
An. Şt. Univ. Ovidius Constanţa Vol. 12(1), 2004, 45–58

RECURSIVE DEFINITION, BASED ON A

META-MODEL, FOR THE TYPE SYSTEM
OF COMPLEX COMPUTING SYSTEMS

ARCHITECTURES

Cristina Mı̂ndruţă

Abstract

A theoretical abstract analysis of type system for complex comput-
ing systems is devel oped based on a meta-model. The meta-model
represents, by using the theory of sets, a static glass-box view, in terms
of types, of what can be considered to be the “atomic” component of
a complex computing system – the virtual machine. This view allows
modelling the complex computing systems as interconnected virtual ma-
chines. It is recursively used in order to define the basis for connecting
virtual machines in different architectures. First, a pure vertical view
of a multi-layered system and a pure horizontal view of a net of virtual
machines are developed in terms of types. Combining the two views, a
recursive definition of multiple virtual machines systems in multi-layered
architectures is elaborated.

1 Introduction

Meta-modelling is a current keyword in almost all topics of computer science.
A meta-model could be defined as a model that plays the role of a model for
another model. Meta-models are widely used in simulation of complex systems.
Software engineering uses elaborated models that have been developed as tools
for software construction[1].

Our paper initiates a theoretical analysis complementary to these models.
This is developed using a proposed set-based meta-model whose target sys-
tem is not a software construction viewed from the application point of view,

Key Words: meta model, computing systems, architecture.

45

46
Cristina Mı̂ndruţă

but the computing system itself, viewed as the platform for applications de-
velopment. The meta-model gives set representations for the type system of
software platforms. Our notion of type system for software platform inherits
from the concept of type system used in [2] and extends it to implementation
types.

The need for integration and unified views of computing systems is still
better covered by the soundness of mathematical models. Their complexity is
generally avoided by the use of visual modeling languages [3]. Another solution
is to use mathematical models based on the theory of sets to represent entities
and relations. The model proposed in this paper is a core mathematical meta-
model, based on the theory of sets, which can be used to define models, in
terms of types, for complex computing systems. This meta-model can be
used by the software architect in order to design the software system or by a
software component in order to reason about the system.

A complex computing system is made of more components. Abstraction
plays a crucial role in mastering the complexity of such combinations. More
abstraction levels can be considered in representing a computing system. In
this paper we consider a view in which the virtual machine concept is the
“atomic” component of a computing system.

In [4] authors considered a general accepted view of the virtual machine as
being a relationship between logical (software) and physical (hardware) sys-
tems. In present paper we extend this relationship to higher software levels,
restricting it to the type system. We consider a high level of abstraction for
virtual machine, with two main components: API (application programming
interface) and runtime environment. This definition is refined and developed,
in terms of interface types and implementation types, giving us a glass-box
view of the virtual machine. API is the set of function types and data types
used in the applications developed for the virtual machine. The runtime en-
vironment is the set of services that support the applications execution and
uses underlying type system, which contains implementation types.

The aim of this paper is to use this view in order to define the basis
for connecting virtual machines in different architectures, to prove they are
virtual machines too and to apply the model in order to define complex types
of computing systems.

A complex computing system is built from simple ones, modelled as virtual
machines, by combination, being itself a virtual machine. The proposed model
supports this recursive definition. This allows us to state that our model of
the virtual machine concept is also the meta-model for computing systems.

RECURSIVE DEFINITION 47

2 Static meta-model

In this section we recall the static component of our formal model proposed
for the virtual machine concept in a previuos paper[5]. It contains the interface
model and the implementation model.

2.1 Interface model

From its functionality point of view, a virtual machine is described by its
application programming interface (API).

The interface of the virtual machine is formalized by the 4-tuple of finite
sets:

IE = {S, F, TE, AE} (1)

and by finite set of correspondences:

IC = {fct, evt}, (2)

where
S is a finite set of types, representing the types of information (data)

recognized by the virtual machine,
F is a finite set of types, representing the types of functions that can be

requested, by the application, to the virtual machine, which we call primitive
functions,

TE is a finite set of types, representing the event types that can be gener-
ated by the virtual machine,

AE is a finite set of types, representing the external events that can be
received by the virtual machine.

