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Some remarks on limit mixed
Hodge structures and spectrum

Alexandru Dimca and Morihiko Saito

Abstract

In this note we clarify some subtle points on the limit mixed Hodge
structures and on the spectrum. These are more or less well-known to
the specialists, but do not seem to be stated explicitly in the literature.
However, as they do not seem to be obvious to the beginners, we consider
them to be worth writing down explicitly. The general constructions are
exemplified by considering the isolated (weighted) homogeneous singu-
larities in detail.

1. Limit mixed Hodge structure

1.1. In [19], [23], the limit mixed Hodge structures were constructed in the
unipotent monodromy case. For the non-unipotent case, we can combine it
with [20] as follows. Here we describe the limit of the mixed Hodge structure
on the cohomology with compact supports using the Cech-type construction,
since this seems to be the easiest way to explain the relation with the theory
of motivic Milnor fibers [4].

For the usual cohomology (i.e. without compact supports), we can use the
commutativity of the dualizing functor D and the passage to the limit mixed
Hodge structure, i.e. D ◦ψt = ψt ◦D (up to a Tate twist), see [23], [15] as well
as [6] for generalities on constructible or perverse sheaves. Of course, we can
also use the two weight filtrations on the logarithmic complex associated with
the divisor with V -normal crossings [20] as in [23]. It also follows from the
theory of mixed Hodge modules [14], [15].

Key Words: limit mixed Hodge structure, monodromy, Milnor fiber, spectrum.
2010 Mathematics Subject Classification: Primary 14D07, 32S35; Secondary 14F05,32S40.
Received: 16 October 2012.
Accepted: 5 November 2012.

69



REMARKS ON LIMIT MIXED HODGE STRUCTURES AND SPECTRUM 70

Let f : X → ∆ be a projective morphism of complex manifolds where ∆
is an open disk. We may assume that f is smooth over ∆∗ (shrinking ∆ if
necessary). Set Y := f−1(0). Let D be a divisor on X which is flat over ∆, i.e.
all the irreducible components Dj of D are dominant over ∆. Assume D ∪ Y
is a divisor with simple normal crossings. Set

U := X \D, f ′ := f |U : U → ∆, DJ :=
⋂
j∈JDj (where D∅ = X).

Let Yi be the irreducible components of Y ⊂ X with mi the multiplicity of
Y along the generic point of Yi. Set m = LCM(mi). Let f̃ : X̃ → ∆̃ be
the normalization of the base change of f : X → ∆ by the ramified m-fold
covering π∆ : ∆̃ → ∆ which is finite étale over ∆∗, where ∆̃ is an open disk.
Let π : X̃ → X be the canonical morphism. Set

Ũ := π−1(U), Ỹ := π−1(Y ), D̃ := π−1(D), D̃J := π−1(DJ).

Then X̃ is a V -manifold, and Ỹ ∪D̃ is a divisor with V -normal crossings on X̃.
Let j̃ : Ũ ↪→ X̃ be the natural inclusion. There is a natural quasi-isomorphism

(1.1.1) j̃!QŨ

∼−→ K
•

X̃
with K

p

X̃
:=
⊕
|J|=p QD̃J

,

where the differential of K•
X̃

is defined in the same way as a Cech complex as
is well known.

Consider the complex
ψf̃ K

•

X̃
.

This naturally underlies a cohomological mixed Hodge complex such that its
restriction to ψf̃ QD̃J

coincides with the one defined in [St2] using the complex

of logarithmic forms Ω̃•
D̃J

(log(Ỹ ∩ D̃J)) together with the Hodge filtration F

and the weight filtration W on it. Indeed, we have canonical morphisms for
J ⊂ J ′

Ω̃•
D̃J

(log(Ỹ ∩ D̃J))|D̃J′
→ Ω̃•

D̃J′
(log(Ỹ ∩ D̃J′)),

and this is a filtered quasi-isomorphism for W (forgetting the filtration F ),
since D ∪ Y is a divisor with normal crossings.

