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A PARAMETRIC STUDY FOR SOLVING

NONLINEAR FRACTIONAL PROBLEMS

Antoneta Jeflea

1. Introduction
The non-linear fractional fractional programming problem, i.e. the mini-

mization of a fraction of two functions subject to given conditions, arises in
various decision making situations; for example linear fractional programming
is used in fields of game theory, network flows; the quadratic fractional pro-
gramming problem is used on field production planning and inventories.

There are different solution algorithms for determing the optimal solution
of particular kinds of fractional programming problems. For example, the
authors Charnes and Cooper (1962), Isbell and Marlow (1962), Martos (1964)
and Wolf (1985) solve linear fractional programming. Integer linear fractional
programming has been solved by Rajendra (1993), Seshan and Tibekar (1980),
Chandra and Chandramoham (1980), etc. Swarup (1965) gives an algorthm
for solving quadratic fractional programming. The case where the restrictions
are linear and the objective function is the quotient of a convex function with
a concave function is solved by Mangasarian (1969) using Frank and Wolfe

′
s

algorithm (1956). Dinkelbach (1968) also considered the same objective over
a convex feasible set. He solved this problem by means of the solution of a
sequence of non-linear convex programming problems.

There are other fields of application where exact algorithms do not exist to
solve fractional programming. An example of this is given in Gopal et al.(1991)
which investigates configuration management and optimal logical network de-
sign for reconfigurable networks. They defined underlying constrained non-
linear integer fractional problems and developed a heuristic technique to solve
it.

In this paper several algorithms are presented to solve non-linear fractional
programming based on the parametric approach to the fractional programming
problem given by Dinkelbach. We prove their convergence and this opens
the posibility of developing new exact algorithms or heuristic procedures for
problems formulated by means of fractional programming.
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This paper is organized as follows. In Section 2 we introduce the fractional
problem and Dinkelbach

′
s algorithm and we prove the global convergence of

Dinkelbach
′
s algorithm for the general case of the fractional programming.

In Section 3, a possible extension is given for the speed-up of Dinkelbach
′
s

algorithm. It consists of solving the subproblems inexactly. We prove the
global convergence of the method under the hypothesis that the algorithm
employed for the subproblem is a descent algorithm whose algorithm map is
closed.

2. Dinkelbach
′
s algorithm.

2.1 Notation and preliminaries.
The general fractional programming can be formulated as the following

problem:
(P)

{
min θ(x) = Φ(x)

Ψ(x) : x ∈ X
}

where X is a nonempty compact of Rn. The functions Φ(x) and Ψ(x)
are continuous real-valued functions of x ∈ X. Furthermore, the following
assumption is also made:

Ψ(x) > 0 for all x ∈ X. (2.1)
θ is a continuous function of the compact set X and thus (P) has a solution.

By Ω, we denote the set of solution of (P).
Jagannathan (1966) supplied theorethical insight into the relationship be-

tween non-linear fractional programming and non-linear parametric program-
ming. He studied the relationship of the problem (P) with the following
problem:

(P (δ)) min {Φ(x) − δΨ(x) : x ∈ X}
and proved the following theorem:
Theorem 2.1 (Jagannathan

′
s theorem). Let y ∈ X, y is an optimal

solution for (P) if and only if y is an optimal solution for
min {Φ(x) − θ(y)Ψ(x) : x ∈ X}
The problem P (δ) studied by Jagannathan has a solution for any δ ∈ R

because X is a compact set of Rn and Φ and Ψ are continuous on X. We can
define:

f(δ) = min {Φ(x) − δΨ(x) : x ∈ X}
Dinkelbach (1968) developed a method based on Jagannathan

′
s theorem

for solving non-linear fractional problems where the function Ψ is concave and
Φ is convex. He proved the convergence of the algorithm for this case. The
original Dinkelbach

′
s algorithm may be stated as follows:

Step 1 Let x1 be a feasible point of X and δ1 = θ(x1). Let k = 1 and go
to Step 2.

Step 2 (Subproblem) By means of any method of convex programming solve
the following subproblem:

SUB(k):
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f(δk) = min {Φ(x) − δkΨ(x) : x ∈ X}
and denote any solution point by xk+1

Step 3 If f(δk) = 0, stop and xk is optimal. Otherwise, set δk+1 = θ(xk+1)
and k = k + 1,and go to Step 2.

2.2 Global convergence
The subsection shows that Dinkelbach

′
s algorithm is also valid to solve the

general fractional problem. The applicability of the method is based on the
possibility of solving the subproblem SUB(k) generated in all iterations, that
are not necessarily convex programmes. We will prove that the algorithm is
convergent for solving (P).

