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ON ROTHE’S FIXED POINT THEOREM IN

A GENERAL TOPOLOGICAL VECTOR
SPACE

G. Isac

1. Introduction

The generalization of Rothe’s Fixed Point Theorem to general topological
vector spaces, presented in this paper is related to the recent solution of the
well-known conjecture defined in 1930 by J. Schauder.

The following conjecture was well known in the Fixed Point Theory.

Conjecture [Schauder] For every non-empty convex subset C of a topo-
logical vector space E, a compact continuous mapping f : C → C has a fixed
point, i.e., a point x∗ ∈ C such that f(x∗) = x∗. (See [16], problem 54).

We recall that a mapping f : C → C is said to be compact if f(C) is
contained in a compact subset of C.

Schauder proved in 1930 that his conjecture holds for normed vector spaces
and Hukuhara proved that Schauder’s conjecture is true for locally convex
spaces.

In 2001, Schauder’s conjecture was resolved affirmatively by R. Cauty [2].

THEOREM 1 [CAUTY]
Let E(τ) be a Hausdorff topological vector space, C a convex subset of E

and f : C → a continuous mapping.
If f(C) is contained in a compact subset of C, then f has a fixed point.

As a consequence of Theorem 1 we will present in this paper an extension of
Rothe’s Fixed Point Theorem to general Hausdorff topological vector spaces.
Rothe’s Fixed Point Theorem is a classical result. [15], [5].

From Rothe’s Theorem we will deduce an Implicit Leray-Schauder Type
Alternative for general topological vector spaces, which contains as a particular
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case the Leray-Schauder Alternative [7]. It is well known this Alternative has
many applications [6], [9], [10] and it is a fundamental result in Nonlinear
Analysis.

We used recently the Implicit Leray-Schauder Alternative in the study of
Complementarity Problems and also in the study of Variational Inequalities
[6].

Initially, the Leray-Schauder Theorem was probed by using the topological
degree [7] but now, several kinds of proofs without topological degree are
known [1], [3], [8], [13].

The Implicit Leray-Schauder Type Alternative presented in this paper is
a generalization to arbitrary Hausdorff topological vector spaces of a similar
result proved by A. J. B. Potter in 1972 [11]. We note that the proof given by
Potter has some obscure parts. We hope that the reader will find clearer our
proof. In the proofs presented in this paper some details are inspired by [11].

2. Preliminaries

We denote by E(τ) a Hausdorff topological vector space and by (X, τ) a
general Hausdorff topological vector space.

We recall that a topological space (X, τ) is countable compact if and only
if any countable open cover of X , has a finite subcover, [4]. Any compact
topological space is countable compact.

It is known that a topological space (X, τ) is countable compact if and only
if every countable infinite subset of X has at least one accumulation point.
(See [4], Proposition 13, pg. 179).

From this result we deduce that if {yn}n∈N is a sequence in a relative
compact set M , then {yn} has an accumulation point in M .

If B is a subset of a topological space (X, τ), we denote by ∂B its boundary
and by int(B) the interior of B. Let E(τ) be a topological vector space and
let A, B be subsets of E.

We say that A absorb B if there exists λ∗ ∈ P (the real field) such that
B ⊂ λA, whenever |λ| ≥ λ∗. A subset U of E is called radial (absorbing) if U
absorbs every finite subset of E. We say that U is circled if λU ⊆ U whenever
|λ| ≤ 1. For other notions and results the reader is referred to [14].
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3. A generalization of Rothe’s theorem

The following result is an extension to a general topological Hausdorff space
of the classical Rothe’s theorem.

THEOREM 2 [A Rothe’s type theorem]
Let E(τ) be a Hausdorff topological vector space. Let B ⊂ E be a closed

convex subset such that the zero of E is contained in the interior of B.
Let Φ : B → E be a continuous mapping with Φ(B) relatively compact in

E and Φ(∂B) ⊂ B.
Then there is a point x∗ ∈ B such that Φ(x∗) = x∗.

