
An. Şt. Univ. Ovidius Constanţa Vol. 11(2), 2003, 127–136

OPTIMIZATION ALGORITHM FOR

FINDING SOLUTIONS IN LINEAR
PROGRAMMING PROBLEMS

Ioan Popoviciu

Abstract

When speaking about linear programming problems of big dimen-
sions with rare matrix of the system, solved through simplex method, it
is necessary, at each iteration, to calculate the inverse of the base ma-
trix, which leads to the loss of the rarity character of the matrix. The
paper proposes the replacement of the calculus of the inverse of the base
matrix with solving through iterative parallel methods a linear system
with rare matrix of the system.

General Presentation
Linear programs for big real systems are characterized by rare matrices,

having a low percentage of non-zero elements. The rare character appears at
each base matrix, but disappears at the inverse of this matrix. In its classical
form, the simplex method uses a square matrix, the inverse of the base matrix,
whose value is putting up-to-date at each iteration. The number of non-zero
elements of the inverse matrix increases rapidly and depends on the number of
iterations. Because of this, in the place of the calculus of the rare matrix, one
can solve the linear systems with a rare matrix of the system through iterative
parallel methods.

Let’s take the linear programming problem in the standard form:

Ax = b, x � 0 (1)

max
(
f (x) = cT x

)
, (2)

where A is a matrix with m lines and n columns, x ∈ Rn, b ∈ Rm, c ∈ Rn.
At each iteration, one takes a base, meaning a square matrix of order

m, which can be inverted, extracted from the matrix A, denoted with A′,where

127

128 Ioan Popoviciu

I ⊂ N, |I| = m. We associate a basic solution to the base I defined by: xB
I =(

AI
)−1

b, xB
I

= 0, where I is the complement of I in N .
The bases which are being successively generated through simplex

method are of the type xB
I ≥ 0, meaning the basic solutions considered are all

admissible (they fulfill the conditions (1) and (2)).
An iteration consists of a change of the base I into an adjacent base

I ′; this is a base obtained through the changing of the index r ∈ I with the
index s ∈ I , I ′ = I − r + s.

To determine r and s, one has to calculate:

u = f I
(
AI

)−1
, dI = f I − uAI , (3)

where u, f I , dI are row vectors. This allows that s ∈ I is selected by the
condition ds > 0. Then:

xB
I =

(
AI

)−1
b, T s =

(
AI

)−1
as, (4)

where as is the column number s of the matrix A, and xB
I , b, T s, as are

column vectors. One obtains r ∈ I through condition:

xr

T s
r

= min
{

xi

T s
i

| i ∈ I, T s
i > 0

}
. (5)

When the values r and s are determined, it follows the updating of the

inverse of the base matrix , meaning that
(
AI′

)−1

is determined. This is
obtained from the relation:(

AI′)−1

= Er (η)
(
AI

)−1
(6)

where Er (η) is the matrix obtained from the unit matrix of order n, by
replacing the column er with the vector expressed by:

η =
(
−c1

cr
, . . . ,−cr−1

cr
,

1
cr

,−cr+1

cr
, . . . ,−cn

cr

)
, where c =

(
AI

)−1
as.

In this way, the mathematical equations are represented by the relations
(4-6), and the inverse of the base matrix appears in the relations (3) and (4).
The relations (3), (4) can be replaced by:

uAI = f I (3’)

AIxB
I = b, AIT s = as. (4’)

In the first equation, the matrix is the transpose of the base matrix; in the
last two equations, even the base matrix A appears and consequently these
two systems benefit from the rare character of matrix A, an efficient solution
being possible through iterative parallel methods.

OPTIMIZATION ALGORITHM FOR FINDING SOLUTIONS IN LINEAR
PROGRAMMING PROBLEMS 129

The parallel algorithm of the conjugated gradient.
In order to solve linear systems of large dimensions of the type (3

′
) and

(4
′
) we are going to present a parallel implementation of the algorithm of

the conjugated gradient, a method where, in the first place, one has to do a
multiplication between a rare matrix and a parallel vector.

