. Examples. The following examples illustrate the statements above.

ad (e). Probably most mathematicians are unhappy with the “solution” of the 4-
colour problem. On the other hand this example is one of the striking ones which
demonstrate the power of computers. Another example is the classification of
the finite simple groups. This classification does not only cause problems by
the number and the lengths of the papers which altogether yield finally the list
of the finite simple groups. The existence of some of the sporadic groups still
depends on computers and therefore also the list. The most prominent example
perhaps is the construction of the 112-dimensional representation of the sporadic
simple group J4 over the field of order 2 [33]. For a description how such matrix
representations are achieved see [40].

ad (d). Typical examples for problems where no deterministic solution is known
are:

e Given finite groups G and H, decide whether their integral group rings
ZG and Z H are isomorphic.

e Given a finite group G with a cyclic Sylow p—subgroup. Compute the
Brauer tree of the principal block of kG, where k denotes an algebraic
closed field of characteristic p. For groups where the precise shape is
unknown see [20].

ad (c). It is not sufficient to know that f € Q[z] has a Galois group G. You
want to be able to compute G whenever f is given.

ad (f)

1) In practice often a quick algorithm is obtainable when the problem is

reduced to
“Linear Algebra over F,”.

1) There might exist a priori an algorithm but it is not practicable. For ex-
ample the modular isomorphism problem. This poses the question whether
for a p-group P a ring isomorphism between group algebras [F, P and [F, @
implies that P and @ are isomorphic as groups.
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This is clearly a finite problem. But note that in the case of |P| = 27 the
unit group U(F, P) has order 2'?". A computer algebra package called
Sisyphos which handles automorphisms and isomorphisms of such huge
groups has been developed by M. Wursthorn, cf. [55].

ad (b). Clearly counterexamples to conjectures are always of value. But it is
also possible to calculate first with a computer some examples which are of
suitable size for a computer but which are not computable by hand. It is a
special aspect of the use of computer algebra then to discover a general recipe
and finally to prove this recipe completely theoretically.

ad (a). This is the battle for ever young between '
Numerical Mathematics and Algebra

Note that algebraic numbers may be handled as roots of polynomials with ratio-
nal coeflicients in an exact manner because calculations with such polynomials
may be exactly done. However transcendental numbers always must be con-
trolled by bounds in order to calculate with them in an accurate way.

1.4. The classification of the finite simple groups (~ 1980) has had a big
influence on the development of computer algebra. This is clearly demonstrated

by

o 1985 The atlas of the finite simple groups [9]. .
e 1995 The atlas of the Brauer characters of the finite simple groups [22].

May be around 2005 an atlas of generic character tables completes this picture.
One should however expect that such an atlas is available in the form of a
computer algebra system which does not simply store the tables but which
calculates and displays on demand a specific part of such a table.

To archive character tables is justified because simple groups are determined up
to isomorphism by their character table. More generally the following holds.

Theorem. [26] The chief factors of a finite group G are determined up to iso-
morphism by its character table CT(G)

In particular semi-simple groups and their automorphism groups are deter-
mined by CT(G).

Note that the proof uses in a strong sense the classification.

The atlanta mentioned contain with the character table of a simple group & also
the tables of the quasi-simple groups (this means central extensions G which
are perfect as group ) and of the almost simple groups (this means subgroups of.
the automorphism group of & which contain G = InnG) which belong to G It
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seems to be unknown whether the ordinary character table CT(G) determines
such groups up to isomorphism.

If one tries to prove a result for every finite group one always have to prove it
for the simple ones and so in particular for the 26 sporadic groups. Most of the
information known about these 26 groups is contained in [9] and in [22]. Thus
the use of this part of computer algebra often enters the picture of a proof of
a result on a general finite group. It is desirable that also the simple groups of
Lie type may be handled similarly. These simple groups occur in series, mainly
parameterized by their dimension and the characteristic of the underlying field.
This shows clearly that generic character tables of groups of Lie type, 1. e.
parameterized character tables representing such series of simple groups, are of
great interest.

1.5. The inverse problem of Galois Theory. The so-called constructive
Galois—Theory is a typical example how computer algebra may be used for the
solution of a classical problem.

e Realize (using the classification of the finite simple groups) any finite
simple group as Galois group over Q. '

¢ Find a procedure for composite groups G to realize G as Galois group
provided its composition factors are well-behaved.

There are criterions for (series of) simple groups to be Galois groups over
depending only on their (generic) ordinary character table. Some composite
groups may be realized as Galois groups if their composition factors are well
behaved, cf. [30]. Thus simple groups enter here the picture precisely in the
way as described in section 1.4.

1.6. Units of integral group rings.

It is difficult to compute non-trivial units for ZG, by hand, even for G of small
order. With a computer it is not too difficult to produce such units. Usually
two such -units generate an infinite subgroup of the unit group of U(ZG). Thus
it is a priori not clear how finite subgroups of U(ZG) may be handled with
computational methods. Already the determiination of the finite subgroups of
GL(n,Z) for small numbers n is a formidable task, cf. [32]. From this point of
view it appears hopeless to prove with a computer that for Z B, where B denotes
the Baby Monster, the Zassenhaus Conjecture (ZC 2), cf. section 4.2., s valid.
In section 4 we shall see how such a problem may be attacked by character
tables.
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2. CALCULATION OF CHARACTER TABLES

Notations. Throughout G denotes a finite group.

k = # of conjugacy classes of G,
Cy,...,Cy = conjugacy classes of G,
hy,...,hy = length of Cy,...,Ck,
X1,...x& = lrreducible C-characters of G,
xi(C;) = character value of a representative of Cj ,
dy,...dy = degrees of x1,..., xx,
ij = classsum of (j = Z z,

TE(?-
# of pairs (z,y) € Cr x Cs with zy = =,

where z is a fixed element of C;.

Crst

2.1. Proposition.

k
T T= Y el
t=1

Proof. The equation follows immediately from the definition of the numbers
crse and the multiplication of the class sums in ZG.

2.2. Proposition.

hy - x1(Cr) Ry C u v ( CL)
(). =3 ey B lG)

t=1

Proof. By Maschke’s Theorem CG is semisimple. It follows from Wedderburn’s
structure Theorem for senmusimple algebras that CG is a direct product of matrix
rings of the form

CG = M(d,,C) x...x M(dy,C).
Class sums are central. Thus
Air 0
Cr=A1 x...x A, with 4; =

Now
Xi(Cr) = tr(A) = di- My = |Col i Cr) = by (),

where ¢r denotes the trace.
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Hence A; , = h—"d&l Analogously \; ; of C and Ait of C; may be calculated.
Consider now equation (1.1) with respect to M(d;,C). Then

k
A Aie = E CratAit.
t=1

This completes the proof.
2.3. Rewrite (1.2) as follows. Fix the indices » and ¢ . Put
A1 Cr11 ' Crlk
r; = : and M, =
Ai k Crk1 "' Crkk
Then Proposition 2.2. has the form
Xir o Xi =My -z;.

In other words A, , is an eigenvalue of M, with respect to the eigenvector x;. The
desired character values x;(Cj) are factors of A; ; and are determined provided
h; and d; are known. Thus the original problem is reduced to a problem in
linear algebra, compare 1.3 ad f).

2.4. Burnside’s algorithm.
The finite group G is given. The goal of the algorithm is the calculation of the
character table

x1(C1) o x1(Cr)
cr@)=| z
Xe(C1) - xn(Ck)

The algorithm consists of six steps.