Let {xk} be a sequence of points of X , we denote by θk the function:
θk(x) = Φ(x) − θ(xk)Ψ(x).
Lemma 2.1 Let {xk} be a sequence of points of X. If θk(x) < 0 holds for

some x ∈ X, then θ(x) < θ(xk).
Proof. The hypothesis justifies the following expression
θk(x) = Φ(x) − θ(xk)Ψ(x) < 0.
Removing θ(xk) from the previous relation and using (2.1), we obtain

θ(x) < θ(xk).
The basic descendent property is given by the following lemma:
Lemma 2.2 Assume that xk is a feasible point in (P), and that xk+1

solves SUB(k). If xk solves SUB(k), then xk is optimal in (P). Otherwise,
θ(xk+1) < θ(xk).

Proof. If xk solves SUB(k), then Jagannathan
′
s theorem guaranties that

xk solves (P). Otherwise, as xk+1 solves SUB(k).
ϕk(xk+1) < ϕk(xk) = Φ(xk) − θ(xk)Ψ(xk) = Φ(xk) − Φ(xk)

Ψ(xk)Ψ(xk) = 0
and by using Lemma 2.1 we obtain θ(xk+1) < θ(xk).
Lemma 2.2 justifies the checking of the optimality in Step 3 of the algo-

rithm. If the convergence is not detected after having solved SUB(k), the
algorithm proceeds by defining the new xk+1as a solution of SUB(k).

The basic convergence property of this algorithm is given below.
Theorem 2.2 Dinkelbach

′
s algorithm either terminates in a finite number

of iterations or it generates an infinite sequenceso that any accumulationpoint
solves (P).

Proof.We prove that the map of Dinkelbach
′
s algorithm (which it is de-

noted by D ) is closed on X − Ω.
Let {xk} and {yk} be two sequences satisfying:

xk ∈ X and lim
k→∞

xk =
−
x∈ X − Ω,

yk ∈ D(xk) and lim
k→∞

yk =
−
y . (2.2)

We show that
−
y∈ D(

−
x).
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Using the fact that yk ∈ X and X is a closed set, we obtain
−
y∈ X.

We define Γ(x, y) = Φ(y)−Φ(x)
Ψ(x)Φ(y). Let

ˆ
y be

ˆ
y∈ D(

−
x), therefore it satisfies

the following inequality:

Γ(
−
x,

ˆ
y) ≤ Γ(

−
x,

−
y). (2.3)

By hypothesis (2.2), yk solves P (θ(xk)) and the following expression is
verified

Γ(xk, yk) ≤ Γ(xk,
ˆ
y). (2.4)

The function Γ(x, y) is continuous on X×X in particular at (
−
x,

−
y). Taking

limit on both sides of expression (2.4), we obtain:

Γ(
−
x,

−
y) ≤ Γ(

−
x,

ˆ
y).

This relation joint at (2.3) guaranties that Γ(
−
x,

ˆ
y) = Γ(

−
x,

−
y) and

−
y solves

P (θ(
−
x)).

We have proved that the algorithmic mapis closed on X − Ω and that
Lemma 2.2 is an algorithmic descent. These properties ensure convergence of
the algorithm. Thus the proof is complete.

3 Dinkelbach
′
s Truncated Algorithm

Patriksson (1993) introduced the class of partial linearization methods.
These solve a continuous optimization problem by means of the solving of a
sequence of subproblems of optimization in the original feasible region. The
solution of these subproblems defines a descent direction in all iterations.

Patriksson considered that from a practical point of view, the subproblems
can not be solved exactly, and there must be a trade-off between the amount
of work spent on solving the subproblem and obtaining sufficient step descent.

The idea behind the truncated algorithm is to limit the work performed on
the subproblem, by limiting the number of iterations performed with a finite
integer nk. From above this numbers can either be determined a priori, or be
viewed as being the consequence of the algorithm and stopping criteria chosen
for the subproblems.

This strategy to speed up the partiallinearization methods has been adapted
to Dinkelbach

′
s algorithm. in this context the subproblems SUB(k) will be

solved inaccurately by means of realising nk iterations with a descent algo-
rithm.

It will be shown that the sequence {nk} may be chosen arbitrarily, with
nk ≥ 1 (∀) k, and convergence will still be ensured under the condition that the
method used for solving SUB(k) has a closed algorithmic map. The following
theorem establishes the global convergence of the truncated algorithm.