Let’s take the product y = Ax, where A is a rare matrix n× n, and x
and y are vectors of n dimension. In order to accomplish a parallel execution
of the product y = Ax, one has to perform a partitioning of the matrix A
into a matrix distributed over many processors. In this view, a subset of the
components of the vector x and consequently a subset of the rows of the matrix
A are being allocated to a processor so that the components of vectors x and
y can be divided into three groups:

- internal are those components which belong (and consequently are
calculated) to the processor and do not take part into the communication
between the processors. We say in consequence that yj is an internal com-
ponent if it is calculated by the processor to whom it belongs and if the index
j of the column corresponding to the element aij different from zero in the line
i corresponds to a component xj which also belongs to the same processor;

- border set are those components which belong (and by consequence
are calculated) to the processor, but they require a communication with other
processors in order to calculate them. Thus, we may say that yj is a border
set component if it is calculated by the processor which it belongs to and if
at least one column index j associated to the non-void elements aij from line
i, corresponds to a component xj which does not belong to the processor;

- external are those components which do not belong to (and by
consequence are calculated) by the processor, but which correspond to col-
umn indexes associated to non-zero elements from the rows belonging to the
processor.

In conformity with this organisation, there corresponds to each processor
a vector whose components are ordered as follows:

- the first components are numbered from 0 to Ni −1, where Ni is the
number of internal components ;

- the next components are border set components and occupy the
positions from Ni to Ni + Nf − 1 , where Nf is the number of border set
components;

- the last components are external components and occupy the posi-
tions comprised between Ni + Nf and Ni + Nf + Ne − 1, where Ne is the
number of external components.

Within this vector associated with a processor, the external components are
being ordered so that those which are used by the processor occupy successive
positions.

130 Ioan Popoviciu

For example let’s take A(6, 6) and suppose that x0, x1, x2 and by conse-
quence the rows 0, 1, 2 of matrix A are allocated to the processor 0; x3 and x4

and by consequence the rows 3 and 4 are allocated to the processor 2; x5 and
by consequence rows 5 are allocated to the processor 1. The matrix A has the
non-zero elements marked by a * in the following description.

0
proc.0 1

A = 2
proc.2 3

4
proc.1 5

0 1 2 3 4 5⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

For processor 0 which has the rows 0, 1, 2 attached to the matrix A and
respectively the components x0, x1, x2, we have:

Ni = 1: a sole internal component y0 because in calculating y0 it appears
only those that belong to the x0, x1, x2 processor 0.

Nf = 2: two border set components y1 and y2 in whose calculus the
elements belonging to other processors also appear:

- in the calculus of y1, x5 also appears; this belongs to the processor 1.
- in the calculus of y2, x5, x3, x4 there also appears; x5 belongs to the

processor 1 while x3, x4 belong to the processor 2.
Ne = 3: three external components because in the calculus of y0, y1, y2

there appear three components x5, x3, x4 which belong to other processors.
The communication graph corresponding to the processor 0 is defined in

the following picture:

To the rows 0, 1, 2, the following vectors correspond, vectors in which the
indices of the columns corresponding to the external components are grouped
and sorted into processors:

Line the indices of columns with non-zero elements
0 −→ 0 1 2
1 −→ 1 0 2 5

OPTIMIZATION ALGORITHM FOR FINDING SOLUTIONS IN LINEAR
PROGRAMMING PROBLEMS 131

2 −→ 2 0 1 5 3 4
Each processor has to acknowledge on which of the processors the external

components are calculated: in the above example, processor 1 calculates the
component y5 and processor 2 calculates the components y3 and y4. At the
same time, each processor has to acknowledge which of its internal components
are being used by other processors.