(i) Calculate Cy,...,Cy and hy,..., hx. Choose C; = {1¢}.

(i1) Calculate My, ..., M (these matrices are usually called the class matri-
ces of G).

(111) Find a set of k linearly independent vectors z1,..., 2z, such that each z;
is an eigenvector for each Mj. :

(iv) Normalize % = (211, ,21k),. - 2k = (k1. ,2px) by 211 = ... =
Lk — 1.

(v) Calculate the degrees d; via

l€] . 1

2 .

dz' = T with s = E ll‘ijafijr . h—J and d; > 0.
i=

The index j’ is defined by g € C; & g7t € CJ’
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(vi) Calculate x;(C}) by
o Lij - (1,
h;

Comments. Steps (i) and (i1) consist of calculations purely inside the group
G. The normalization in step (iv) is possible because 2;; are non-zero multiples
of the character degrees and therefore non—zero.

The calculation of s in step (v) may easily be derived from the orthogonality
relations

k
D O xi(CixilCh) by =G,
=1

The main problem are the calculations necessary for step (iii). A look at small
groups shows that the determination of the eigenvectors is a non-trivial problem,
if the underlying field has infinitely many elements.

2.5. Example. Let G be the symmetric group of degree 3. Denote by C) the
conjugacy class of the identity, let Cy be the class of a transposition and let ('3
that one of a 3 - cycle. We have

Cy - Cy = 3C, + 3C5,Cy - C3 = 2C5,Cy - Cy = C3,C3-Cy = C3,C5-Cy =
2C,,C3-C3 = 2C, + Cs.

This gives the class matrices

0 1 0 0 0 1
My = 3 0 3 and M3 = 0 2 0
0 2 0 2 01

Note that M» has three pairwise different eigenvalues. Thus we find the com-
mon eigenvectors of all class matrices already by calculating the eigenvectors of
Ms. M3 has only two different eigenvalues. Thus the use of this class matrix

does not lead directly to the eigenspaces of all class matrices, cf. also section
2.7.

The eigenspaces of M» are generated by (1,3, 2),(1,-3,2),(1,0,-1). E.g. from
(1,3,2) we get the trivial character x; and (1,0, —1) gives rise to the irreducible
character of degree 2 with values (2,0, -1).

2.6. Dixon’s improvement. [12] The idea is to take a prime p such that
p = 1 mod e, where e denotes the exponent of G. Find z € N such that
2z =1mod pand z/ Z modp VS with 0 < f <e.

Consider now the homomorphism © : Z[(] — F, defined by sending ¢ to =.
Then © transfers the problem of finding the common eigenvectors of the class
matrices into a finite problem or more precisely into a question on

“Linear Algebra over IF,”.
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Applying © component-wise the vectors zi,...r, are mapped into a set of
linearly independent vectors over an IF, - vector space which are eigenvectors
for the class matrices My, ..., My mod p. Thusstep (iii) of Burnside’s algorithm
1.4 is replaced by

(i), Find a set of k linearly independent vectors #y,. ., £, such that each z;
is an eigenvector for each M; mod p.

Clearly the eigenvalues may be found just by checking the elements of I, and
then the determination of their eigenspaces 1s a homogeneous system of linear
equations over IF,. This big advantage however causes on the other hand some
new problems. At the end of the algorithm 1.4. one gets a new step.

(vii) Translate ©(x;(Cj)) back to xi(Cy).

Also in step {v) of 1.4. one has to recognize the degrees d; in a unique way
mod p. For this the prime p has to be chosen large enough. It suffices to choose
p such that no squares of numbers between 1 and d; are equal mod p. For a given
t the equation 2% =t mod p has two solutions. But (p+a)? = (=p+«)? mod p.
Hence p > 2 - d; will work and because d} < |G| it follows that p > 2 - /]G]
suffices.

Note that this choice is possible is guaranteed by Dirichlet’s Prime Number The-
orem which in particular says that there are infinitely many primes = 1 mod e.

Thus we are left with step (vii). This means that we know
OX(C) =¢ +...¢%,
where ¢ denotes a primitive e - th root of unity. The goal is to find x(C).

Now use that Ef;ol ¢ = e, if e divides ¢, and that the sum is zero, if e does
not divide 1. '

Claim. From

a

e—1
() =) m(s)¢”
s=0
we get that
1 e—1
m(s) = —- x(cmye—:n
n=0

Proof. z € C' implies that 2™ € C™.. Thus

X(Cdl) — Csln. + . '_+_g-sdn-
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It follows that

e—1 e—1
ZY(CHL)C—SN _ 'Zc(sl—s)n‘_{_ +C(sd—s)1
n=0 n=0

On the right hand side we get an e as summand, if and only if e divides (s; — s).
This happens only if s; — s = 0 because all the s; are < e— 1. The claim follows
immediately. q.e.d.

We get finally that x;(C;) = Y2720 mi; (s)¢° with

e—1

1 u —SsN
m;(s) = - Z@(/\/i(Cj(”)): mod p,
n=0

where j(n) is defined by z € C; if and only if 2™ € Cj(,). Since my;(s) < d; < p
the multiplicity m;;(s) is uniquely determined mod p.

2.7 Schneider’s refinement. [53]

The Dixon algorithm still may be improved. Denote by M; the class matrices
mod p. Dixon’s algorithm calculates the eigenspaces of these A; in a direct
manner.

(1) Assume that the class matrices My, ..., M,_; have been handled and
comon eigenspaces F1, ..., Ey are determined.
(i1) For 0 < A < p — 1 consider for each eigenspace E; of dimension > 2 the
action of M, — Al). Split E; into a direct sum of eigenspaces Eij of M,.
(iii) If each eigenspace E;; has now dimension 1 the process terminates.

Note that the ordering of the M; is arbitrary. As already the trivial example 1.5.
shows, a fast determination of the common eigenspaces depends on the ordering
of the class matrices; as a matter of fact, it is not necessary to compute all class
matrices in order to get the character table. The main parts of Schneider’s
refinement are '

- to determine the linear characters first and then to compute their orthog-
onal complement in the underlying & - dimensional [F, - vector space,

- to organize a suitable ordering of the class matrices by a valuation process
which prefers class matrices which split low dimensional (low means < 6)
eigenspaces,

- to avoid the full calculation of a new class matrix by choosing certain well
organized bases of the eigenspaces £; known before,

- the use of non-deterministic methods in order to split 2 - dimensional
eigenspaces.
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In many examples it is shown that these points reduce the costs for the calcu-
lation of the character table substantially. Also the non-deterministic methods
need only few CPU-time. Thus in case of their failure their influence to the
total costs is small. For more details we refer to [53].

2.8. Clifford theory. In the situation when (7 has a normal p - subgroup N and
the character table of G/N is known there are other methods for the calculation
of the character table of G. The method of Clifford matrices introduced by
Fischer, cf. [15], has been successfully used in this situation. The theoretical
background is the following fundamental result of the Clifford theory:

Let N be a normal subgroup of G. For ¢ € Irr N denote by T' its inertia group
in G. This means that T is defined as

T={g€ G =g}

where the action of g on ¢ is defined as ¢(9(n) = ((¢~'ng),n € N. Denote by
<, > the scalar product of characters, i.e.