As a part of our model we use the definition in [6] for the function

fct : F → S∗ (3)

which associates its arguments types and result type sequence to each
primitive function,

i.e. for any f ∈ F , it is defined fct(f) = (s1, ..., sn+1) , with
s1, ..., sn+1 ∈ S

To complete our interface model, we define the function

48
Cristina Mı̂ndruţă

evt : F → P (TE) (4)

which associates its event types set to each primitive function,
i.e.evt(f) = (t1, ..., tk) with t1, ..., tk ∈ TE for f ∈ F.

2.2 Implementation model

The implementation model identifies underlying level types as implementa-
tion types and maps interface types into them.

2.2.1 Data types implementation model

Let V be a finite set of carrier data types, sources of types in S.
The function:

Srs : S → P (V) − {θ} (5)

associates the carrier set sV ∈ P (V) to each s ∈ S, where sV = {δ1, δ2, . . . δp}
is the set of data types, δj ∈ V , used to create the definition of the type s.

The set sV is the set of definitions of data source types for the type s.
Each δj ∈ V represents an information source definition. At any moment, a
data of type s is generated according to the composition of the definitions in
the set sV .

2.2.2 Function types implementation

Let P be a finite set of carrier function types.
The function

Intp : F → P (P) (6)

associates the set fP ∈ P (P) to each f ∈ F . The set fP is the set of func-
tions whose composition, actually an algorithm, represents an implementation
of f in a language defined over the alphabet P .

A typical interpreter implements ”fetch-decode-execute” cycle for each op-
eration in F .

The ”execute” component of this cycle means to compute the composition
of the functions in fP , defined for the interface operation f ∈ F . As regards
the type system of the platform, the set fP contains a subset of types in F
used by the interpreter to translate functions of type f .

The “fetch data” component of this cycle uses the “value” of the function

Srs for each data type in fct(f), i.e.
n+1⋃
i=1

Srs(si), where fct(f) = (s1, ..., sn+1).

RECURSIVE DEFINITION 49

As regards the type system of the platform, the set
n+1⋃
i=1

Srs(si) contains the

subset of types from the types in V , used by the interpreter to translate func-
tions of type f.
In conclusion, the types used by the interpreter for each function f are the

elements of the sets fP and
n+1⋃
i=1

Srs(si).

2.2.3 Event types implementation

Synchronous events. In our approach, the internal events of a virtual ma-
chine, also called exceptions, are generated based on a logical predicate set
implemented at the platform level and they result from the current activity
on the virtual machine.

Let SE be the set of internal event types.
The function:

Trigg : SE → P (S) × P (P) (7)

associates the sets eS ∈ P (S) and eP ∈ P (P) to each event type e ∈ SE.
The set eS is the set of data types implied in the expression representing

the triggering condition for the event e. We call this expression a predicate.
The set eP is the set of function types whose composition (based on an

algorithm) represents the implementation, in the language defined over the
alphabet P , of the trigger actions, for the internal event of type e.

Asynchronous events. Asynchronous events (interrupts) are generated by
entities in the virtual machine’s environment and are not synchronous with
the current activity on the virtual machine.

As it was specified in section 2.1, AE is the set of external event types and
it is a component part of the virtual machine interface.

The function:

Rut : AE → P (P) (8)

associates the set iP ∈ P (P) to each event type i ∈ AE.
The set iP is the set of functions whose composition (based on an algo-

rithm) represents the implementation, in the language defined over the alpha-
bet P , of the internal event handler for the event of type i.

50
Cristina Mı̂ndruţă

Relations between event types. There are some important relations be-
tween event types.

The intersection of the sets SE and AE is empty:

SE ∩ AE = θ. (9)

Events are captured and locally handled by the current virtual machine,
resulting in the virtual machine state changes. They may also generate events
thrown by the virtual machine, as types in the set TE, either as the same
event type or as a refined (derived) event type. The union of the sets SE
and AE, SE ∪AE, contains a subset of types from which each type generates
a subset of types in TE. This subset of SE ∪ AE may be empty and this
happens when ∀ e ∈ SE, throw∗ /∈ eP and ∀ i ∈ AE, throw /∈ iP .