PROOF. We denote that int(B) is non-empty since 0 ∈ int(B). We recall
that because E(τ) is a topological vector space, then the topology τ possess a
0-neighborhood base Y such that any V ∈ Y is radial and circled.

Then because int(B) ⊂ B we have that B is a radial (absorbing) set.
Let pB be the Minkowski functional of B, i.e., pB(x) = inf{λ > 0 : x ∈

λB} for any x ∈ E. The functional pB is positive homogeneous. Indeed, first
pB(0) = 0. Let x ∈ E be arbitrary and λ > 0. We have

pB(x) = inf{µ > 0 : λx ∈ µB} = inf{µ > 0 : x ∈ λ−1µB} =

= inf{λµ1 : x ∈ µ1B} = λpB(x).

Now, we show that pB is a continuous mapping. The continuity of pB is a
consequence of the following facts.

Let ε > 0 be an arbitrary real number. Form ([14], Theorem1.2) there
exits a radial and circled 0-neighborhood U such that 0 ∈ U ⊂ int(B) ⊂ B.

Let pU be the Minkowski functional of U . We have pB ≤ pU . Because B is
also convex, pB is subadditive and we can show that for any x, y ∈ E we have

pB(B) − pB(y) ≤ pB(x − y) ≤ pU (x − y)

and
pB(y) − pB(x) ≤ pB(y − x) ≤ pU (y − x).

If x, y are such that x−y ∈ εU , then we have pU (x−y) = pU (y−x) (because
U is circled), which implies

|pB(x) − pB(y)| ≤ ε.

The last relation implies that pB is continuous. We consider the mapping
Ψ : E → E defined by

Ψ(x) = [max{1, pB(x)}]−1 · x, for any x ∈ E.
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The mapping Ψ is continuous and Ψ(E) ⊆ B.
We define the mapping f : B → B by f = Ψ ◦ Φ. The mapping f is

continuous and f(B) is relatively compact in E. By Theorem 1 [Cauty] there
exists an element x∗ ∈ B such that f(x∗) = x∗.

We have two situations:

(i) x∗ ∈ int(B) and

(ii) x ∈ ∂B.

If (i) holds, then we have

1 > pB(x∗) = pB(f(x∗)) = [max{1, pB(Φ(x∗))}]−1 · pB (Φ(x∗)) ,

which implies that we must have (Φ(x∗)) < 1 and consequently

f(x∗) = Ψ(Φ(x∗)) = Φ(x∗).

Therefore Φ(x∗) = x∗. Now, we suppose that (ii) holds. Then we have

x∗ = f(x∗) [max{1, pB(Φ(x∗))}]−1 · Φ(x∗),

and
1 = [max{1, pB(Φ(x∗))}]−1 · pB(Φ(x∗)).

If pB(Φ(x∗)) < 1 then 1 = pB(Φ(x∗)) < 1 which is a contradiction.
Thus we must have pB(Φ(x∗)) = 1 (since Φ(∂B) ⊂ B). But pB(Φ(x∗)) =

1 implies f(x∗) = Φ(x∗) and hence we have again that Φ(x∗) = x∗. Therefore
there exists x∗ ∈ B such that Φ(x∗) = x∗ and the proof is complete. �

4.Implicit Leray-Schauder Type Alternative

The following result is a consequence of Theorem 2.

THEOREM 3 [Implicit Leray-Schauder Theorem]
Let E(τ) be a Hausdorff topological vector space and B ⊂ E a closed convex

set such that 0 ∈ int(B).
Let f : [0, 1] × B → E be a continuous mapping. The set [0, 1] × B is

endowed with the product topology and f([0, 1] × B) is relatively compact in
E.

If the following assumptions are satisfied:

(1) f(λ, x) 	= x for all x ∈ ∂B and all λ ∈ [0, 1],
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(2) f({0} × ∂B) ⊂ B

then, there exists an element x∗ in B such that f(1, x∗) = x∗.