<ox>= - S 6le) - x(o).
lG, geG

Let ¢“ be the character induced to G and let x|y be the character restricted
to N. Put

Ay ={¢v e InT;< ¢Yn,{ ># 0andB = {x € IrG; < xn,¢ ># 0.
Then the map v —» 4% is a bijection between A and B. Moreover, let (1, ... . (e
be the representatives of the orbits of the G - action on IrrV, then

m
G = | A(¢).
=1
If x € A(¢), then x(g) is expressible as a sum of the form )" ¢; - p(y; N), where
p 1s a projective character of T;/N, T; denotes the inertia group of (;). The
coefficients ¢; form the entries of the Clifford matrices.

The method requires a good knowledge of the characters of the factor group
G/N and of its subgroups. Thus it works in particular good for the case when
G/N is abelian and if N has a complement in GG. Such a situation often occurs
for almost simple groups.

2.9. Character Tables of finite groups of Lie type. The calculation of
character t#%bles of linear groups dates back to Frobenius [16] and Schur. Fun-
damental for the calculation of irreducible characters of arbitrary finite groups
of Lie Type is the theory of Deligne and Lusztig [11]. A survey on the use of this
theory in computer algebra is given in [31, S2]. The known generic character
tables of finite groups of Lie type are collected in [10].
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2.10. Modular Representations. The methods explained so far concern
mainly ordinary representations of a finite group. The determination of the
Brauer characters of a finite group is of course another fundamental part of
computer algebra in the representation theory. More precisely let k& be a finite
field of characteristic p and let M be a finitely generated kG - module then a ba-
sic task in representation theory is the determination of the composition factors
of M. Parkers Meat-Axe [39] was probably the first computer program which
solved this problem in a satisfactory way (for matrix representations of dimen-
sions up to around 1000). Combining the Meat-Axe with condensation methods
one can nowadays handle representations of much larger dimension. The idea
of condensation is as follows.

Let H be a p’ - subgroup of G. Then
1
e = — Z h
|H| heH

is an idempotent of the group algebra kG and leads to the Hecke algebra H =
e(kG)e. Now H acts on the right of Me. The H - module Me is called the
condensed module to M. Information on the composition factors of M is now
obtained by looking at the composition factors of Me, which is of course a
module of much smaller & - dimension. For more details about condensation
see [38] or [29].

In contrast to the Meat-Axe the MOC - system [19] deals with Brauer charac-
ters and not with representations. It relies on elementary methods computing
decomposition numbers. In particular the restriction of ordinary irreducible
characters of GG to the p - regular conjugacy classes gives a good starting point.
This leads to the study of basic sets of Brauer characters which are also of the-
oretical interest for finite groups of Lie type, cf. [17]. The advantage of MOC is
that it applies to much larger degrees than Meat-Axe plus condensation. On the
other hand system some problems really require the knowledge of the represen-
tation and not only of its character. Thus MOC, Meat-Axe and condensation
should be seen together as a computational tool for the determination of the
modular representations of a finite group. Most of the irreducible modular rep-
resentations of the sporadic groups are nowadays known [22] and also most of
their Brauer trees [20].

3. GROBNER BASES

Notations. A=field, K[X] = A[X;,...,X,] polynomial ring in v variables.
P={X{ ... X2 a1,...,a, € Ng}. Note that P is a N'-basis.
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Definition. A term order on P is a linear order (P, <) which satisfies the

following two conditions.

(1)

(i1)
3.2.

a)

b)

3.3.

a)

3.4.

VpEP\{l} 1< p,
Vpgrep 1P < g=>pr<gqr.

Examples.

The lexicographical order.
X7 X <iew X{" -...- XPv if and only if there exists j € {1,...,v}
such that a; < 8; and og = fx for all k < 4.

The graded - le\(icographical order.

X‘” . \“ <g;mT X1 ...- X if and only if

2a1 < z B; or Zal S B and XP oL XS e XPU X
J=1

Definitions. Assume that a term order (P, <) is given.

Let 0# f = > ¢, P with ¢, € K. Then we put L(f) = max{p;¢, # 0}
PEP
and Lc(f) = CL(f)-

If 0 = f, then define L(f) = 0.

We call L(f) the leading monomial and Le(f) the leading coefficient.
Let 0 # F C K(z]. Then we put

L(F)={p L(f);p € P, f € F{0}}.

Note that L(F) is a subset of P.

Let I be an ideal of K[z]. A finite subset G of I is called a Grobner
basis of I, if L(G) = L(I).

Examples.

Let m € K[z]\{0},/ =< m >. Then {m} is a Grébner basis of I.

Any nonempty finite subset G of P is a Grobner basis of < G >.
There exists F = {f1, fo} C K[X] such that F is not a Groébner basis of
=< F> eg.

fi=XPXo4+ X1, f2= X]X3.

Then with respect to “<ge.” we have L(f1) = X?XaL(f2) = X?X3.
Because y = Xo - fi — fo = X1 X0 1s In [ we get L{y) = X1 X2 € L(I).
But X, X» ¢ L(F). '

Each finite subset S of an ideal I of K'[.X] which contains a Grébner ba‘sis
of [ is itself a Grobner basis of /.
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3.5. Theorem. Each ideal / of K[X] has a Grobner basis.

Remarks on the proof of 3.5. A short proof may be given using Hilbert’s Basis
Theorem. But this proof is not constructive. Thus the goal is to find an
algorithm which permits the calculation of a Grobner basis.

3.6. The division by F. Let F C K[X]. Then > c¢(p, f) - pf with
PEPfEF
elp, f) € K is called an admissible combination from F, if for all p,p’ € P and

for all f, ' € F with ¢e(p, f) # 0,¢(p’, f') # 0 and (p, f) # (¢, f') the leading
monomials L(p - f) and L(p’ - f')) are different.

Proposition. Let v € K[X], F C K[X]. Then exists an admissible combina-
tion w from F such that L{v — w) & L(F).

v — w may be explicitly calculated but is not unigue. It may be regarded as a
residue of v modulo F'. We shall use the notation res(v) mod F in the meaning
that res(v) is one residue of v modulo F. We describe the calculation of these
residues.

Compute a sequence (v,) as follows. Start with vg = v. Assume that v; is
already computed. If L(v;) € L(F'), then there exists f; € F' and p; € P with
L(Ul) = L(Pi_fi]- Put

vipr = v; — Le(v) Le(fi) ™ tpifi.
If L(v;) # L(F), then

i—1

w =Y Le(v;)Le(f5) ™ psfy, if i >0

3=0
and w = 0 otherwise.

Proof. It is easy to see that L(v;41) < L(v;). Thus we get a descending sequence
of monomials. But any subset of P has a minimal element. q.e.d.

Note that p; and f; are not unique. The knowledge of L(v) gives a priorl an
estimate for the number of steps needed for the division by F.

3.7. The S - polynomial. Let p= X -... X% and ¢ = X2 ... X5,
then the lowest common multiple 1s defined as

lem(p, q) = X7' ...« Xg¥ with ¢; = max(a;, b;).
Moreover lem(0, ¢) = lem(p, 0) = 0.
Define now for given v, w € K[X] the S-polynomial as
S(v,w) = Le(w) -p-v — Le(w) ¢ - w,
where p,g € PU {0} with p- L(v) = ¢ - L(w) = lem(L(v), L(w)).
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3.8. Algorithm for the construction of the Grdbner basis. Assume
that U =< F' > with F finite i1s given.

(1) Put Fy = F.
(i1) Suppose that F; is constructed. Put

Fiy1 = F;U{res(S(f,¢)) mod F;; f,g € F;\ {0}}.
(1) If F;41 # Fi then goto step (1) else Fiyq 1s a Grobner basis of < F >.

