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Dirac Structures on Banach Lie Algebroids

Vlad-Augustin VULCU

Abstract

In the original definition due to A. Weinstein and T. Courant a Dirac
structure is a subbundle of the big tangent bundle TM ⊕ T ∗M that
is equal to its ortho-complement with respect to the so-called neutral
metric on the big tangent bundle. In this paper, instead of the big
tangent bundle we consider the vector bundle E ⊕ E∗ , where E is a
Banach Lie algebroid and E∗ its dual. Recall that E∗ is not in general
a Lie algebroid. We define a bilinear and symmetric form on the vector
bundle E ⊕ E∗ and say that a subbundle of it is a Dirac structure
if it is equal with its orthocomplement. Our main result is that any
Dirac structure that is closed with respect to a type of Courant bracket,
endowed with a natural anchor is a Lie algebroid. In the proof the
differential calculus on a Lie algebroid is essentially involved. We work
in the category of Banach vector bundles.

1 Introduction

In [4] A. Weinstein and T. Courant and then T. Courant in [3], replacing
certain linear maps by their graphs, propose the notion of Dirac structure as
a subbundle of the big tangent bundle TM ⊕ T ∗M that is equal to its ortho-
complement with respect to the so-called neutral metric on the big tangent
bundle.

The notion was afterwards intensively studied from the geometry point of
view in connection with the generalized geometry ([11], [5] and the references
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therein) and it was applied in the study of nonholonomic mechanical systems
or mechanical systems with constraints ([7], [12] and the references therein).

A linear version of the Dirac structures defined for Hilbert or Banach spaces
is used in the study of interconnected systems ([9] and the reference therein).
This fact suggests to M. Anastasiei and A. Sandovici a study of the Dirac
structures in the category of Banach vector bundles ([2]). They find conditions
for a Dirac structure to be a Banach Lie algebroid. The notion of Banach
Lie algebroid was introduced by M. Anastasiei, [1] and independently by F.
Pelletier [10].

An algebraic version of the Dirac structures, independently on dimensions
is done in the book [6] to the aim of applications to integrability of the evolu-
tion equations.

In this paper we continue the geometric study of the Dirac structures in
the category of Banach vector bundles generalizing the main results from [2].
In Section 1 we recall the notion of Banach Lie algebroid and we develop a
differential calculus on it. The Theorem 1.1 is proved. In Section 2, given a
Banach Lie algebroid E we introduce on E ⊕ E∗ a symmetric bilinear form
similar with the neutral metric on the big tangent bundle and define an almost
Dirac structure as a subbundle of E ⊕ E∗ that equals its ortho-complement.
Then using the differential calculus on the Lie algebroid E we construct a type
of Courant bracket and we say that an almost Dirac structure is integrable or
is a Dirac structure if it is closed with respect to it. Various characterizations
of integrability are provided. One of it says that an integrable Dirac structure
has a natural structure of Banach Lie algebroid. For general theory of Banach
manifolds and Banach vector bundles we refer to [8].

2 Banach Lie algebroids

Let M be a smooth i.e. C∞ Banach manifold modeled on a Banach space M
and let π : E → M be a Banach vector bundle whose type fiber is a Banach
space E. We denote by τ : TM → M the tangent bundle of M . Let Γ(E) be
the set of smooth sections in the vector bundle (E, π,M) and X(M) the set of
smooth sections in the tangent bundle of M (vector fields on M). The both
are F(M)-modules, where F(M) is the ring of smooth real functions on M .

Definition 2.1. We say that the vector bundle π : E → M is an anchored
vector bundle if there exists a vector bundle morphism ρ : E → TM . The
morphism ρ will be called the anchor map.

Locally, ρ reduces to a morphism U × E → U ×M, (x, v) → (x, ρU (x)v)
with ρU (x) ∈ L(E,M), the space of continuous linear maps from E to M. We
call ρU (x) the l.r. of ρ.
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Example 2.2. The tangent bundle of M is trivially anchored vector bundle
with ρ = I (identity).

Example 2.3. Let A be a tensor field of type (1, 1) on M . It is regarded as
a section of the bundle of linear mappings L(TM, TM) → M and also as a
morphism A : TM → TM . In other words, A may be thought as an anchor
map.

Example 2.4. Any subbundle of TM is an anchored vector bundle with the
anchor the inclusion map in TM .

Example 2.5. Let ξ : F → M be a submersion. The subspaces VuF =
Kerξ∗,u of TF over F denoted by V F form a subbundle called the vertical
subbundle. By Example 1.3 this is an anchored Banach vector bundle.

The anchored vector bundles over the same base M form a category. The
objects are the pairs (E, ρE) with ρE the anchor of E and a morphism f :
(E, ρE) → (F, ρF ) is a vector bundle morphism f : E → F which verifies the
condition ρF ◦ f = ρE . Now we define a structure of Banach Lie algebroid.

