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DETERMINATION OF RELIABILITY
BOUNDS FOR STRUCTURAL SYSTEMS

USING LINEAR PROGRAMMING

Romică Trandafir, Sorin Demetriu and Ion Mierlus-Mazilu

Abstract

In reliability analysis of structural systems, what is of interest is in-
tervals containing the survival probability when exact values cannot be
obtained. There are analitical formulas to determinate the bounds of
the system survival probability for series systems by employing bi- and
higher-order component probabilities. For parallel systems, the bounds
of the system survival probability cannot be found analytically only
from marginal probabilities (first order component probabilities). Lin-
ear programming can be used to calculate the bounds of survival (or
failure) system probability for any system with any amount of infor-
mation available on the component probabilities. This paper considers
two-state (intact or failure) component systems and uses the probabili-
ties associated to these events as decision variables. The linear objective
function is a sum containing some of these probabilities, with linear re-
strictions given by the individual probabilities and/or joint component
probabilities and by the axioms of probability. The lower bound of the
system probability is obtained as the minimum of the objective function
and the upper bound is obtained as its maximum.

1 Introduction

The reliability of a structural system is its ability to fulfill its design purpose
for some specified reference period (Toft-Christensen and Murotsu, 1986).

The basic variables that emerge during the design process (loads, material
properties, geometrical characteristics) are modelled as random variables.

Failure occurs when the load effects (L) exceeds the resistance (R) of the
structure and can be derived by considering the probability density functions
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of L and R. The main goal for the safety of the structure is to guarantee an
R > L scenario throughout the design life of the structure.

The probability of failure of structural systems composed of structural el-
ements is calculed by forming failure functions (limit state functions) for the
components. The component failure functions are then combined to form a
multidimensional limit surface for the system and its failure criteria. The prob-
ability of failure is subsequently calculated through multidimensional volume
integration over the relevant space.

If g(X ) =g(X1, ..., Xn) denote the failure function, the probability of com-
ponent failure is defined by

PF = P (g(X ) ≤ 0) =
∫

g(X )≤0 fX (x )dx ,

and the reliability is

PS = 1 − PF = P (g(X ) > 0) =
∫

g(X )>0 fX (x )dx ,

where fX (x ) is the probability density function (pdf) of random vector X of
basic variables.

For example, assuming that R and L are normal, statistically indepen-
dent random variables, reliability can be defined as the survival probability of
component

PS = P (R > L) =
∞∫

−∞

L<R∫
−∞

fR (r) fL (l)drdl

where fR(r) is the pdf of resistance variable and fL(l) is the pdf of the load
effect variable. The safety index can now be defined as

β = Φ−1 (PS) = Φ−1 (1 − PF ) ,

with Φ - the cumulative normal distribution function (cdf).
Reliability is synonimous with operational safety of the system. It under-

lines some performance indicators that describe the well-functioning of the
system.

In what follows structural systems are assumed to be made of two-state
components (component is intact or component failed).

Given a system with n components, a state variable can be assigned to
each component i (Vãduva, 2003)

Zi =
{

1, if component i is operational
0, otherwise .
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Similarly, a state variable called structural function of the system can be
assigned to the system:

ϕ(Z ) = ϕ(Z1, Z2..., Zn) =
{

1 if the system is operational
0 otherwise.

The structural function can be determined when the topology of the system,
i.e. the arrangement of the components, is known (components in series, in
parallel or a combination of these).

The system S is of the type ” k of n ” if it fails when at least k its
components fail. In this case, there are m = Ck

n subsets, Cj , of k of the n
components of S, and the structural function is defined as

ϕ(Z ) = min
1≤j≤m

max
i∈Cj

{Zi}

When k=1, the components of the system are in parallel (the system is
called parallel system) and

ϕ(Z ) = min
1≤j≤n

{Zj} = 1 − (1 − Z1) (1 − Z2) ... (1 − Zn) .

Parallel systems are the redundant systems. In engineering terminology, re-
dundancy is defined as the capacity of structural systems to continue to carry
loads following the failure of one or more of their components

When k=n, the components of the system are in series (the system is called
series system) and

ϕ(Z ) = max
1≤j≤n

{Zj} = Z1Z2...Zn.

When the components of the system are statistically independent, the re-
liability of the system is (Lixandroiu, 2001)

PS = E [ϕ(X )],

where E[.] is mean value.
The reliability issue can be approached as follows: given the survival

probabilities of the components, denoted by PS1 ,...,PSn , find the function
h(Z1, Z2, ... . . . , Zn) such that the reliability of the system S is

PS = h (PS1 , ...PSn) .
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2 Bounds for the survival and failure probabilities

Consider the case when the performance function g depends liniarly on R
and L, (g = R − L), and R and L are assumed to be random variabiles.
Let Ei = {Ri < Li} be the event of failure of the i-th component. The exact
survival and failure probabilities depend on the correlation between the failure
types and are difficult to caculate in general.