In order to model this, we define the function† :

Th : SE ∪ AE → F (TE) ∪ {θ} (10)

which associates the set te ∈ F (TE) to each e ∈ SE or the set ti ∈ F (TE)
to each i ∈ AE .

The sets te and ti are the sets of events generated in the interface of the
virtual machine from the event e and i respectively. The set TE contains
refinements of the event types in SE ∪ AE.

We may define now the static meta-model of the virtual machine. It is the
7-tuple of finite sets:

V ME = {S, F, TE, V, P, SE, AE} (11)

the set of correspondences:

V MC = {fct, evt, Srs, Intp, T rigg, Rut, Th} (12)

and the definitions and conditions in previous sections.
∗The type throw represents the type of a common function, in the set P, that generates

an event type in the interface of the virtual machine.
†F (TE) is a partition of TE.

RECURSIVE DEFINITION 51

3 Recursive Definition of Complex Virtual Machine Architectures

3.1 Recursive Definition of Virtual Machines in a Vertical Multi-
layered Architecture

A multi-layered architecture of virtual machines is a well-known approach
in structuring computing systems [7]. The lowest level, 0, is hardware. Level
1 is the microprogramming level, level 2 is the conventional machine level, etc.

In this section we consider a vertical multi-layered architecture, which con-
tains only one virtual machine at each level. In such architecture the virtual
machine on the level k, represented according to our formalism, is defined by
the set of sets:

V ME
k = {Sk, Fk, TEk, Vk, Pk, SEk, AEk} (13)

by the set of correspondences:

V MC
k = {fctk, evtk, Srsk, Intpk, T riggk, Rutk, Thk) (14)

and by the recurrence relations:

Vk = Sk−1 (15)

Pk = Fk−1 (16)

AEk ⊆ TEk−1 ⊆ (AEk ∪ SEk) (17)

The first two recurrence relations are obvious and trivial. The last one
supports some discussion as follows.

Generally TEk−1 ⊆ (AEk ∪ SEk) which means that a part of the events
of the virtual machine on level k comes from the underlying level. In the case
considered in this section, when each level contains only one virtual machine,
all asynchronous events (externally generated) can reach the virtual machine
on the level k only through callback mechanism activated by the asynchronous
events of the underlying level (k − 1). This is represented by AEk ⊆ TEk−1.
There are also some particular cases, as follows.

52
Cristina Mı̂ndruţă

If AEk = θ then the virtual machine on level k− 1 throws no interrupt‡ to
the higher level, i.e. ∀i ∈ AEk−1, Thk−1(i) = θ. This is the case of software
levels that hide the asynchronism of the underlying levels.

If AEk = TEk−1 then the virtual machine on level k − 1 throws no excep-
tion§ to the higher level, i.e. ∀e ∈ SEk−1, Thk−1(e) = θ.

If TEk−1 = (AEk ∪ SEk) then SEk = {Thk−1(e)| e ∈ SEk−1} and the
virtual machine on level k generates no new exception.

Any software which externalises data types, operation types and event
types (in fact an API) and which offers services in order to implement these
types in an interpretative manner is a virtual machine. A vertical architecture
of virtual machine levels is characterized by the fact that the type system¶ of
the virtual machine on the level k is related to the type system of the virtual
machine on level k−1 according to the recurrence relations (15), (16) and (17).
To prove the consistency of our model, we must prove that these relations are
sufficient to recursively define all other elements of the type system. In other
words, the interface of V Mk is built, by the dynamic component of V Mk,
using the interface of V Mk−1, so that we obtain a recursively defined vertical
hierarchy of virtual machines. The proof will consider the implementation
types and functions.

The recursive relations for P and V are given in (15), (16). Applying them
to relations (5), (6) and (8), we obtain the following recursive definitions:

Srsk : Sk → P (Sk−1) (18)

Intpk : Fk → P (Fk−1) (19)

Rutk : AEk → P (Fk−1) (20)

Applying (15) and (16) to (7) and based on the second inclusion in the
relation (17), the function Trigg has two components.