Definition 2.6. Let π : E → M be a Banach vector bundle. We say that it
has a Banach Lie algebroid structure if

1. It is an anchored vector bundle with the anchor ρE : E → TM and the
induced morphism ρE : Γ(E)→ X(M).

2. There exists defined a bracket [, ]E on the space Γ(E) that provides a
structure of real Lie algebra on Γ(E).

3. The following hold:

(i) ρ : (Γ(E), [, ]E)→ (X(M), [, ]) is a Lie algebra homomorphism and

(ii) [s1, fs2]E = f [s1, s2]E + ρE(s1)(f)s2, for every f ∈ F(M) and
s1, s2 ∈ Γ(E).

Example 2.7. The tangent bundle τ : TM → M is a Banach Lie algebroid
with the anchor the identity map and the usual Lie bracket of vector fields on
M .

Example 2.8. For any submersion ξ : F → M , the vertical bundle V F over
F is an anchored Banach vector bundle. As the Lie bracket of two vertical
vector fields is again a vertical vector field it follows that (V F, i, [, ]V F ), where
i : V F → TF is the inclusion map, is a Banach Lie algebroid. This applies,
in particular, to any Banach vector bundle π : E →M .
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Let Λq
a(E) be the vector bundle of alternating multilinear forms on E.

The fiber at each point is the space Lq
a(Ex) consisting of all q- multilin-

ear alternating continuous functions on the fiber Ex, x ∈ M . The sections
Ωq(E) := Γ(Λq

a(E)) will be called differential forms of degree q. The set Ωq(E)
is an F(M)− module. In particular, Ωq(TM) will be denoted by Ωq(M). The
differential operator dE : Ωq(E)→ Ωq+1(E) is given by the formula

(dEω)(s0, . . . , sq) =
∑

i=0,...,q

(−1)iρE(si)ω(s0, . . . , ŝi, . . . , sq)

+
∑

0≤i<j≤q

(−1)i+jω([si, sj ]E , s0, . . . ŝi, . . . , ŝj , . . . , sq) (2.1)

for s0, s1, . . . , sq ∈ Γ(E), where hat over a symbol means that symbol must be
deleted.

It is well known that dE has the usual properties of the exterior differential
operator. In the other words, if Ω(E) = ⊕q=0,1,...Ω

q(E), where Ω0(E) is
identified to F(E), then (Ω(E), d) is a differential complex. Let dq be the
restriction of d to Ωq(E) . The property d2E = 0 says that Imdq−1 ⊆ Kerdq
and so there arise the quotient spaces Hq(E) = Kerdq/Imdq−1 that are called
the cohomology groups of the Lie algebroid E. If Kerdq = Imdq−1, q =
0, ...,∞ then all cohomologies are trivial and the differential complex (Ω(E), d)
is called exact.

We recall that the F(M)− module Γ(E) has a Lie algebra structure pro-
vided by the bracket [, ]E .

Let s be a section of E. We define the interior product( contraction) with
respect to s as a linear map is : Ωq (E)→ Ωq−1 (E), given by the formula

is (ω) (s1, s2, ..., sq−1) = ω (s, s1, s2, ..., sq−1) , (2.2)

if q > 1, isω = ω(s) is q = 1 and isf = 0, for f∈ Ω0 (E). We extend the
contraction with respect to a given section of Γ (E) to a F(M)-linear map
i : Γ (E) → L

(
Ωq (E) ,Ωq−1 (E)

)
, given by i (s) (ω) = is (ω), for s ∈ Γ (E)

and ω ∈ Ωq (E).

Theorem 1.1 The differential complex (Ω(E), dE) is a complex over the
Lie algebra (Γ(E), [, ]E). �

According to the definition of a complex over a Lie algebra (see p.11 in
[6]), since we have already defined the operator i, it suffices to prove

Lemma 2.9. The linear operator i has the following properties:

1. is ◦ ir + ir ◦ is = 0,
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2. i2s = 0,

3. is ◦ dE ◦ ir + dE ◦ is ◦ ir = ir ◦ is ◦ dE + ir ◦ dE ◦ is + i[s,r]E ,

for any s, r ∈ Γ (E).
Proof. The first two properties are equivalent and follow from the antisym-

metry of the q-forms. As to the third property for q = 0 there is nothing to
prove due to the definition of the interior product. For ω ∈ Ω1 (E) the third
formula reduces to:

(dE (ω (r))) (s) = dEω (s, r) + (dEω (s)) (r) + ω ([s, r]E) , (2.3)

(dE (ω (r))) (s) = ρE (s) (ω (r))− ρE (r) (ω (s))

−ω ([s, r]E) + ρE (r) (ω (s)) + ω ([s, r]E) ,

which is clearly true. For a q-form ω, the third formula follows by a direct
computation based on the Lie algebroid properties of E. �

Having defined the interior product with respect to a section of E and
the exterior differential of a q-form we may define the Lie derivative Ls with
respect to a section s ∈ Γ (E) as follows:

1. Lsf = ρE (s) (f), for f ∈ F(M),

2. Lsr = [s, r]E , for r ∈ Γ (E),

3. Lsω = (dE ◦ is + is ◦ dE) (ω), for ω ∈ Ωq(E), q = 2, 3, ....

For a q-form ω, the Lie derivative Lsω is explicitly given by:

(Lsω) (s1, ...sq) = ρE (s) (ω (s1, ...sq))−
q∑

k=1

ω (s1, ..., [s, sk]E , ..., sq) . (2.4)

Lemma 2.10. Let Ls : Ωq (E) → Ωq (E) be the Lie derivative with respect
s ∈ Γ(E) The following properties hold good:

1. dE ◦ Ls = Ls ◦ dE ,

2. is ◦ Ls = Ls ◦ is,

3. L[s,r]E
= Ls ◦ Lr − Lr ◦ Ls.

Proof. A direct checking by using (1.1). �
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3 Dirac Structures on E ⊕ E?

Let E be a Banach Lie algebroid and E? be its dual. We may consider the
vector bundle E⊕E? over M . On Γ(E⊕E?) we consider the following bilinear
map:

〈(s, α) , (v, β)〉+ =
1

2
(ivα+ isβ) , (3.1)

for any (s, α), (v, β) ∈ Γ (E ⊕ E?).
For a subbundle D ⊂ E ⊕ E? we define its orthogonal complement D⊥,

with respect to the symmetric bilinear map 〈, 〉+, by:

D⊥ =
{

(v, β) ∈ Γ(E ⊕ E? | 〈(s, α) , (v, β)〉+ = 0, for all (s, α) ∈ D
}
. (3.2)

On the sections of E ⊕ E? we define the Courant bracket:

[(s, α) , (v, β)]C = ([s, v]E , Lsβ − Lvα+
1

2
dE (ivα− isβ)), (3.3)

for any (s, α) , (v, β) ∈ Γ (E ⊕ E?). On the sections of D the Courant bracket
becomes:

[(s, α) , (v, β)]C = ([s, v]E , Lsβ − Lvα+ dE (α (v)) , (3.4)

for (s, α) , (v, β) ∈ Γ (D).

Definition 3.1. An almost Dirac bundle or an almost Dirac structure on the
Lie algebroid E is a vector subbundle D of E ⊕ E? →M such that

D = D⊥. (3.5)

Definition 3.2. We say that an almost Dirac bundle D ⊂ E⊕E? is a a Dirac
bundle or a Dirac structure or it is integrable if it is closed under the Courant
bracket.

Example 3.3. (E, 0) and (0, E?) are Dirac structures.

For now, we are interested in determining equivalent conditions that a
nontrivial almost Dirac structure D ⊂ E ⊕ E? to be a Dirac structure. To
this aim we evaluate the Jacobiator corresponding to [, ]C . This Jacobiator

J = (J1, J2) : Γ (E ⊕ E?)
3→Γ (E ⊕ E?) is given by:

(J1, J2) = [[(s, α) , (v, β)]C , (z, γ)]
C

+

+ [[(v, β) , (z, γ)]C , (s, α)]
C

+ [[(z, γ) , (s, α)]C , (v, β)]
C
, (3.6)

for any (s, α) , (v, β) , (z, γ) ∈ Γ (E ⊕ E?). Since [, ]E is a Lie bracket J1 van-
ishes. In general, J2 does not vanish.
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Lemma 3.4. Let D ⊂ E ⊕ E? be an almost Dirac Bundle. Then the second
component J2 of the Jacobiator corresponding to the Courant bracket [, ]C is
given by:

J2 =
1

4
dE (Ls (β (z)− γ (v)) + Lv (γ (s)− α (z)) + Lz (α (v)− β (s)))

+
1

2
dE (γ ([s, v]E) + α ([v, z]E) + β ([z, s])) , (3.7)

for any (s, α), (v, β), (z, γ) ∈ Γ (E ⊕ E?).

Furthermore, the restriction of J2 to D is

J2 =
1

2
dE{Lsβ (z) + Lvγ (s) + Lzα (v)}+

+
1

2
dE{γ ([s, v]E) + α ([v, z]E) + β ([z, s]E)}, (3.8)

for any (s, α), (v, β), (z, γ) ∈ Γ (D).
Proof. The first formula follows from the identities L[s,v]E

= Ls◦Lv−Lr◦Lv

and Lsβ (z) = ρE (s) (β (z))− β ([s, z]E), while the second formula is a direct
consequence of the first and of the equality D = D⊥. �

Definition 3.5. Let D ⊂ E⊕E? be an almost Dirac bundle. On the sections
of D we define a map

TD ((s, α) , (v, β) , (z, γ)) = 〈[(s, α) , (v, β)]C , (z, γ)〉
+
, (3.9)

for any (s, α), (v, β), (z, γ) ∈ Γ (D).