In the failure tree, let the path j denote the path that leads to the failure of
the system. The probability of failure of this path is the product of conditional
probabilities on the path (Ayyub and Ibrahim, 1989):

P (path j) =
k∏

i=1

P (Eji)

where P (Eji) is the probability of event i occuring on path j,conditional on
events Ej1, Ej2, ..., Eji−1 occuring, meaning that path j occured if the inter-
section of the corresponding events occured:

path j =
k⋂

i=1

P (Eji).

The lower bound of the probability failure of a redundant system is the
probability of the most likely path to lead to failure, that is, the highest
probability of occurance of a failure path. The upper bound is the probability
of the union of all failure paths of all components defining the intact structure:

max
1≤j≤r

P (path j) ≤ PF ≤ 1 −
r∏

j=1

[1 − P (path j)]

where r is the number of failure paths in the failure tree. The upper bound
corresponds to the case of uncorreled failure paths, while the lower bound
corresponds to perfectly correlated failure paths.

The estimation method of the probability of failure of a system based on
the probability of failure of all single failure modes is called one-order bounds,
or Boole’s bounds, estimation. These bounds are, for a series system (Song
and Der Kiureghian, 2003)

max
1≤i≤n

Pi ≤ PF = P

(
n⋃

i=1

Ei

)
≤ min

{
n∑

i=1

Pi, 1

}
and for a parallel system

max

{
0,

n∑
i=1

Pi − (n − 1)

}
≤ PF = P

(
n⋂

i=1

Ei

)
≤ min

1≤i≤n
(Pi) .
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This is a rather easy procedure, but it yields a relatively large interval.
Ditlevsen derived a smaller interval for the probability of failure of a struc-

tural system using all single-mode probabilities of failure and all two-mode
joint failure probabilities, the so-called two-order bounds (Ditlevsen’s bounds),
(Ditlevsen, 1979). For a series system, these bounds are

P1 +
n∑

i=2

max

⎧⎨⎩Pi −
i−1∑
j=1

Pij ; 0

⎫⎬⎭ ≤ PF = P

(
n⋃

i=1

Ei

)
≤

n∑
i=1

Pi −
n∑

i=2

max
j<i

Pij .

(1)
The bounds of the interval are significanly improved if first, second, and

higher order probabilities are taken into acount (Zhang, 1993). Also, the mid-
point of the interval can be used as an approximation for the failure probability
(Feng and Yang, 1991).

The three-order bounds are:

P (E1 ∪ E2) +
n∑

i=3

max

⎧⎨⎩Pi −
i−1∑
j=1

Pij + max
1≤l≤i−1

i−1∑
j �=l,j=1

Pijl; 0

⎫⎬⎭ ≤ PF ≤

≤ P (E1 ∪ E2) +
n∑

i=3

[
Pi − max

j<l, 1≤l≤i−1
{Pil + Pij − Pilj}

]
(2)

where: Pij=P (EiEj), Pilj=P (EiElEj) .
The k-order bounds (0 < k < n) can be obtained analogously to the three-

order bounds:

P (E1 ∪ ... ∪ Ek−1) +
n∑

i=k

max
{
P̃i; 0

}
≤ PF

PF ≤ P (E1 ∪ ... ∪ Ek−1) +
n∑

i=k

min
Ik−1

(
P

(
Ei

k−1⋂
s=1

Ers

))
, (3)

where: Ik−2 is a set of k − 2 integers between 1 and i − 1, and

P̃i = P

(
Ei

k−2⋂
s=1

Els

)
− max

Ik−2

i−k+1∑
s=1

P

[
Ei

(
k−2⋂
s=1

Els

)
Ejs

]
.

Since the series system state is characterized by union operations, Esys =
n⋃

i=1

Ei, and the parallel system state by intersection operations, Esys =
n⋂

i=1

Ei,
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a parallel system can be transformed into a series system using De Morgan’s

rule:
n⋂

i=1

Ei =
n⋃

i=1

Ei. In this way the bounds for a parallel systems can be

calculated using equations (1), (2) and (3).

3 Derivation of two- and three-order failure probabilities
for series systems

For a series system, if the safety margin corresponding to the i-th failure mode
is denoted by Mi, (Zang, 1991) then

Mi =
{ ≤ 0 if the i-th failure mode occurs

> 0 otherwise .

Let Ei be the i-th failure mode occurence event, i = 1, 2, ..., m, and let E be
the event characterizing the system state.