The first component is:

Triggk|TEk−1 : TEk−1 → P (Sk) × P (Fk−1), (21)

‡Asynchronous event.
§Synchronous event.
¶In the sense defined by our formalism.

RECURSIVE DEFINITION 53

which applies on the internal events generated and thrown by the virtual
machine on level k−1. The recursive definition of the function uses types only
from the interfaces of the levels k − 1 and k.

The second component of the function Trigg is:

Triggk|SEk\TEk−1 : SEk\TEk−1 → P (Sk) × P (Fk−1), (22)

which applies on the internal events generated by the virtual machine on
level k.

The recursive definition uses interface types of the levels k − 1 and k and
internal types of the level k generated by the predicate set.

Relation (10) has two components: the partial function

Thk|AEk
: AEk → P (TEk), (23)

which, applying the first inclusion of the (17), is equivalent to

Thk|AEk
: TEk−1\SEk → P (TEk), (24)

and the partial function

Thk|SEk
: SEk → P (TEk), (25)

which, according to the second inclusion of the relation (17) is equivalent
to the following two partial functions:

Thk|TEk−1\AEk
: TEk−1\AEk → P (TEk) (26)

and

Thk|SEk\TEk−1 : SEk\TEk−1 → P (TEk). (27)

Unifying (24) and (26) we obtain the recursive relation:

54
Cristina Mı̂ndruţă

Thk : TEk−1 → P (TEk). (28)

SEk\TEk−1 are the events internally generated on level k.
As a conclusion, a new level, k, of virtual machine can be built over the

level k−1 by defining the interface types (Sk, Fk, TEk, AEk) and the functions
which connect the interface elements (fctk, evtk), the internal event types
(SEk), the events transfer function (Thk) and the implementation functions
(Intpk, Srsk, Rutk, T riggk).

3.2 Multiple Virtual Machines in a Horizontal Architecture

Let us consider the level k.
In a multiple virtual machines horizontal architecture, the level is a net of

n virtual machines interconnected through their interfaces.
Each virtual machine j is defined by the set of sets:

V ME
kj = {Skj , Fkj , TEkj , Vkj , Pkj , SEkj , AEkj} (29)

and the set of correspondences:

V MC
kj = {fctkj , evtkj , Srskj , Intpkj , T riggkj , Rutkj, Thkj} (30)

where j = {1, 2, . . . , n}, k = {1, 2, . . . , m}.
The whole system is defined, at the level k, by the following sets:

V ME
k =

n⋃

j=1

V ME
kj (31)

and

V MC
k =

n⋃

j=1

V MC
kj (32)

RECURSIVE DEFINITION 55

We consider the communication model among virtual machines based on
events‖. In a communication between the virtual machines a and b from a to
b, the source event is ta ∈ TEka and the destination event is ib ∈ AEkb.

In this section we consider the abstraction of a pure horizontal architecture
of a closed system, with no lower or upper connections. In this architecture
asynchronous events for one virtual machine come only from the other virtual
machines in the net and are captured and handled by at least one virtual
machine in the net. The synchronous events are handled inside the virtual
machine that generated them. This is expressed by:

n⋃

j=1

AEkj =
n⋃

j=1

TEkj (33)

and may be refined according to the concrete system architecture.

3.3 Recursive Definition of Multiple Virtual Machines Systems in
Multi-layered Architectures

In order to model a more complex system, both the vertical and the hori-
zontal views presented before must be combined. The resulting system is also
a virtual machine, which represents a new level, k + 1.

Let V ME
kj and V MC

kj , j = 1{1, 2, ..., n}, be the virtual machines on level
k which are the components of the virtual machine on the level k + 1. From
the relations (15) and (31) it results:

Vk+1 =
n⋃

j=1

Skj , j ∈ {1, 2, . . . , n}. (34)

From the relations (16) and (31) results:

Pk+1 =
n⋃

j=1

Fkj , j ∈ {1, 2, . . . , n}. (35)

‖There are more communication paradigms, from messages to RPC. These paradigms are
different at the semantic level but they use the same mechanism at the virtual machine level,
based on asynchronous events. Such a mechanism is implemented by the interrupt system
at the hardware level and by different “listener” processes at higher levels, like software
ports or Observer-Observable pattern.