Lemma 3.6. Let D ⊂ E ⊕E? be an almost Dirac bundle. On the sections of
D the map TD satisfies the following identity:

TD ((s, α) , (v, β) , (z, γ)) = α ([v, z]E) + β ([z, s]E) + γ ([s, v]E)

+Ls(β (z)) + Lv(γ (s)) + Lz(α (v))

, (3.10)

for any (s, α) , (v, β) , (z, γ) ∈ Γ (D).

Proof. This formula follows from the definition of 〈, 〉+ and the identity
(Luη) (v) = (ρE (u)) (η (v))− η ([u, v]E). �

Lemma 3.7. The second component J2 of the Jacobiator of [, ]C , restricted
to D, satisfies the following identity:

J2 ((s, α) , (v, β) , (z, γ)) =
1

2
dE (TD ((s, α) , (v, β) , (z, γ))) , (3.11)

for any (s, α) , (v, β) , (z, γ) ∈ Γ (D).
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The formula from this Lemma is also a consequence of the identity used in
the proof of Lemma 2.6. The same identity is used to check

Lemma 3.8. On the almost Dirac bundle D ⊂ E ⊕E? we have the following
identity:

TD ((s, α) , (v, β) , (z, γ)) = −dEα (v, z)− dEβ (z, s)− dEγ (s, v)

+Ls (γ (v)) + Lv (α (z)) + Lz (β (s))

= (Lsβ) (z) + (Lvγ) (s) + (Lzα) (v) . (3.12)

By the definition the map TD is linear in the third argument. By Lemma
2.8 it is linear and totally-symmetric.

Now we prove the following characterizations of the integrability of an
almost Dirac structure.

Proposition 3.9. Assume that E is a Banach Lie algebroid and that D is
an almost Banach Dirac structure on E. Then, D is integrable if and only if
TD = 0.

Proof. Since D is integrable, then for (s, α), (v, β) ∈ Γ(D) we have
[(s, α), (v, β)]C ∈ Γ(D) and so TD = 0. Conversely, if TD = 0 it follows
that [(s, α), (v, β)]C ∈ Γ(D⊥) = Γ(D). Thus D is integrable. This completes
the proof. �

Corollary 3.10. Assume that E is a Banach Lie algebroid and that D is an
almost Banach Dirac structure on E. Then, D is integrable if and only if

(Lsβ) (z) + (Lvγ) (s) + (Lzα) (v) = 0. (3.13)

for all (s, α) , (v, β) , (z, γ) ∈ Γ (D).

Proof. It follows by a combination of the Lemma 2.8 and the Proposition
2.9. �

Theorem 3.11. Let E be a Banach Lie algebroid and D ⊂ E⊕E? be an almost
Dirac bundle. Then D is a Dirac bundle if and only if D can be structured as
a Lie algebroid.

Proof. Let D ⊂ E⊕E? be a Dirac bundle. The Courant bracket furnishes
a Lie algebra bracket [, ] on the sections of D since TD = 0 implies J2 = 0.

Now we consider a vector bundle map σ : E ⊕ E? → TM , given by

σ ((s, α)) = (ρE ◦ ρ) (s, α) , (3.14)

where ρ is the canonical projection of E ⊕ E? onto E, i. e. ρ ((s, α)) = (s, 0),
for (s, α) ∈ E ⊕ E?, and ρE is the anchor of E. By a direct computation it
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comes out that the restriction of σ to D acts as a derivation on the sections
of D, with respect to the Courant bracket.

Again a direct computation shows that σ is a Lie algebra homomorphism.
Conversely, let (D, [, ]C , σ) ⊂ E ⊕ E? be an almost Dirac bundle that is

structured as a Lie algebroid with respect to [, ]C and to the map σ, previously
defined. Then the Courant bracket [, ]C restricted to D satisfies a Jacobi type
identity i.e. J2 = 0 and by the Lemma 2.7 and the linearity of TD it follows
TD = 0. Thus by the Proposition 2.9, D is a Dirac bundle. �

Example 3.12. Let ω be a nondegenerate 2-form in E. It defines a map
ω : E → E∗ by e → ω(e) : Γ(E) → R with ω(e)f = ω(e, f), e, f ∈ Γ(E). We
take L =graphω = {(e, σ)| e ∈ Γ(E), σ ∈ Γ(E∗) with σ = ω(e)}. Since L is
a vector subbundle it defines aa almost Dirac bundle. It is a Dirac bundle if
and only if ω is closed with respect to dE.
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