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Abstract

We propose an integer sorting algorithm using P systems with mobile
catalysts. The paper considers the case when the number of components
of the vector to be sorted is a fixed number k. The components of the
vector are represented as the multiplicities of certain objects present in
one membrane. The result of the computation will be given in the outer
region by eliminating objects according to their initial multiplicities or-
der. Due to the massive parallel computational feature of P systems
(and despite the “unorder” of the multiset or the “weakness of the in-
gredients” used in computation) the time complexity of the algorithm
depends linearly on the maximum of the values to be sorted and not on
the number of values to be sorted as in classical sequential cases.

1 Introduction

P systems with symbol objects and mobile catalysts are powerful compu-
tational devices inspired by biochemical molecular interactions. Being com-
putationally universal and having a massive parallelism feature, P systems
can be used for obtaining better results in solving problems as opposed to
classical devices. Many algorithms have been proposed especially for solving
intractable problems like SAT or integer factoring problem in polynomial time
usually considering strong variants of P systems (with features like context-
sensitive rules, priorities among rules, promoters/inhibitors, membrane divi-
sion/creation). Here, we propose an algorithm for solving a much easier prob-
lem for which polynomial solutions are know when using sequential machines.
However, obtaining better results, in some respect, than in the classical case
and, moreover, using only object rewriting context-free rules and catalytic
rules (the “weakest” possible sensitivity) is a challenging task.
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2 Preliminaries

A P system (of degree m, m ≥ 1) with symbol objects and rewriting evolution
rules is a construction

Π = (V,C, µ,w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

• V its an alphabet; it elements are called objects;

• C ⊆ V is a set of catalysts;

• µ is a membrane structure consisting of m membranes usually labeled
1, 2, . . . ,m;

• wi, 1 ≤ i ≤ m, specify the multisets of objects present in the correspond-
ing regions i, 1 ≤ i ≤ m at the beginning of a computation;

• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with
the regions 1, 2, . . . ,m of µ, and ρi is a partial order relation over Ri

(a priority relation); these evolution rules are of the form a → v or
ca → c{here,out,in}v where a is an object from V \ C and v is a string
over (V \C)× ({here, out, in}) (In general, the target indications here,
out, in are written as subscripts of objects from V ; we will omit the use
of the subscript here.);

• i0 is a number between 0 and m and specifies the output membrane of
Π (in case of 0, the environment is used for the output).

Now, starting from an initial configuration, the system evolves according
to the rules and objects present in the membranes, in a non-deterministic
maximally parallel manner, and according to an universal clock. The system
will make a successful computation if and only if it halts: there is no rule
applicable to the objects present in the halting configuration. For details
regarding the used notations we refer to [5].

The language generated by a P system Π is the language L(Π) that con-
tains all the strings produced by all successful computations in Π according
to the output-mode. In our case, the system will generate one string (the
computation is deterministic) in the environment.
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3 Ranking and Strong Static Sorting

3.1 Definitions and notations

Let V = {ai | 1 ≤ i ≤ k} be an alphabet. A nonempty word over V is denoted
by w =

∏m

j=1 aj , m ∈ N+, where aj ∈ V for each 1 ≤ j ≤ m.

Definition 1 The word w =
∏k

j=1 aj ∈ Perm(V ) , k = card(V ) ∈ N+,

where aj ∈ V such that M(aj) ≤ M(aj+1), for each 1 ≤ j ≤ k − 1, is called

the ranking string of the multiset M.

Definition 2 The word w =
∏k

j=1 a
M(aj)
j is called a strong sorting string of

M if
∏k

j=1 aj is the ranking string of M .

Remark 1 In this case, we are interested in obtaining as the output of com-

putation the objects with the same associated multiplicities, present in a string

in the increasing order of their multiplicities.

Remark 2 Another weaker definition for strong sorting can be: the word w =
∏k

j=1 a
M(aj)
j is called strong sorting string of M iff for each 1 ≤ i ≤ k we have

|w|ai
= M(ai) and for any representation w = αaiβajγ we have M(ai) ≤

M(aj). In the case of equality of some numbers either a decision should be

made whether “ = ” is “ ≤ ” or “ ≥ ”.

Example 1 For the alphabet V = {a, b, c} and the multiset M = {(a, 20),
(b, 10), (c, 30)}, we have:

• ranking string : b a c

• strong sorting string : b10 a20 c30.

The strong sorting is the most difficult static sorting problem. The common
approach for solving it is to first obtain the ranking string and then, controlling
the output process.

Let us start by considering that the input of the system is placed in one
specific region.