56
Cristina Mı̂ndruţă

The combination of the two views introduces the possibility that asyn-
chronous events of a level k to be generated by the underlying level (through
callback mechanism) and by the other virtual machines on the level k. This
is represented by the new form of the last recurrence relation (17) defined in
Section 3, which becomes:

TEk−1 ⊆ AEk ∪ SEk (36)

As regards levels k + 1 and k, the relation between event types is:

AEk+1 ⊆
n⋃

j=1

TEkj ⊆
n⋃

j=1

AEkj ∪ AEk+1 ∪ SEk+1 (37)

where j represents a virtual machine in the net, on level k.
A part of the asynchronous events generated on the level k can be directly

“consumed” by virtual machines on the level k. This is represented by the
inclusion:

AEk+1 ⊆
n⋃

j=1

TEkj\SEk+1. (38)

The set difference
n⋃

j=1

TEkj\
n⋃

j=1

AEk+1 represents the events, both asyn-

chronous and synchronous, actually thrown to the level k + 1. All the events
generated by all the virtual machines in the net at the level k are either cap-
tured by other virtual machines in the net (on the level k), or thrown to the
virtual machine on the level k + 1.

The last case of the discussion in Section 3 is also modified. Let us consider
the virtual machine on the level k + 1. If

n⋃
j=1

TEkj = AEk+1 ∪ SEk+1 then

SEk+1 = {Thk(i)| i ∈ SEk}, meaning that the virtual machine on the level
k + 1 generates no new exception, and AEk+1 = {Thk(i)| i ∈ AEk}, meaning
that all asynchronous events generated on the level k are thrown to virtual
machines on level k +1, none of them being transparently handled by another
virtual machine on the level k.

In the general case, the intersection AEk+1∩(
n⋃

j=1

TEkj) is the set of events

that use the callback mechanism.

RECURSIVE DEFINITION 57

The resulting virtual machine on the level k + 1 can be a part of a net
of virtual machines on the level k + 1. In this case, the previous discussion
applies recursively.

4 Some Remarks on the Paper

In conclusion, our paper proposes a formal model, in terms of types, for the
virtual machine concept and uses it to give recursive definitions for the basis of
connecting virtual machines in different architectures. These definitions offer
a well structured and unified view, very useful in managing the type systems
of complex computing architectures. This is important in computing systems
design and is essential in reflective systems.

This formal model can be used to define, in terms of types, different com-
puting systems architectures. It also allows description of the type system of
a complex computing system as a hierarchy of inter-related sets. Particular
cases of the general recursive definition of multiple virtual machines systems
in multi-layered architectures can reveal different complex computing systems
architectures.

Our further work will be concerned in developing the model and in a more
detailed analysis of the relations in the applied formal model versus current
and maybe further complex computing systems architectures.

References

[1] Broy M., Multi-view Modeling of Software Systems. Lecture Notes in Computer Sci-
ence, Springer-Verlag Heidelberg, Volume 2757 / 2003, 207 - 225

[2] Aho A.V., Ullman J.D., Foundations of Computer Science C Edition, Computer Sci-
ence Press, 1995.

[3] UMLTM Resource Page at URL www.uml.org

[4] Joann M. P., Donald E., Thomas A., A Layered, Codesign Virtual Machine Approach
to Modeling Computer Systems. In Proceedings of the Conference on Design Automa-
tion and Test in Europe, March 2002.

[5] Mı̂ndruţă C., A Formal Model For Flexible Type Management On Virtual Machines,
under review.

[6] Broy, M., Mathematical System Models as a Basis of Software Engineering. In Com-
puter Science Today 1995.

[7] Tanenbaum A.S., Structured Computer Organization, 4th ed, Prentice Hall 1999.

58
Cristina Mı̂ndruţă

”Ovidius” University of Constanta
Department of Mathematics and Informatics,
900527 Constanta, Bd. Mamaia 124
Romania
e-mail: cmandruta@univ-ovidius.ro