3.9. The algorithm above may be improved substantially. For this we call
F C K[X] simplified, if the following holds.

Ve F L(f) £ L(F\{S}).
A Grobner basis G of U is called reduced, if

1. G is simplified.

2.¥geG:Le(g)=1

3. Vg€ G:9— L(g) is a K - linear combination of elements of P\ L(G).
3.10. Basic Properties of Grobner bases.

a) Simplified Grobner bases are not unique. Reduced Grobner bases are
unique. Each ideal of K[X] has a reduced Grobner basis. Thus as a
consequence one obtains that ideals I and J of K[X] coincide if and only
if their reduced Grobner bases coincide.

b) If G is a Grobner basis of I then [ =< G > .

¢) If GG is a Grobner basis of T and v € K[.X] is given, then

v € 0 is a residue of v mod G.

d) The Grobner basis algorithm may be extended such that each element of
the Grobner basis is expressed as a sum of multiples of the input polyno-
mials.

3.11. Grdébner bases and systems of algebraic equations. Let F =
{p1.....pe} C K[X] and consider the system of algebraic equations of the
form

pI:O,...,kaO.
Denote by K the algebraic closure of I and put J =< py,...,px > . Let
N(F) = {y € K¥:pi(y) = 0 Vi} and let G be a Grébner basis of J. Then

(i) N(F)=0 & GNRK #£0.
(i1) N(F) is finite & P\ L(() is finite.
(iii) Let g € K[X]and put J =< F,g- Xo— 1> C N[Xo....,Xu]. Let G be
a Grobner basis of J. Then 3n € M with

greEJ =< F>aGNK #£0,
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where K is identified with the constants in N[Xg, ..., X,] and
GNEK #0& N(FU{g)) = N(F).

(1v) There are procedures which produce solutions for certain systems of alge-
braic equations. For example in the case when &' = @ and you know a
priori that there are only finitely many solutions. Then one can calculate
all solutions in Q”.

3.12. Remarks. The introduction of Grobner bases given in this section
follows [36]. For a detailed description of the development of Grobner bases we
refer to [2].

Grobner bases exist in a more general context. The field & may be replaced
by a principal ideal domain and instead of K'[X] one can construct analogously
Grobner bases for free modules over K[X] of finite rank, cf. [2, S10]. For the
polynomial ring 4 = K < Xy,..., X, > In non-commuting variables X; there
is no analogue to Grobner bases. But for certain quotients of A the construction
of Grobner bases for arbitrary ideals is possible. "This holds. in particular for
Weyl algebras, cf. [2, S11].

Other such quotients are basic algebras of the group algebra kG, where k is a
field of characteristic p > 0 and G a finite group. Here the Grobner bases are
used to calculate projective resolutions of simple modules, cf. [13] and [14].

4. AN APPLICATION TO INTEGRAL GROUP RINGS

Notations. Throughout R denotes an integral domain of characteristic zero
and G is a finite group. We assume that no prime divisor of |G| is invertible
in R. K denotes a field containing R. The map ¢ : RG — R defined by
e(d rgy) = > vy 1s called the augmentation map. A unit u of RG is called
normalized, if ¢(u) = 1. The group of normalized units of RG is denoted by
V(RG). A subgroup H of V(RG) is called a group hasis, if H is an R-basis of
R(G. Let H be a group basis of RG and let C' be a conjugacy class of H. Then
the sum taken over all elements of (' is called the class sum denoted by C.

An R - algebra automorphism ¢ of R( is called normalized, if it preserves the
augmentation, i.e. Vo € RG : ¢(o(2)) = (). The group of all normalized R -
algebra automorphisms will be denoted by Aut,(RG).

4.1. The class sum correspondence [47]. If H is a group basis of RG, then
H is in class sum correspondence to (4, 1.e. there is a bijection o : G — H such
that the image of a conjugacy class (' of G 1s a conjugacy class of H. Moreover
their class sums ¢(C) and C coincide. In particular the R-linear extension of
a fixes the centre of RG element-wise, since class sums form an R-basis of the
centre of RG. Note however that ¢ is a priori not a group homomorphism. By
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[35] o is compatible with the power map, i.e. for each n the conjugacy class
of o(¢™) coincides with that of (¢(g))".

Assume now for a-moment that R = Z. It I1s an open question whether the
torsion subgroups of U/ (ZG) are determined by (G. More precisely the following
questions have been studied extensively in the last twenty years.

4.2. The Zassenhaus Conjectures
[51]

1. (ZC 1) Let u be a unit of finite order of V(Z(G). Then u is conjugate
within QG to an element of G.

2. (ZC 2) Let H be a subgroup of V' (Z(') with the same order as . Then
H is conjugate to G by a unit of QG.

3. (ZC 3) Let I/ be a finite subgroup of V (ZG). Then U is conjugate within
QG to a subgroup of G.

4.3. Remarks (ZC 2) is in general not true. Roggenkamp and Scott con-
structed metabelian counterexamples, cf. [28], [42]. Nevertheless for many
classes of groups it 1s true and no counterexample to the following Sylow-version
of (ZC 2) 1s known.

(ZC 2), Let H be a group basis of RG and let p be arational prime. Then there
exists a ring automorphism o, of RG such that o,(G) = H and ¢, restricted
to the class sums of p-elements is the identity.

Note, if one knows that the isomorphism problem for ¢ has a positive solution,
l.e. RG= RH = G = H, then (ZC 2) is reduced to the study of normalized
automorphisms of R(G. It may be then phrased in that way that each o €
Aut,(RG) may be modified by a group automorphism 7 of G such that the
composition 7 - ¢ fixes all class sums. It is now clear that (ZC 2), 1s a weaker
statement than (ZC 2).

4.4. Character tables and blocks. It is a result of G. Glauberman that
ZG=ZH — CT(() = CT(H), cf. [21, (3.20)]. The class sum correspondence,
section 4.1., shows that ¢ € Aut, (RG) induces an automorphism of CT(G).
Such a table automorphism consists of a pair of permutations (7y. ) such that

i(Ch) = xm (i) (Crag)), Vi, 5.

Now let (K, S, k) be a p-modular system which is sufficiently large for G. Sis a
discrete complete valuation ring containing R and & = S/radS has characteristic
p. Sufficiently large means that KG and kG are splitting fields for G. The
inclusion map from S imto A rsp. and the reduction from R onto & induce
obvious functors Tx : mod SG — mod NG and Ty © mod SG — mod kG
We get the following picture:
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Sk
mod KG mod KG
mod SG = mod SG
Xr
mod RG mod RG
T Ty
mod kG i mod kG

Let ¢ € Aut,,(RG). Twisting the action on a finitely generated RG - module M
by o we get an autoequivalence ©g of mod RG. More precisely Sg(M) = AM°
1s the RG - module which is as R - module identic with M. The & - action
however is given by

gxm =oc(g) m,
where - denotes the action of RG on M. Now E 1s a composition factor of M
if and only if E? is a composition factor of M?. The automorphism ¢ extends
linearly to group algebra automorphisms og, ox and via reduction modulo the
maximal ideal of S to o € Aut, (kG). As in the case of £g we get induced
autoequivalences Yg, ¥, ¥y which make the above diagram obviously commu-
tative. Looking at the composition factors we see that even more ©g and %y
commute with the decomposition map.
Finally let x be the irreducible K - character afforded by the simple A G -
module T. Let £ be the irreducible K - character afforded by T7 = g (T).
Then

AC7) =¢(0),

where (7 denotes the conjugacy class of G whose class sum coincides with
that one of the conjugacy class ¢r((") in or(&). Note that the class sum
correspondence garantees that there is a unique conjugacy class of & with this
property. Thus the action on Irr(() induced from o coincides with that one
given by Yk .
The following result gives now the key information for establishing conjecture
(ZC 2) via character tables. Note that the module theory of a block with
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cyclic defect is described more or less completely by a combinatorical object
called Brauer tree. This is a tree whose vertices are labelled by the irreducible
K - characters belonging to B. The edges are labelled by the irreducible k -
characters of B. A leaf of a tree is an edge which is not adjacent to two other
edges.