There is a spectral sequence of mixed Hodge structures

(1.1.2) ∞E
p,q
1 =

⊕
|J|=pH

q(D̃J,∞,Q) =⇒ Hp+q
c (Ũ∞,Q),

which is induced by the truncations τ≥k on K•
X̃

for k ∈ Z, and degenerates at

E2. (This is the dual of the spectral sequence in [StZ], 5.7.) Indeed, it is the
‘limit’ by → 0 of the weight spectral sequence

Ep,q1 =
⊕
|J|=pH

q(D̃J,,Q) =⇒ Hp+q
c (Ũ,Q),
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where X̃ := f̃−1() and D̃J, := D̃J ∩ X̃ for ∈ ∆̃∗. These spectral sequences are
the dual of the spectral sequences in [23] in the unipotent monodromy case.

Note that (1.1.2) is compatible with the actions of the semisimple part Ts
and the nilpotent part N := (2πi)−1 log Tu of the monodromy T .

1.2. The relation with motivic nearby fibers. With the above notation,
let E = Y ∪ D with Ei the irreducible components of E. We may assume
Ei = Yi for i ≤ r and Ei = Di−r for i > r, where r is the number of the
irreducible components of Y . For I with min(I) ≤ r (i.e. EI ⊂ Y ), define
(1.2.1)

EI =
⋂
i∈IEi, E◦I =

⋂
i∈IEi \

⋂
i/∈IEi, ẼI = π−1(EI), Ẽ◦I = π−1(E◦I ).

Note that Ẽ◦I → E◦I is a cyclic étale covering. Set I ′ := I ∩ [1, r]. Let L denote
1(−1) as an Chow motive where 1 = [pt], and (−1) is the Tate twist, see e.g.
[Mu], [Sch]. By [DL], [Lo] and [MT], [Ra], the motivic nearby fibers for the
morphisms f : X → ∆ and f ′ : U → ∆ can be given respectively by

(1.2.2)
∑

min(I)≤r [(Ẽ◦I , Ts)](1− L)|I
′|−1,

∑
max(I)≤r [(Ẽ◦I , Ts)](1− L)|I|−1.

These belong to the Grothendieck group of Chow motives (with Q-coefficients)
endowed with an action of Ts of finite order by using equivariant resolutions
of (ẼI , ẼI \ Ẽ◦I ), see [DL]. Here Ts denotes the semi-simple part of the mon-

odromy, and is given by the automorphism γ of X̃ over X induced by the base
change of the automorphism of ∆̃ defined by 7→ ζm with ζm := exp(2πi/m).
The action of Ts on L is the identity. We denote the images of the two terms
of (1.2.2) in the Grothendieck group of mixed Hodge structures with an action
of finite order respectively by
(1.2.3)∑

min(I)≤r [(H•c (Ẽ◦I ), Ts](1− L)|I
′|−1,

∑
max(I)≤r [(H•c (Ẽ◦I ), Ts)](1− L)|I|−1,

where H•c (Ẽ◦I ) is a complex of mixed Hodge structures with zero differential,
L means here the class of Q(−1) with trivial action of the monodromy, and
Ts is given by (γ∗)−1, see (2.1.2) below. Then these respectively coincide in
the notation of (1.1.1) with

(1.2.4) [(H•(X̃∞), Ts)], [(H•c (Ũ∞), Ts)].

Indeed, this follows from the construction of Steenbrink [20] together with the
long exact sequence of mixed Hodge structures

(1.2.5) → Hj
c (Z ′)→ Hj

c (Z)→ Hj
c (Z \ Z ′)→ Hj+1

c (Z ′)→,

for any open immersions of complex algebraic varieties Z ′ ↪→ Z, which is
compatible with the action of automorphisms of varieties. (Here (1.2.5) can
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be proved by using mixed Hodge modules or the mapping cone construction in
[3] together with the diagram of the octahedral axiom of derived categories.)
The dual exact sequence of (1.2.5) for Borel-Moore homology is well known in
the theory of cycle maps of higher algebraic cycles.