Theorem 3.1. Assume thet the algorithm used for solving the SUB(k) is
a descent algorithm with closed algorithmic map on the class of problems P (δ)



A PARAMETRIC STUDY 91

and that the termination criteria chosen for SUB(k) is to realise nk iterations
, 1 ≤ nk ≤ ∞, with the algorithm. We assume that the initial guess for
the SUB(k) is the point xk. Thus the algorithm either terminates in a finite
number of iterations or it generates an infinite sequence {xk} such that any
accumulation point solves (P).

Proof. The point xk+1 is obtained making in P (δk) more than on iteration
with a descent algorithm and initial guess xk. This fact guarantees that if xk

is not an optimal solution for SUB(k) then
φk(xk+1) < φk(xk) = 0.

Otherwise, xk is an optimal solution for SUB(k) and Jagannathan
′
s theo-

rem justifies that xk is also an optimal solution for (P). Moreover φk(xk+1) = 0
and Dinkelbach

′
s truncated algorithm detects the optimality of xk.

Assume therefore that φk(xk+1) < 0, (∀) k.

Lemma 2.1 guarantees that the sequence {θ(xk)} is decreasing and mono-
tone. It is low bounded by the optimal value of (P), thus the sequence is
convergent.

lim
k→∞

θ(xk) = δ∗ (3.1) and any subsequence is convergent at δ∗.
Assume that , for any positive constant S, there exists a finite integer i such

that nk ≥ S, (∀) k ≥ i. We say that lim
k→∞

nk = +∞. Thus the subproblemis

solved accuratelyin the limit, and convergence is ensured by Theorem 2.2.
Otherwise, let {yk} be a subsequence of {xk} satisfying lim

k→∞
yk = y, (3.2)

therefore we will prove that y solves (P ).
Since lim

k→∞
nk �= +∞, there must be an integer k∗ that occurs in the

sequence {nk},an inmfinite number of times. Choose the subsequence {uk} of
{yk} corresponding to the indices. Let M be the algorithmic map defined by
the composite of k∗ consecutive times of the closed algorithmic map used to
solve the subproblems (which we denote as A) with the function

B: X × [δMIN , δMAX ] → X × [δMIN , δMAX ]
(x, δ) → (x, θ(x))

where δMIN and δMAX are respectively the minimum and the maximum
values of (P), i.e. M = AA...AB where A is k∗ times.

The mapping A is closed and B(x, δ) = (x, θ(x)) is a continuous function
on its domain, thus the composite mapping M is closed.

We consider the subsequence of {xk}, that we denote as {y′
k}, that satisfies

(y
′
k, θ(uk)) ∈ M(uk, θ(uk))
Without loss of generality we can assume that the sequence {y′

k} is con-
vergent, limk→∞ y

′
k = y

′
.

θ(uk) and θ(y
′
k) are two subsequence of the convergent sequence {θ(xk)}

and using (3.1)
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lim
k→∞

θ(uk) = δ∗, lim
k→∞

θ(y
′
k) = δ∗. (3.3)

Such as {uk} and {y′
k} are two convergent sequences and θ is continuous as

their limits y and y
′
respectively, we obtain

lim
k→∞

θ(uk) = θ(y), lim
k→∞

θ(y
′
k) = θ(y

′
). (3.4)

Using the relations (3.3) and (3.4) we obtain θ(y) = θ(y
′
). (3.5)

As M is a closed map, and using (3.3) and (3.4) we obtain (y
′
, θ(y)) ∈

M(y, θ(y)).
If y did not solve P (θ(y)), y

′
could improve the value of the objective

function of P (θ(y)) at y, i.e. Φ(y
′
) − θ(y)Ψ(y

′
) < Φ(y) − θ(y)Ψ(y) = 0, and,

using Lemma 2.1, θ(y
′
) < θ(y), this fact contradicts the relation (3.5).

We have proved that y is an optimal solution for P (θ(y)) and Jagannathan
′
s

theorem guarantees that y is also an optimal solution for (P ).
Conclusions
We have extended Dinkelbach

′
s algorithm developed for the class of convex

problems to the general case of fractional programming and have proved its
convergences.

We have developed a strategy to speed up the convergence of the extension
of Dinkelbach

′
s algorithm. It is based on the truncation of the solution of the

subproblems.
The truncation strategy allows the possibility of developing heuristic al-

gorithms for difficult problems of fractional programming by means of the
study of the subproblem P (δ). It is a methodwith which to obtain a decrease
sequence for (P ) through a decrease sequence for problems of P (δ).
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