4.5. Theorem. [7]. Let T be an autoequivalence of a block B of kG with
cyclic defect. Assume that ¥ fixes the isomorphism class of a leaf of the Brauer
tree of B. Then T fixes the isomorphism classes of all simple B - modules.

4.6. Example. We explain the idea of the proof of Theorem 4.5 with the
following example. Let B be a cyclic p - block of kG with the following Brauer
tree T

of
|
01 — O8 — Or)
|
o

The vertices of I' are labelled by the indices 7 of the ordinary irreducible char-
acters x; of G which belong to B. The Brauer tree provides an algorithm for
calculating the composition series of the projective covers of the simple modules,
cf. [1, Ch.V]. Denote by S; the simple module which Jabels the edge between
the vertices 8 and ¢ in the tree. Then the projective covers Pg, and Ps, are
uniserial and have the composition series

Ss | S7
S1 Ss
Psg= 57| Ps, = Ss
Sk S1
Ss St

Note that the Brauer tree of our example corresponds to the principal 5 - block

of M;;. But for the explanation of the proof of Theorem 4.5. this is of secondary
nterest.

Let now ¢ € Aut,, (RG). ¢ induces on mod kG the autoequivalence &, compare
the diagram in 4.4. Clearly E; permutes the p - blocks of kGG. We assume that
¥ fixes the leaf with vertex 1 of I'. Thus I, fixes also B and induces finally
an autoequivalence ¥p of the block B. Observe that the last assumptions are
automatically satisfied when B is the principal p - block and the leaf corresponds
to the trivial simple module.

We explain first that £p induces a graph automorphism of I'. For the vertices
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1,7 rsp. of T' let 73,7 rsp. be the rreducible KNG - modules corresponding
to x4, X; 1sp. Let L;, L; be an S - form of 13,7;. Note that S - form means
that L;, L; rsp. are SG - lattices such that N © L; = T;, N @ L; = T; rsp.
Then 1 and j are joined by an edge if there is a simple G - module occuring as
composition factor of k® L; and of k @ L;. Because g and £, commute with
the decomposition map it follows that £p acts as a graph automorphism on T
This still leaves the possibility that Xp interchanges xs and x7 and therefore
S¢ and S7. But g also must map the projective cover of a simple module
S; Into the projective cover of the simple module £5(5;). Now looking at the
composition series of Pg,, Ps, rsp. we see that this is impossible because then
Y p has also to interchange S5; and Ss.

4.7. Principal block algorithm. [7, section 3]

(1) Compute the ordinary character table CT(G).

(i1) Denote by Aut(CT(G)) the group of character table automorphisms. Com-
pute the subgroup A of Aut(CT(G)) induced by Aut(G).

(ii1) Compute Aut(CT(G)).

(iv) Put M = {x € Irr(G); 3o € Aut{(CT(G)) with o3 (x) # x}.

(v) Let P = {p; G has cyclic Sylow p-subgroups }. Check for each \ € M
whether x belongs to the principal p-block B, for some prime p, where
pEP

Note that x € Irr(G) belongs to the principal p-block if, and only if,
for all p-regular elements ¢ € G the following holds.

A (g)
A (1)

in the ring of algebraic integers of Q[¢], where ¢ denotes a primitive |G]-th
root of unity and Cl(g) the conjugacy class of g in G (see [18, (7.10)]).

{vi) Check whether x is non-exceptional, 1.e. check how many characters be-
longing to the principal p-block coincide with y restricted to the p-regular
classes.

(vil) Let T be the subset of M consisting of those characters which are for sonie
prime p € P non-exceptional and belong to the principal p-block.

(viii) Determine the subgroup U of Aut(CT((G)) given by

U={ceAut(CT(G);o1(x)=x VYV €T}

(ix) Note that the subgroup of Aut{CT(G}) induced by Aut,(RG) is always
a subgroup of U and contains 4. Thus,if A = U, (ZC 2) holds.

ICl(y)| = [CHg)| modp,

4.8. Example We apply the principal block algorithm to show that (ZC 2)
is valid for the groups G = PSL(2, p), where p denotes a rational odd prime,
cf. [7]. Consider the following generic character tables of PSL(2,¢). where
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q = p’. These tables are recorded in CHEVIE [10]. They were first implicitely
calculated in [16]. For the first table we asumme that ¢ = 1 mod 4.

Cy C Cs Ca(1) C's(7)
X1 1 1 1 1 1
Y2 q 0 0 1 -1
xs g+ [3-5al+5va (1 0
xa | s(e+D)[5+5/9]3-35/4 (-1) 0
s g+1 1 1 CER 4 (oM 0
xo(k) | ¢—1 -1 -1 0 —EFk

One knows that Out(G) has order 2 and that & has an outer automorphism
which changes the classes (s and (3. Thus the group A according to step
(i1) 1s given by the table automorphism (y3, v4)(Ca, C3). Instead of calculating
Aut(CT(G)) and then M according to the steps (ii) and (iv) we consider the
set

M = {x € Irr(G); 3¢ € Irr(G) with \(1) = &(1) and € # x}.
Clearly M C M. From the table we see that M = {x3, x4y x5(k), xelk)}.

The sizes of the centralizers, the class lengths and the ratios relevant to check
step (v) of the algorithim are as folows. Note that ¢ denotes in the table always
a representative of the class.

class | [Calo)l | ICUg| | xs(h) (o) Z58L | elh) (o) I
1| 39(¢? = 1) 1 1 1
2 q 3(g* = 1) - -
3 g Se* = 1) - -
4| He=1) | 2(g+ 1) | 2(¢FF + T 0
5 | 3la+1) | 29(¢-1) 0 2¢(—€77% — 7%

Looking at the centralizers one sees that for p = ¢ the classes 1. 4 and 5 are the
p - regular classes. Using the criterion of step {v) we conclude that all characters
of M belong to the principal p - block. Note that we now have to assume that
f = 1 and so ¢ = p because otherwise the principal p - block does not have
cyclic defect.

y3 and y4 are exceptional but not the other ones. It follows that 7" consists of
\3 and y4. Hence U coincides with A and (ZC 2) is established for PSL(2,p).
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For completeness we give also the generic character table in the case when
g = 3 mod 4.

Cy Cs Cs Cali) Cs (i)

1 1 1 1 ' 1 1

X2 q 0 0 1 -1

xs | x(g—1) [ 5(-1+ /ge) | —5(1 + /ge) 0 —(=1)

x4 | slg=1) | =300+./ge) | —2(1 - /g¢) 0 —(=1)
awslk) | g+l 1 1 GF+¢r™ | 0
xs(k) [ g—1 ~1 -1 0 N i The
o= exp(Qn‘*——l))
G :e\p(gﬂq_lﬂ).

Using this generic character table one gets analogously as in the first case that
(ZC 2} is valid. Note for this that the orders of the centralizers and the class
lengths are the same as in the case when ¢ = 1 mod 4.