Note that we get cohomology with compact supports in (1.2.4), and this
is quite different from the case of motivic Milnor fibers in [4].

1.3. Remarks. (i) In case EI is simply connected, the cyclic étale covering

Ẽ◦I → E◦I can be determined by the multiplicities mj of Y along the irreducible
components Yj intersecting EI . For example, assume max(I) ≤ r and

(1.3.1) EI =
⋂
i∈IYi = P1, E◦I = EI \ (Ei′ ∪ Ei′′) = C∗,

with i′ ≤ r (i.e. Ei′ = Yi′). Then the covering degree of Ẽ◦I → E◦I and the

number of connected components of Ẽ◦I are given respectively by

(1.3.2) GCD(mi | i ∈ I), GCD(mi | j ∈ I ∪ {i′}).

This may simplify some argument in [8].

(ii) In [4], the semisimple part of the monodromy Ts acts as an auto-
morphism of Chow motives. This seems to be useful for the proof of the
independence of the motivic Milnor fiber by the resolutions of singularities.
For instance, we have [P1] = 1 ⊕ 1(−1) with End(1) = End(1(−1)) = Q in
the category of Chow motives. This is a special case of the Chow-Künneth
decomposition, see e.g. [9], [18].

2. Spectrum

2.1. Geometric monodromy and local system monodromy. Let f :
X → S be a continuous map of topological spaces which is locally topologically
trivial over S. We assume that the Hj(Xs) and Hj(Xs) with Q-coefficients
are finite dimensional for any j. Let s ∈ S, and γ ∈ π1(S, s). Let ρ : Y → [0, 1]
be the base change of f by the loop γ. Choosing a trivialization over [0, 1], we
get the geometric monodromy

γ# : Xs = Y0 ' Y1 = Xs,

where the middle homeomorphism is induced by the trivialization. We have
the induced action of the geometric monodromy on homology and cohomology
(with Q-coefficients):

γ∗ ∈ Aut(Hj(Xs)), γ∗ ∈ Aut(Hj(Xs)),
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such that

(2.1.1) γ∗ = tγ∗,

where t means the transpose.
On the other hand, we have the local system monodromies

γh ∈ Aut(Hj(Xs)), γc ∈ Aut(Hj(Xs)),

which are defined by using the following (trivial) local systems of homology
and cohomology groups over [0, 1]:

{Hj(Yu)}u∈[0,1], {Hj(Yu)}u∈[0,1].

The latter can be identified with the constant sheaf Rjρ∗QY , see also [2], XIV,
1.1.2. Note that γc coincides with the monodromy associated to the nearby
cycle functor if f is a Milnor fibration.

The relations between the above monodromies are given by

(2.1.2) γ∗ = γh, γ∗ = γ−1
c .

Indeed, the first assertion easily follows from the definition (using simplicial
chains for example). We then get the second equality since

γ∗ = tγ∗ = tγh = γ−1
c ,

where the last equality follows from

(2.1.3) 〈γcu, γhv〉 = 〈u, v〉 for u ∈ Hj(Xs), v ∈ Hj(Xs).

Here 〈u, v〉 denotes the canonical pairing between cohomology and homology,
and it can be extended to a canonical pairing between the local systems so
that (2.1.3) follows.

It does not seem that (2.1.2) has been clarified explicitly in the literature.
In fact, it does not seem to cause big problems at least in the local monodromy
case since it is quasi-unipotent (except possibly for the definition of spectrum
as in [8]).