Let’s remind the schematic structure of the algorithm CG:
x = initial value
r = b − Ax . . . rest
p = r . . . initial direction
repeat

v = A ∗ p
. . . multiplication matrix-vector

a = (rT ∗ r)/(pT ∗ v)
. . . product “dot”

x = x + a ∗ p
. . . update solution vector
. . . operation “saxpy”

new r = new r − a ∗ v
. . . update rest vector
. . . operation “saxpy”

g = (new rT ∗ new r)/(rT ∗ r)
. . . product “dot”

p = new r + g ∗ p
. . . update new direction
. . . operation “saxpy”

r = new r
until (new rT ∗ new r smaller)
It is noticed that the following operations are necessary in the algorithm

CG:
1. A product rare matrix-vector;
2. Three vector updatings (operations “SAXPY”);
3. Two scalar products (operations “DOT”);
4. Two scalar dividings;
5. A scalar comparison for the testing of the convergence.
For the parallel implementation of the algorithm CG, the following

distinct parts appear:

a) Distribution of the date on processors
The date are being distributed on processors on lines so that each

processor has a consecutive number of lines from the rare matrix assignated:
typedefstructtag dsp matrix t

132 Ioan Popoviciu

{
int N; /∗ dimension matrix N × N ∗ /
int row i, row f; /∗ rank of beginning and ending line which

belongs to the processor∗/
int nnz; /∗ number of non-void elements from the

local matrix ∗/
double∗ val; /∗ elements of the matrix ∗/
int∗ row ptr; /∗ beginning of a matrix ∗/
int∗ col ind; /∗ column index∗/

} dsp matrix t;
Each processor will store the rank of the lines belonging to it, the elements

of the matrix and two pointers row ptr and col ind used in the storing of the
compressed on lines of a matrix.

b) In/out operation
In/out operations comprise the reading of the matrix and its stiring

in a compressed lines format.

c) Operations on vectors
The operations on vectors are of two types:

- operations “saxpy” for updating of the vectors, which do not require
communication between processors;

- operations “dot” (scalar product) which do not require communica-
tion between processors with the help of function MPI Allreduce.

d) Multiplication matrix-vector
Each processor uses at the calculus the rows of the matrix which belong to

it, but needs elements of the vector x which belong to other processors. This
is why a processor receives these elements from the other processors and sends
at the same time its part to all the other processors. In this way, we can write
schematically the following sequence:

new element x = my element x
for i = 0, num proces

- send my element x to the processor my proc + i
- calculate locally with new element x
- receive new element x from the processor my proc − i

repeat.

The optimisation of the communication
A given processor does not need the complete part of x which belongs

to other processors, but only the elements corresponding to the columns which
contain non-zero elements. At the same time it sends to the other processors
only the non-zero elements of x. This is the reason why the structure presented
above comprises the field col ind which indicates the rank of the column that

OPTIMIZATION ALGORITHM FOR FINDING SOLUTIONS IN LINEAR
PROGRAMMING PROBLEMS 133

contains a non-zero element. In this way, we can schematically write the
following sequence:

- each processor creates a mask which indicates the rank of the columns of
non-zero elements from A;

- communication between processors:
new element x = my element x

for i = 0, num proces
- if communication necessary between my proc and my proc + i

- transmit my element x to the processor my proc + i
endif
- calculate locally with new element x
- receive new element x from the processor my proc − i

repeat.
The algorithm implemented for a matrix of the dimension N × N =

960 × 960, with 8402 non-zero elements has given the following results:

Number Number Calculus Duration of Time Time for Total

of of duration commu for the opera duration

processors iterations nication memory tions

between allocation with

processors vectors

1 205 3.074 0.027 0.002 0.281 3.384

2 205 2.090 0.341 0.002 0.136 2.568

4 204 1.530 0.500 0.002 0.070 2.110

* time is expressed in minutes.
The analysis of the performance of the algorithm CG.

The analysis of the performance of the algorithm CG is done from
the point of view of the time necessary for the execution of the algorithm. In
this model the initiation times for the matrix A and of the other vectors used
is neglectable. At the same time, the time necessary for the verification of
the convergence is disregarded and it is presupposed that the initializations
necessary for an iteration have been done.