4.9. Survey on (ZC 2) for simple groups.

The methods described above on cyclic blocks and decomposition numbers to-
gether with the action of normalized group ring automophisims of RG on tensor-
products of Brauer characters the following results were obtained. Most of them
are due to my student F. Bleher and proved in her thesis. It should be noted
that no results on series of non-abelian simple groups were known before. The
only result in that area known before was that (ZC 2) holds for the symmetric
groups [37].

Computer algebra and its use should be regarded in this context under two
aspects. Certainly 1t is true that the results on PSL(2,p), where p denotes a
rational prime, have been discovered looking at the Atlas of finite groups and
calculating examples for small primes p first. Clearly the Atlas is a product
of computer algebra. The discovery of a general recipe looking at examples is
therefore precisely in the sense of statement (b)-of section 1. But in order to get
more results the use of generic character tables or of other generic properties
on the series of simple groups has to be used. This is again a topic of computer
algebra. This finally demonstrates clearly the possibility to prove theorems
with the aid of computers. One could criticize that generic methods give only
results on infinitely many examples. However, if one takes into account, that
classifications consist usually of such lists, then a complete statement about a
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class of mathematical objects may be made. For example the present knowledge
with respect. to (ZC 2) covers all minimal simple groups, see below.

According to the classification we consider simple or almost simple groups of
Lie Type first.

4.10 Theorem [4, section 3] The Zassenhaus Conjecture (ZC 2) holds for the
following groups of Lie type.

SL(2, pf)‘ PSL(2, pf), 232(22m+1 ), 2G2(32m+1 ),
2 7,(2%F1), SL(3, 37, SU(3, 3°™), Sp(4, 27, Gia(p™), 2 Da (p°™),

where p always denotes a rational prime.

As a consequence one obtains that (ZC 2) holds for any minimal simple group,
for any sumple group with abelian Sylow 2 - subgroups and for any simple
Zassenhaus group.

Alternating and sporadic groups. With respect to the alternating groups
A, it is unknown whether normalized group ring automorphisms admit a Zas-
senhaus decomposition. It is proved for n < 10 and Aja, cf. [4]. Aut,(RG)
does not act only on CG it acts also on QG. At the level of the rational group
algebra QG the following is true.

4.11. Theorem [23, Satz 5.9] For alternating groups A, each o € Aut,(ZA,)
may be modified by 7 € Aut(A,) such that 7o fixes each block of the Wed-

derburn decomposition of QA,,. In other words each irreducible ) - character
of A, 1s fixed by 7 - 0.

For the proof of this result it is shown that for n # 6 a bijection of the set
of conjugacy classes of A, which respects the length of the classes as well as
the order of a representative fixes each conjugacy class of A, which is invariant
under conjugation in S,,. Note that a normalized automorphism of RG always
induces such a bijection on the set of conjugacy classes of G. Since the conjugacy
class of an even permutation 7 of a symmetric group S,, splits restricted to A, if
and only if the cycle type of 7 consists of odd cycles of pairwise different length,
the following follows.

4.12. Corollary For A, the variation (ZC ), holds for each prime p.

Proof: For a given degree n and a given prime p there i1s at most one sum
Z;zl p' = n with 0 < 4 < ... < ix. Thus there is at most one conjugacy
class of a p-element in S,, which splits into two classes restricted to A,. These
two classes are linked by an outer automorphism 7 of A,,. Consequently, if
o € Aut,(RA,) does not fix all conjugacy classes of p-elements, the composition
of ¢ with 7 fixes all these classes. Thus {ZC ), is established. g.e.d.

With respect to the sporadic groups the following is known.
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4.13. Theorem [7], [4], [3] (ZC 2) is valid for the sporadic groups

My, M12, Mag, Moz, Moy, HS,
Cosz, Cos, Coy, HN, Th, J;,J2, Ru, B.

For the other sporadic groups (ZC 2}, is true for each prime p ekcept. possibly
p = 23 for Jy.

For results on (ZC 2) with respect to soluble groups we refer to [43]. Tor
surveys with respect to recent developments on the isomorphism problem, the

Zassenhaus Conjectures and related topics see [41], [44], [46], [25], [49], [50] and
[52].

(1]
(2]

[11]
(12)
(131
(14]

(15]

(16]

(17]

REFERENCES

J. Alperin, Local representation theory, Cambridge stuclies in advanced mathematics No.
11, 1986.

T. Becker and V. Weispfenning, Grébner Bases, Graduate Texts in Math. 141, Springer
Verlag 1993.

F. M. Bleher, Zassenhaus Vermutung und einfache Gruppen. Diplomarbeit Universitat
Stuttgart 1993.

F. M. Bleher, Blocktheorie und Automorphismen von Gruppenringen, Dissertation,
Stuttgart 1995.

F. M. Bleher. Tensor products and a Conjecture of Zassenhaus, Arch. Math., Vol.64.
289-298 (1995).

F. M. Bleher, M. Geck and W. Kimmerle Rigidity of Hecke algebras, Preprint 1995.

F. M. Bleher, G. Hiss and W. Kimmerle, Autoequivalences of Blocks and a Conjecture
of Zassenhaus, J. of Pure and Appl. Algebra 103 (1995) 23-43.

W. Burnside, Theory of groups of finite order, 2nd ed. reprint. New York: Dover 1955.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite
groups, Oxford University Press, London/New York, 1985.

M. Geck, G. Hiss, F.Luibeck, G.Malle and G. Pfeiffer, CHEVIE - A system for computing
and processing generic character tables , IWR Preprint 95-05, Heidelberg, 1995. '
P. Deligne and G. Lusztig, representations of reductive groups over finite fields. Annals
of Math., 1976.

J. D. Dixon, High speed computation of group characters, Numerische Mathematik 10,
446 - 450 (1967).

D. R. Farkas, C. D. Feustel and E. L. Green, Synergy in the theories of Griobner bases
and path algebras, Canadian J. of Mathematicsb 45 {4) (1993), 727 - 739.

C. D. Feustel, E. L. Green, E. Kirkman and J.Kuzmanovich, Constructing projective
resolutions, Comm. in Algebra 21 (6) (1993), 1869 - 1887.

B. Fischer, Clifford-Matrices in: Representation Theory of Finite Groups and Finite-
Dimensional Algebras ed. by G. O. Michler and C. M. Ringel, Progress in Math. 95 ,
Birkh&duser 1991, 1 - 16.

F. G. Frobenius, Uber Gruppencharaktere, Sitzungsberichte der Koniglich Preussischen
Akademie der Wissenschaften zu Berlin (18986), 985-1021.

M. Geck and G. Hiss, Basic sets of Brauer characters of finite groups of Lie type, J. reine
angew. Math. 418(1991), 3249 - 3269.



(18]
(19]
[20]
(21]
{22]
(23]
[24]
(28]

26]

(27]
(28]
(29]
[30]
(31]

[32]
[33]

[34]

(35]

[36]

(38]
[39]
[40]

[41]

[42]

COMPUTER ALGEBRA AND REPRESENTATION THEORY 105

D. M. Goldschmidt, Lectures on Character Theory, Mathematics Lecture Series 8, Pub-
lish or Perish, Berkeley, 1980.

G. Hiss, C. Jansen. K. Lux and R. Parker, Computational Modular Character Theory.
preprint 1992.

G. Hiss and K. Lux, Brauer trees of sporadic groups, Oxford University Press.

1. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.

C. Jansen, K. Lux, R. Parker, R. Wilson An Atlas of Brauer Characters, London
Math. Soc. Monographs, New Series 11, Oxford University Press, Oxford, 1995.