PROOF. For any n ∈ N we consider the mapping fn : B → E defined
by

Fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

f

(
1 − pB(x)

εn
,

x

pB(x)

)
, if 1 − εn ≤ pB(x) ≤ 1,

f

(
1,

x

1 − εn

)
, if pB(x) < 1 − εn,

where pB is the Minkowski functional of the set B and {εn}n∈N is a sequence
of real numbers such that lim

n→∞εn = 0 and 0 < εn < 1
2 for any n ∈ N . For

each n ∈ N , fn is continuous on B and fn(B) is relatively compact in E.
From assumption (2) we have that fn(∂B) ⊂ B. The assumptions of

Theorem 2 are satisfied for any n ∈ N and hence, for each n ∈ N there exits
an element un ∈ B such that fn(un) = un. Suppose that an infinite number
of elements un satisfy the relation

1 ≥ pB(un) ≥ 1 − εn. (α)

Because f(B) is relatively compact and considering the definition of map-
pings fn, we have that {un}n∈N is contained in a compact set in E. Hence,
(see preliminaries of this paper) the sequence {un}n∈N or any subsequence of
{un}n∈N has an accumulation point.

We consider the sequence {λn}n∈N defined by

λn
1 − pB(un)

εn
, for any n ∈ N.

We have that {λn}n∈N ⊂ [0, 1].
Considering eventually a subsequence we suppose that lim

n→∞λn = λ∗ ∈
[0, 1].

The corresponding subsequence of {un}n∈N is denoted again by {un}n∈N and
it satisfies the inequality (α).

From (α) we have that lim
n→∞pB(un) = 1. Let u∗ be an accumulation point

of {un}n∈N . We know that {un}n∈N has a net converging to u∗. Using this
fact we can show that (λ∗, u∗, u∗) is an accumulation point of the sequence{(

λn
un

pB(un)
, un

)}
n∈N

in [0, 1]× E × E.

Considering the net convergent to u∗, the continuity of f, and the equation

f

(
λn,

un

pB(un)

)
= un for any n ∈ N , we obtain that f (λ∗, u∗) = u∗. This fact
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is a contradiction of assumption (1). Indeed, pB(u∗) = 1 (since lim
i∈I

pB(yi) = 1,

where {yi}i∈I is the net of {un}n∈N convergent to u∗), and u∗ ∈ ∂B. Then (α)
can be satisfied only for a finite number of elements of the sequence {un}n∈N .
Hence, we can suppose that

pB(un) < 1 − εn, for all n ∈ N.

Since lim
n→∞(1 − εn) = 1, selecting an accumulation point u∗ for {un}n∈N ,

and using a net of {un}n∈N convergent to u∗, we obtain by continuity and
considering the equation

f

(
1,

un

1 − εn

)
= un, for all n ∈ N,

that f(1, u∗) = u∗. By this conclusion the proof is complete. �
From Theorem 3 we deduce immediately the following alternative.

THEOREM 4 [Implicit Leray-Schauder Alternativ]. Let E(τ) be
a Hausdorff topological vector space, B ⊂ E a closed convex set such that
0 ∈ int(B).

Let f : [0, 1] × B → E be a continuous mapping such that f ([0, 1]× B)is
relatively compact in E. We consider on [0, 1] × B the product topology. If
the following assumptions are satisfied:

(1) f ({0} × ∂B) ⊂ B,

(2) f (0, x) 	= x for any x ∈ ∂B,
then at least one of the following properties is satisfied:

(i) there exists x∗ ∈ B such that φ(1, x∗) = x∗,

(ii) here exists (λ∗, x∗) ∈ [0, 1] × ∂B such that f (λ∗, x∗) = x∗. �

5. Comments

We presented in this paper extensions to general topological Hausdorff
vector spaces of two fundamental theorems of nonlinear analysis known in
Banach spaces: Rothe’s Fixed Point Theorem and a Leray-Schauder Type
Alternative.

Recently, we applied Theorem 4 (in this form but on Hilbert spaces) to the
study of complementarity problems and to the study of variational inequalities
[6].
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Certainly, these theorems in this general form can have interesting appli-
cations. Theorem 3 contains as a particular case the classical Leray-Schauder
Theorem.
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