2.2. Example. Let f be a homogeneous polynomial of n variables with
degree d, having an isolated singularity at the origin. Set X = Cn \ f−1(0)
and S = C∗. Here f also denotes the morphism X → S induced by f . Let
γ be a generator of π1(S, s) ' Z going around the origin counter-clockwise.
Then γ# is induced by the automorphism

(2.2.1) γ# : (x1, . . . , xn) 7→ (ζd x1, . . . , ζd xn),
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where ζd := exp(2πi/d), and x1, . . . , xn are the coordinates of Cn. The action
of γ# is extended to an automorphism of C[x1, . . . , xn] over C such that

(2.2.2) γ∗#xi = ζd xi.

This can be checked for instance by γ∗#(xi − ζd ci) = ζd(xi − ci).
Set ω = dx1 ∧ · · · ∧ dxn, and

(2.2.3) H ′′f := ΩnX,0/df ∧ dΩn−2
X,0 .

This is called the Brieskorn lattice. Let g ∈ C[x1, . . . , xn] be a monomial of
degree k. After Brieskorn, it is well known (and easy to show) that

(2.2.4) ∂tt(gω) = k+n
d gω in H ′′f ,

see e.g. the proof of Prop. 3.3 in [13] for an argument in a slightly more general
case.

In the homogeneous polynomial case, we have moreover the well-known
relation

(2.2.5) γc = exp(−2πi(Res t∂t)),

under the canonical isomorphism

(2.2.6) Hn−1(X1,C) = H ′′f /tH
′′
f ,

where s = 1. The isomorphism can be defined by using a basis (ω1, . . . , ωµ)
of H ′′f such that ∂ttωi = αiωi, and taking the restriction to X1 after dividing
the ωi by df . Indeed, the assertion is well known if the Brieskorn lattice is
replaced by the Deligne extension [1]. In this case, the inverse isomorphism is
given by

u 7→ exp(− log t
2πi log γc)u,

for u ∈ Hn−1(X1) which is identified with a multivalued section, and we have

t∂t exp(− log t
2πi log γc)u = − log γc

2πi exp(− log t
2πi log γc)u,

where the eigenvalues of − 1
2πi log γc are chosen corresponding to the Deligne

extension. This can be extended to the Brieskorn lattice case easily in the
homogeneous polynomial case. So (2.2.5) follows.

By (2.2.4) and (2.2.5), the action of γc on (g/df)|X1
∈ Hn−1(X1,C) is

given by the multiplication by

(2.2.7) exp(−2πi(k + n)/d).
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On the other hand, (2.2.2) implies that the action of the geometric mon-
odromy (2.2.1) on (g/df)|X1 is given by the multiplication by

(2.2.8) exp(2πi(k + n)/d).

This is the inverse of (2.2.7).

2.3. Brieskorn lattices and mixed Hodge structures. The Brieskorn
lattice H ′′f in (2.2.3) is defined for any holomorphic function on a complex

manifold X having an isolated singularity at 0 ∈ f−1(0). It is a free C{{∂−1
t }}-

module of rank µ, and is contained in the Gauss-Manin system Gf which is
the localization of H ′′f by ∂−1

t , i.e. Gf = H ′′f [∂t]. The latter has the Hodge

filtration defined by F pGf := ∂n−1−p
t H ′′f for p ∈ Z, and also the filtration V

of Kashiwara and Malgrange such that ∂tt− α is nilpotent on GrαV Gf . By an
argument similar to the proof of (2.2.6), there are isomorphisms

(2.3.1) Hn−1(Xf,0,C)λ = GrαV Gf for λ = exp(−2πiα),

where Xf,0 is the Milnor fiber, and Vλ denotes the λ-eigenspace for any vector
space V with the action of the local system monodromy T . We have moreover
(2.3.2)
Fn−1−qHn−1(Xf,0,C)λ = GrαVH

′′
f for q < α ≤ q + 1, λ = exp(−2πiα),

where F is the Hodge filtration of the mixed Hodge structure [20], see [17],
[24], etc. This is closely related with the definition of the spectrum in (2.4.5)
below. In the case of Example (2.2), it is related with [21] by (2.2.4).