W. Kimmerle, Beitrage zur ganzzahligen Darstellungstheorie endlicher Gruppen, Bayreu-
ther Mathematische Schriften, 36 (1991) 1-139. )
W. Kimmerle, Variations of the Zassenhaus Conjecture, in: [44], DMV-Seminar 18,
Birkhduser 1992, 117-124.

W. Kimmerle, On Automorphisms of ZG and the Zassenhaus Conjectures, appears in
the proceedings of the ICRA VII, Cocoyoc, Mexico published by th AMS.

W. Kimmerle. R. Lyons, R. Sandling and D. Teague, Composition factors from the group
ring and Artin’s Theorem on orders of simple groups. Proc. London Math. Soc. {3) 60
(1990) 89-122. :

W. Kimmerle and K. W. Roggenkamp, Projective limits of group rings, J. Pure Appl.
Algebra 88 (1993) 119-142.

L. Klingler, Construction of a counterexample to a conjecture of Zassenhaus, Comm.
Alg., 19 (8), (1991), 2303-2330.

K. Lux and H. Pahlings, Computational aspects of representation theory in: Represen-
tation Theory of Finite Groups and Finite-Dimensional Algebras ed. by G. O. Michler
and C. M. Ringel , Progress in Math. 95 , Birkhauser 1991 , 37 - 64.

B. H. Matzat, Konstruktive Galoistheorie, Springer Lect. Notes in Math. No.1284, 1987.
G. O. Michler, Some problems in computational representation theory, J.Symbolic Com-
putation {1990) 9, 571 - 582.

G. Nebe and W. Plesken, Finite rational matrix groups. Memoirs AMS, to appear.

S. P. Norton, The construction of J4 in: Proceedings of the Santa Cruz Group Theory
Conference ed. by Cooperstein and Mason, AMS 1980, 271 - 278.

H. Pahlings, Computing with characters of finite groups in: Topics in Computational
Algebraed. by G. M. Piacentini Cattaneo and E. Strickland, Kluwer Academic Publishers
1990, 41 - 56.

D. S. Passman, Isomorphic Groups and Group Rings. Pacific Journal of Mathematics (2)
35 (1965), 561-583.

F. Pauer, Grébner Basen und ihre Anwendungen, Jahrbuch Uberblicke der Mathematik
1991, BI, 127 - 149. '

G. L. Peterson, Automorphisms of the integral group ring of S,, Proceedings AMS,
Vol.59, Nr.1, (1976) 14-18.

A. ). E. Ryba, Computer condensation of modular representations, J.Symbolic Compu-
tation (1990) 9, 591 - 600.

R. A. Parker, The computer construction of mocdular characters (the Meat-Axe) in: Com-
putational group theory ed. by M. D. Atkinson. Academic Press 1984, 267 - 274.

R. A. Parker and R. A. Wilson, The computer construction of matrix representations of
finite groups over finite fields, J.Symbolic Computation {1990} 9, 583 - 590.

K. W. Roggenkamp, The Isomorphism Problem for Integral Group Rings of Finite
Groups. Proceedings of the Int. Congres of Mathematicians, Kyoto 1990, Springer 1991,
369-380.

K. W. Roggenkamp and L. L. Scott, On a conjecture of Zassenhaus, manuscript 1987.



196

(43]
[44]
[45]

[46]

—
Ut
[

]

(55]

WOLFGANG KIMMERLE

K. W. Roggenkamp, Zassenhaus Conjecture and Cech cohomology, These proceedings,
volume 1.

K. W. Roggenkamp and M. Taylor, Group rings and class groups, DMV-Seminar 18,
Birkhauser, Basel Boston, Berlin 1992.

R. Sandling, Graham Higman'’s thesis units in group rings, in: Integral representations
and Applications. Lect.Notes in Math., 882, Springer 1981, 93 - 116.

R. Sandling, The isomorphism problem for group rings; a survey, in: Orders and their
applications. Lect.Notes in Math. 1142, Springer 1985, 256 - 288.

A. 1. Saksonov, On the group ring of finite groups I; Publ.Math.Debrecen 18(1971), 187
- 209.

M. Schonert et al., GAP — Groups, Algorithms, and Programming, Lehrstuhl D fir
Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen, Germany, first ed.,
1992.

Scott, L. L., Recent progress on the isomorphism problem, Proc. Symposia in Pure Math.
Vol. 47 (1987), 259-274

Scott, L. L., Defect groups and the isomorphism problem; Représentations linéaires des
groupes finis.. Proc. Colloq. Luminy, France (1988), Astérisque 181 - 182, {1990)

S. K. Sehgal, Torsion Units in Group Rings; Proceedings Nato Institute on Methods in
Ring Theory, Antwerp, D.Reidel, Dordrecht, 1983, 497-504.

S. K. Sehgal, Units of group rings, Longman (1993).

G. Schneider, J.Symbolic Computation (1990) 9, 601 - 606.

M. Wursthorn, Representation Theory with MAPLE: An example, These proceedmgs,
volume 1.

M. Wursthorn, Isomorphism of modular group algebras: An algorithm and its application
to groups of order 26, J.Symbolic Computation (1993) 15, 211 - 227.

E-mail address: kimmerle@mathematik.uni-stuttgart.de



VvV V V. V V V V V

REPRESENTATION THEORY WITH MAPLE: AN EXAMPLE

for i from 1 to 8 do
for j from 1 to 8 do

res := mulperms ( els[i], els[jl );

member ( res, els, ’k’ );

t[i,3] := k;

od;

od;

print ( t );
1 2 3 4 5 6 7
2 5 6 1 4 8 3
3 71 6 8 4 2
4 1 7 5 2 3 8
5 4 8 2 1 7 6
6 3 2 & 7 1 5
7T 8 4 3 6 5 1
8§ 6 5 7 3 2 4

=]

o

W O

2
1

199

Now we are ready to set up the eight equations for the coefficients z,. We
add the linear equation } ;g = 1 which restricts the search to so called
“normalized” units. The equations are represented as a set of polynomials, the
solutions are just the common roots of these polynomials:

>

V V.V V V V V V V V V

gls := array ( 1..9);
gls := array(1..9,[])
for i from 2 to 8 do
gls[i] := 0:
od:
gls[1] := ~1:
for i from 1 to 8 do
for j from 1 to 8 do
k :=t[1i,3];
gls(k] := glslk] + x[il*x[j];
od;
od;
gls[9] := sum(x[1],1=1..8)-1;

glsg =2y +ra+r3t+eg+as +as+rr+es—1



200 MARTIN WURSTHORN

> F := convert ( gls, set ):

F = {2(E1$8+:L'g.7:5+2:L’3;25+.L‘4.'B7+;L‘4;L‘,5+:I¢3337,
2ri2+2ox3+ T332y + xaxg+ 27 + o2,
. 2 2
2ey25 +wo” + 22323+ 24" + 22527,
2x127+ Loy + Toxz+ w3y + 22526 + Ly g,
22123+ 2o 27+ 2qx5+ 20588+ Lo g + g4 27,
2xy 2y + 2327+ 22425 + 232+ L7 g + Ts s,
22124 + 22025+ 2325 + 2L+ T3 T7 + 72y,

2, . 2 2 2 2 2
142" +22244+ 23" +25° +ws” + 277 + 2587,
a:l+x2+23+x4+z5+x6+x7+w8—1}