A) Analysis of the sequential algorithm
Notations:
m=vectors dimension
N=total number of non-zero elements of matrix A
k=number of iterations for which the algorithm is executed
Tcomp1s=total calculus time for the vectors updating (3 operations SAXPY)
Tcomp2s=total calculus time for the product Ap and for the scalar product

(r, r)
Tcomp3s=total calculus time for the scalar products(A, Ap) and (p, Ap)

134 Ioan Popoviciu

Tcomp4s=total calculus time for the scalars α and β
Tseq=total calculus time for the sequential algorithm.
Then Tseq = Tcomp1s + Tcomp2s + Tcomp3s + Tcomp4s.
Within the algorithm there are three operations SAXPY, each vector be-

ing of dimension m. If we suppose that Tcomp is the total calculus time
for the multiplication of two real numbers with double precision and for the
adding of the results, then Tcomp2s is the total calculus time for the prod-
uct of rare matrix-vector and for the two scalar products. The product
matrix-vector implies N elements and the scalar product implies m elements.
Then Tcomp2s = (N + m) ∗ Tcomp.

Tcomp3s is the calculus time of two scalar products and can be written as
Tcomp3s = 2 ∗ m ∗ k ∗ Tcomp.

The calculus for the scalars α and β implies two operations of division and
a subtraction of real numbers. Let’s take Tcompα the calculus time for all these
operations. Then Tcomp4s = 2 ∗ k ∗ Tcompα.

The total calculus time for the sequential algorithm CG is:
Tseq = (6 ∗ m + N) ∗ Tcomp + 2 ∗ k ∗ Tcompα

B) Analysis of the parallel algorithm
Within the parallel algorithm each processor executes k iterations of

the algorithm in parallel. We define:
b = dimension of the block from matrix A and from vectors x, r, p belonging

to each processor; p = number of processors;
Tcomp1p = total calculus time for the vectors updating on each processor;
Tcomp2p = total calculus and communication time for the Ap and (r, r);
Tcomp3p = total calculus time for the calculus of the scalar products and

of the global communication; Tcomp4p = total calculus time for the scalars α
and β

Here Tcomp1p is the total time for the calculus of 3b vectors updating.
If the matrix A is very rare (the density is smaller than 5 percentages) the
communication time exceeds the calculus time. This way Tcomp2p is taken
equal with Tcomm, the communication time of a block of dimension b to all
the p processors. Tcomp3p implies the global calculus and communication time,
noted with tglb. Then:

Tpar = Tcomp1p + Tcomp2p + Tcomp3p + Tcomp4p, where:
Tcomp1p = 3 ∗ b ∗ k ∗ Tcomp; Tcomp2p = Tcomm;

Tcomp3p = 2 ∗ b ∗ k ∗ Tcomp + Tglb; Tcomp4p = 2 ∗ k ∗ Tcompα.

Therefore, to estimate Tseq and Tpar, it is necessary to estimate the values
of Tcomp, Tcompα, Tcomp and Tglb.

OPTIMIZATION ALGORITHM FOR FINDING SOLUTIONS IN LINEAR
PROGRAMMING PROBLEMS 135

REFERENCES

1. Axelsson O., Solution of liniar systems of equations: iterative methods,
In: Barker [1] 1-51.

2. Bank R, Chan T., An analysis of the composite step biconjugate gradient
method, 1992.

3. Golub G, Van Loan., Matrix computations, Notrh Oxford Academic,
Oxford, 1983.

4. Ostrovski, A.M., On the linear iteration procedures for symmetric ma-
trices, Rend. Math. Appl., 14(1964), 140-163.

Department of Mathematics-Informatics
”Mircea cel Batrân” Naval Academy
Fulgerului 1, 900218, Constantza, Romania

136 Ioan Popoviciu