2.4. Spectrum. Let H be a mixed Hodge structure with a semisimple action
T of finite order. Set HC,λ := Ker(T − λ) ⊂ HC. We define the spectrum
Sp′(H,T ) as in [Sai4] (and [DL]) by

(2.4.1)
Sp′(H,T ) :=

∑
α∈Q n′αt

α,

with n′α = dimC GrpFHC,λ for p = [α], λ = exp(2πiα).

For a holomorphic function f on a complex manifold X of dimension n and
x ∈ f−1(0), we first define Sp′(f, x) by

(2.4.2) Sp′(f, x) :=
∑
j (−1)n−1−j Sp′

(
H̃j(Xf,x), Ts

)
,

where H̃j(Xf,x) is the reduced Milnor cohomology endowed with the canonical
mixed Hodge structure, and Ts is the semisimple part of the local system
monodromy T . There are canonical isomorphisms

(2.4.3) H̃j(Xf,x) = Hji∗xϕfQX ,
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where ix : {x} ↪→ X is the inclusion, see [2]. They can be used to define
the mixed Hodge structure on the left-hand side. Note that T is equal to the
inverse of the cohomological Milnor monodromy by (2.1), and this is closely
related with Example (2.2) by (2.3).

Let ι denote the involution of Z[t1/m, t−1/m] over Z defined by

ι(tα) = t−α.

The spectrum Sp(f, x) is then defined by

(2.4.4) Sp(f, x) := tnι(Sp′(f, x)).

This spectrum Sp(f, x) coincides with the one in [20] for the isolated singu-
larity case (using the complex conjugate of (2.4.1) together with the sym-
metry (2.4.6) below). It coincides with the one in [22] up to the multipli-
cation by t. Indeed, the above definition of Sp(f, x) can be rewritten as
Sp(f, x) :=

∑
α∈Q nαt

α with

(2.4.5)
nα =

∑
j (−1)n−1−j dimC Grn−1−q

F H̃j(Xf,x,C)λ

for q < α ≤ q + 1, λ = exp(−2πiα),

and this is used in loc. cit. (up to the multiplication by t). In the isolated
singularity case, the formula (2.4.5) is closely related with (2.3.2) and also
with the calculations in (2.2).

If f has an isolated singularity at x, we have the symmetry of mixed Hodge
numbers by [20] so that

(2.4.6) Sp(f, x) = Sp′(f, x).

In case f is a weighted-homogeneous polynomial of weights (w1, . . . , wn)
(i.e. f is a linear combination of monomials xm1

1 · · ·xmn
n with

∑
i wimi = 1)

and has an isolated singularity at 0, it is well known that

(2.4.7) Sp(f, 0) =

n∏
i=1

(
t− twi

twi − 1

)
.

This follows from [21], see also [20] and the proof of Proposition 5.2 in [5]. In
the case of homogeneous polynomials (i.e. wi = 1/d for any i), this follows
also from the calculation in Example (2.2) using (2.3).

For a polynomial mapping f : Cn → C, we can define the spectrum at
infinity (see also [11]) by

(2.4.8)
Sp′(f,∞) :=

∑
j (−1)n−1−j Sp′(H̃j(X∞), Ts),

Sp(f,∞) := tnι(Sp′(f,∞)),
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where H̃j(X∞) is the limit mixed Hodge structure of H̃j(Xt) at infinity (of C),
and Ts is the semisimple part of the local system monodromy T associated with
a sufficiently large loop around the origin which goes counter-clockwise from
the origin (and clockwise from ∞ ∈ P1). This definition is compatible with
the one in the weighted-homogeneous isolated singularity case in (2.4.7). In
the cohomologically tame case, we have the symmetry by [12] (i.e. Theorem 1
in this paper) so that (2.4.6) holds, and the definition (2.4.8) seems to coincide
with the one in [8] (where the cohomology with compact supports is used) if
the local system monodromy is used there.
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