At this stage we are ready to load the groebner package:
> with ( grobner );
[ﬁn‘dum' , finite, gbasis, gsolve, leadmon, normalf , solvable, spoly|

First of all we may check whether the system is solvable. Since the group
contains involutions and the group embeds into the group ring this must be the
case:
> solvable ( F );
true

The next command solves the system of polynomial equations with Grobuer
basis methods over Q[xzg,, ..., 4,] using lexicographic term ordering:

> solF := gsolve ( F );
solF = [[:7:1 — 1,25, 22, 23, L4, Ts, 27, T3],
[z1,25 — 1,20, 23, 24, L6, 27, Tg),
[29:1 — 1,225 — 1,2, +;174,;1:3,4:1:42 + 1,-.26,w7,.1'g] ,
22, +1,225—1,222— 1,213,224 — 1,26, 27, 28],
[21’1 —1. 225+ 1,222 — 1,253,224 — 1,1’5,1‘7,1‘8],
;121,9)5,1132—}-.114—1,;133,2:1:42—21}4+1,;176,;137,.138],

[2.‘L’1 —1. 225 — 1‘w3+w4,w3+w8‘4x42—4w39+ ].‘.'L‘g,l",'],
[uvl,;c5,:c3+.v4 — 1,23+ 25, 224% — 224 —2;1:82 + 1,1:5,337],

2xy— 1,225 — 1,.1"3+;L‘4,.’113+;L'8,41L‘42—4;1?72+1—4:1332,a76+.‘l:7],
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(21,25, 22 + 24 — 1,23+ 28,224 — 224 — 2277 + 1 ~ 2282, 26 + 7] ,[
4x1+ 1,425 -3, daa— 1,423~ 1,424 — 1,425+ 1,427+ 1,
41:8—1] ,[41'1—3,4x5+1,4x2—1,4x3—1,4x4—1,4x5+1,
4w7+l,4x3—1],
[4x1 —1,425— 1,220+ 224~ 1, dzs— 1,
16w43—8$4+5,4a;6+1,4x7+1,4m3—1J,
[41;1 1,4z 1.
Qoo+ 2ua—1,223+ 228 — 1,16 242 — 824 — 32282 + 3 + 16 25,
29;5—29;g+1,.7;8+a:7],[4;c1+1,4w5—3,4x3—1,4w3+1,
4x4—1,4x6—1,4x7—1,4x8+1] , [4x1 345 +1,420 1,
4;1:3-{-1,41:4—1,43:6—l,4x7—1,4;v8+1] , [41’1 — 1,405 -1,
Dwst 2as 1 ds+ 11624 — 824 45,45 — 1,4.1:7—1,4;L‘3+1]
4z — 1,405 —1,2204+224—1,223+ 225+ 1,
16;1:42~8I4—32:E82+3—16138,2236;—2338— 1,x8_+:1:7] , [4;31— 1,
das— 1,229+ 224 — 1,223+ 228 — 1,
161'42——81:4—16:v72+3—161382—8m7+8mg,2:c5+2r7+1] ,[
42y —-1,425 — 1,229+ 22x4— 1,223+ 225+ 1,
1624% — 82a — 16272+ 3 — 1625 + 827 — 8 g, 25 + 227 — 1] [
4y —3, 45+ 1,420+ 1,423 —-1,424+1,425—-1,427 -1,
4;u8—1} , [41‘1 1,425 —3duat1,dzs— 1 deq+ 1,426 — 1,
4@'7—1,41’3—1] , [4;131—1,4:05—l,éa?3+2x4+l,4w3—1,
16x42'+8x4+5,4x6—1,4x7—1,4z8—1] [

Az, —1,4ws+3, 400 —1,425— 1,424~ 1,426~ 1,427 — 1,40 — 1],

dui+3.dws—1,des—1dus—1.dws— 1 dog—1 4ur—1 42s— 1},
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For

minates as possible in common. But not all sublists lead to integer solutions as
can be seen rather quickly by reducing modulo 2. Therefore we reduce the set

MARTIN WURSTHORN

{41’,14- Ldes+ 1,200+ 224— 1,403 — 1.16$42—8.L’4+5,
dus—1,40r— 1,425 — 1],

40— 1,405 = 1,200+ 205 + 1,

203+ 2xg — 1.4.1r42+'2.v4 —4.E32+2.l?8+ l,deg—1,427 — l] ,
{4171 +1,4des+ 1200+ 224— 1,223+ 225 — 1,

Arg® —2es—dueg’ +20s+ Ldwg~1,dog — 1] . [41‘1 ey -1,
20 4+2x94+ 1,203+ 205 — 1.

16 24° +82q — 6w +3+ 8rg— 160s” + 8;1’7.2.1‘,;—%2.1'7 — I] . [
dry+1,4es+1,220+204— 1,223+ 208 — L.

16204 =824 — 1627° +3+ 825 — 1625” + 807206+ 207 — I} .

2214+ 1,225 — 1,290,223 — Lo2g, s, 07— 1 + 22g],
[22y - 1,225+ 1,202,223 — |, 24,25, 27, — L + 2wg].
[.1'1,.v5, o+ 24,223 — L daat + L ag, er, =1+ 2.1'8] . [.1:1 VL5 e+ 2y,
vy a1 4rg = 8ua® + 8ay = 1,205 — 2w+ L2074+ 2n — 1]
[22)+ 12205 — 120, 23. 204,226 — L; 227 — 1o xg),
221 — L2054+ Lo wg, 09,2205 — 1,227 = Lorg).
[;1’1..135,.153 o dedt 12061205 — |..r,\v] . [
s A g s g Ayt =8t L 20a—2ag— 207+ 2y — |
] . [(vl s b g kg oeg — Lyt = by — gt + ‘1'7] .

“

") i
[(1'1..1,‘5‘ Lo+ Py 3+ 2rg. 0y — X7 —xg s+ — l]]

each sublist of the previous list one obtains solutions by computing connnon
roots of the polynomials in the list. Note that the polynomialsin those lists are
much simpler thau the original polynomials and have pairwise ax few indeter-

by eliminating those lists that contain 1's after reducing modulo 2:

> for sol in solF do

> if not ( member ( 1, sol mod 2 ) ) then
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> intsolF := intsolF union {sol};

> fi;

> od;

> intsolF;

{[.rl —les, o 3. vy . eroxg] [ ws — Loea, 23, 242, 7, 2],

2

2 i
[1‘1,.1.*5‘ Lo 4Ly 3+ 2y, Ly 7T — Ty oy, et x7 — 1] )

2 9 it}
[.vl..z’s. ot ey rxatrg—l.ry” —27;” +rg — 287,05+ .L7]}

All these remaining lists lead indeed to integer solutions. The first and second
list yield two trivial solutions: the identity and the central involution of (. The
remaining trivial solutions (exactly one of .X — 3. x5, 07,03 = 1 and all other
2; = 0) can be derived from the third and fourth list. But the last two lists also
describe infinite series of solutions. e.g.

(z1,...,23) = (0, Fn,—n,£n,0,1,0,n) Vn or
(21,...,23) = (0,Fn.0, tn, 0,-n.n,1) Vn.

Essentially the solutions given by those last two lists depend only on the qua-
dratic polynomials x4 — 27° — 1’89 + 27 and L4” - z7° 4+ 23 — ra” respectively,
since the remaining conditions are linear and can always be fulfilled once a solu-
tion for the quadratic polynomials is known. These quadratic equations can be
viewed as hyperboloids of two sheets m three dimensional space. Then integer
solutions are just integral points on these surfaces.
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