Then the failure probabilities Pi, Pij , Pijk are given by the following equa-
tions:

Pi = P (Mi < 0) = P (Ei) =
∞∫

−∞
f (mi) dmi,

Pij = P ((Mi < 0) ∩ (Mj < 0)) = P (EiEj) =
∞∫

−∞

∞∫
−∞

fij (mi, mj) dmidmj ,

Pijk = P ((Mi < 0) ∩ (Mj < 0) ∩ (Mk < 0)) = P (EiEjEk) =
0∞∫
−∞

0∫
−∞

0∫
−∞

fijk (mi, mj , mk) dmidmjdmk,

where: fi, fij , fijk are the pfd’s of Mi, (Mi, Mj) and (Mi, Mj , Mk), re-
spectively. When Mi, Mj and Mk are normally distributed, one can derive
analitical expressions for the integrals above, but the calculations are very
difficult. Song (1992) presents a method for numerical integration to evaluate
these integrals.

4 Evaluation of the bounds of the system reliability using
linear programming

For a series system having n two-state components, the sample space of
the component events has 2n mutually exclusive and collectively exhaustive
(MECE) events. Table 1 gives the intersections of the events (paths), the
state vectors, the MECE events, and the corresponding elementary probabili-
ties when n=3 (the case of a series system associated with the parallel system
in Example 2 in the next section).
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Table 1
Paths E1E2E3 E1E2E3 E1E2E3 E1E2E3

State 000 001 010 100
MECE e1 e2 e3 e4

Probabilities p1 p2 p3 p4

Paths E1E2E3 E1E2E3 E1E2E3 E1E2E3

State 011 101 110 111
MECE e5 e6 e7 e8

Probabilities p5 p6 p7 p8

The probabilities vector p = (p1, ..., p2n) is the vector of decision variabiles
in the linear programming (LP) problem. The probabilities p must satisfy the
linear constraints

2n∑
i=1

pi = 1, 0 ≤ pi ≤ 1, (∀) i = 1, 2n,

according to the basic axioms of probability, and the constraints concerning
the information on the uni-, bi- and three-component probabilities, if they
exist. When n=3, these constraints are given by the following equations:

p1 + p2 + p3 + p5 = P (E1) = P1,

p1 + p2 + p4 + p6 = P (E2) = P2

p1 + p3 + p4 + p7 = P (E3) = P3

p1 + p2 = P (E1E2) = P212,

p1 + p3 = P (E1E3) = P213,

p2 + p3 = P (E2E3) = P223.

The survival probability h(p) = p2n or the failure probability of the struc-
tural system 1−h(p) = 1− p2n may both be considered as objective function.
Thus, one obtains the LP problem opt h(p) subject to the constraints (Song
and Der Kiureghian, 2003):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
r:er⊆Ei

pr = P (Ei) = Pi i = 1, n∑
r:er⊆EiEj

pr = P (EiEj) = P2ij 1 ≤ i < j ≤ n∑
r:er⊆EiEjEk

pr = P (EiEjEk) = P3ijk 1 ≤ i < j < k ≤ n

The lower and upper bound of survival probability given by the function
h are obtained when opt is min or max, respectively.
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5 Numerical results

The following examples consider series and parallel systems and calculate the
bounds for the reliability and the failure probability of these systems. The nu-
merical results are in perfect concordance with the numerical results obtained
by other authors.

Example 1. For a series system with 4 components (Zhang, 1993) having
the safety index vector β = (0.6, 0.8, 1, 1.2), the marginal and joint bi- and
three-component probabilities are calculated using the equations:

P (Ei) =
−βi∫
−∞

f(t)dt = Φ−1 (βi) , (∀) i = 1, 4,

Pij = P (EiEj) =
−βi∫
−∞

Φ
(

βi−ρij t√
1−ρ2

ij

)
f(t)dt, 1 ≤ i < j ≤ 4

Pijk = P (EiEjEk) =
∞∫

−∞
f(t)

∏
s={i,j,k}

Φ
(

βs−λst√
1−λ2

s

)
dt,

where f(t) = 1√
2π

e−
t2
2 , Φ is the standard normal cdf and λ1, λ2, λ3 and λ4,are

given by the Dunnett-Sobel decomposition (Dunnett and Sobel, 1955) of the
correlation matrix ρ if this decomposition is possible, i.e. ρij = λiλj , |λi| ≤ 1,
for all i = 1, 4, i �= j. The results are:

P =

⎛⎜⎜⎝
0.2742531178
0.2118553986
0.1586552539
0.1150696702

⎞⎟⎟⎠ , and for ρ =

⎛⎜⎜⎝
1 0.855 0.8075 0.76
0.855 1 0.765 0.72
0.8075 0.765 1 0.68
0.76 0.72 0.68 1

⎞⎟⎟⎠,

it follows that λ =

⎛⎜⎜⎝
0.9500006515
0.9000000041
0.8500000039
0.7999999652

⎞⎟⎟⎠ and

P212=0.1710696401 , P213=0.1302165521 , P214=0.0952591086 ,
P223=0.1092029619 , P224=0.0812099041 , P234=0.0656607765 ,
P123=0.1018319141, P124=0.076338052, P134=0.0624301361,

P234=0.0563939207 .

The corresponding bounds are listed in Table 2.

Table 2
Bounds

Probability Boole Ditlevsen
of lower upper lower upper

survival 0.2401665595 0.7257468822 0.5860999381 0.6849611238
failure 0.2742531178 0.7598334405 0.3150388762 0.4139000619
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Bounds
Probability Zang LP

of lower upper lower upper
survival 0.6489547602 0.6521854007 0.6489547602 0.6521854007
failure 0.3478145993 0.3510452398 0.3478145993 0.3510452398

Example 2. Let us consider now a parallel system with 3 components
(Ang and Tang, 1984). For this system, the load (L) and the resistance (R) are
normally distributed, L ↪→ N (µL, σL) and R ↪→ N (µR, σR), with a correlation
coefficient ρ = 0.44 and coefficients of variation

VL = σL

µL
= 0.25, VR = σR

µR
= 0.15.

The following probabilities can be calculated:

P = (Pi) , Pi = 0.01003, i = 1, 3, P2 = (P2ij) , P2ij = 0.00102113,
1 ≤ i < j ≤ 3.

The series system can be obtained by using De Morgan’s rule, allowing the
calculation of the bounds for the survival and failure probabilities. The results
obtained after returning to the initial parallel system are shown in Table 3 .

Table 3
Bounds

Probability Boole Ditlevsen&LP
of lower upper lower upper

survival 0.98997 0.96991 0.97196 0.97298
failure 0.01003 0.03009 0.02702 0.02804

Example 3. Consider a Daniels’ parallel system with 4 wires (adapted
from Song and Der Kiureghian, 2003) under following conditions: a) the
wires are perfectly britle and have identical, deterministic elastic moduli;
b) the wire strengths are statistically independent and identically Weibull-
distributed random variables with cdf F (x) = 1 − e−λxγ

, x ≥ 0, and c) the
load L is deterministic and equally distributed among the surviving wires.
Let X1,X2,.X3 and .X4 denote the random strengths of the 4 wires and let
X(1) ≤ X(2) ≤ X(3) ≤ X(4), denote the set of wire strengths in increasing
order.

If Ei =
{
X(i) ≤ L

4−i+1

}
, i = 1, 4, and bi = F

(
L
i

)
, then the exact failure

probability of system is

PF = n! det

(
P

(
4⋂

i=1

Ei

))
, where P

(
4⋂

i=1

Ei

)
=

⎛⎜⎜⎜⎝
b4

b24
2!

b34
3!

b44
4!

1 b3
b23
2!

b33
2!

0 1 b2
b22
2!

0 0 1 b1

⎞⎟⎟⎟⎠.
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For γ = 20, λ = 0.01, L = 4, the failure probability is PF =0.0392074604.
The Boole, Ditlevsen and LP (for the associated series system) bounds for
the survival and failure probabilities can be calculated using the same values
for the parameters. The uni-component probabilities for the series system
calculated by the equations

Pi = 1 − F
(

L
5−i

)
= 1 −

4∑
r=1

Cr
4F r

(
L

5−i

) [
1 − F

(
L

5−i

)]4−r

, i = 1, 4,

are P1=0.0392105608 , P2=0.99969838872 , P3=1 and P4=1, and the bi-

component probabilities calculated from the equations

P2 = P (EiEj) =
4∑

l=5−i

∑
s=max{0,5−i−l}

4!
l!s!(4−l−s)!

[
1 − F

(
L

5−i

)]l
×

×
[
F
(

L
5−j

)
− F

(
L

5−i

)]
F 4−l−s

(
L

5−i

)
are all zero with the exception of P212=0.00000332688. The bounds are shown
in Table 4.

Table 4
Bounds

Probability Boole Ditlevsen&LP
of lower upper lower upper

survival 0.9607894392 0.9610910519 0.9610877251 0.9610877251
failure 0.0389089481 0.0392105608 0.0389122749 0.0389122749

Note that the information available gives values for the failure probability
very close to the exact value from Daniels’ equation.

6 Conclusions

If the marginal and all k-joint component probabilities, 1≤ k ≤ n, are known,
then the constrained system is exactly determined (since the determinant of
the constraints matrix is (−1)n−1) and the value of the objective function gives
the exact survival (failure) probability of the system. The use of LP yields
bounds for the survival (failure) probability even when not all bi- and three-
component probabilities are known, the accuracy of these bounds depending
on the information available.

The major disadvantage of using LP to determine the reliability bounds
of structural systems lies in that the size of LP problem grows exponentially
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with the number of component states (2n decision variabiles). However, this
disadvantage is not critical due to the highly advanced LP algorithms and
codes (Song and Der Kiureghian, 2003), at least for systems with at most 17
components.
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