3.2 Sorting with mobile catalysts

We will use 2k + 1 catalysts, from which, the first 2k are associated with
the objects (two catalysts for a symbol object) whose multiplicities we want
to sort, plus one which will be used to “clean” unneeded symbols. With all
this, we can reach our goal in an unexpectedly good time with respect to the
“weakness” of the ingredients.
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But this will give the answer for the ranking problem only, and one can
remark that passing from the ranking problem to the sorting problem (using
only context-free and catalytic rules) is not a trivial task. This is due to
the fact that the rules must be independent of the initial multiplicities of the
objects representing the initial vector (no rules of type ca → can1

out or a → an1

out

are used).
Here is the general algorithm for solving the ranking problem:

Algorithm 1 Let v = Πk
i=1ai.

Consider Π = (O,C, [1[2[3]3]2]1, s
kΠk

j=1aj
nj ,Πk

j=1Xj ,K
k, R1, R2, R3, 0),

where

C = {Xi | 1 ≤ i ≤ k} ∪ {K}, O = C ∪ {ai, yi | 1 ≤ i ≤ k} ∪ {s, f, t},

R1 = {aj → ajin
, Xjyj → Xjout

| 1 ≤ j ≤ k} ∪ {s → f, f → sin},

R2 = {Xjaj → Xjin
ajin

, Xjs → Xjout
yjout

| 1 ≤ j ≤ k}

∪ {Ks → Kinfout}, R3 = {Kaj → Koutt,Xjt → Xjout
| 1 ≤ j ≤ k}.

Example 2 Consider the case of sorting 3 numbers. Let us rename variables

for simplicity: a1 = a, X1 = A, y1 = a′, etc.

Initial data: [1a
n1bn2cn3s3[2ABC[3K

3]3]2]1
Rules of region 1: a → ain, b → bin, c → cin, s → f , f → sin, Aa′ → Aout,

Bb′ → Bout, Cc′ → Cout;

Rules of region 2: Aa → Ainain, Bb → Binbin, Cc → Cincin,

As → Aouta
′
out, Bs → Boutb

′
out, Cs → Coutc

′
out, Ks → Kinfout;

Rules of region 3: Ka → Koutt, Kb → Koutt, Kc → Koutt,

At → Aout, Bt → Bout, Ct → Cout.

The P system that compute the ranking problem for the case of three
integers is depicted in Figure 1.

We present now the configurations of the P system during the computation
for the case of 3 numbers; one can notice that the first two steps initialize the
system and then in rounds of four computational steps, all the components
will be decreased up to the time when one component is exhausted (in the con-
figuration table presented the component with objects a is exhausted first).
Then the catalyst which corresponds to the exhausted component will leave
the system and will arrive in the environment. In the table, in the column
representing the computational steps, we denote by 0, 1 the initialization pro-
cedure, by 1, 2, 3, 4 the behavior of the system when all the components are
present, and by 1′, 2′, 3′, 4′ the behavior of the system when one component is
exhausted.
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Figure 1: The P system solving the 3 integer ranking problem.

Step environment Region 1 Region 2 Region 3
0 s3an1bn2cn3 ABC K3

1 f3 an1bn2cn3ABC K3

1 f3 an1bn2cn3ABC K3

2 s3an1−1bn2−1cn3−1 K3ABCabc

3 s3K3an1−1bn2−1cn3−1 tttABC

4 f3 an1−1bn2−1cn3−1ABC K3

1′ f3 bn2cn3ABC K3

2′ s3Cbn2−1cn3−1 K3ABCabc

3′ Aa′ ssKKbn2−1cn3−1 KttBC

4′ C f2 bn2−1cn3−1BC K3

For the general case the configuration table is:

Step environment Region 1 Region 2 Region 3
0 skΠk

j=1aj
nj Πk

j=1Xj Kk

1 fk Πk
j=1aj

nj Πk
j=1Xj Kk

1 fk Πk
j=1aj

nj Πk
j=1Xj Kk

2 skΠk
j=1aj

nj−1 KkPikj=1XjΠ
k
j=1aj

3 skKkΠk
j=1aj

nj−1 tkPikj=1Xj

4 fk Πk
j=1aj

nj−1Πk
j=1Xj Kk

1′ fk Πk−1
j=1aj

nj Πk
j=1Xj Kk

2′ skXkΠk−1
j=1aj

nj−1 KkPik−1
j=1XjΠ

k−1
j=1aj

3′ Xkyk sk−1Kk−1Πk−1
j=1aj

nj−1 Ktk−1Pik−1
j=1Xj

4′ Xk fk−1 Πk−1
j=1aj

nj−1Πk−1
j=1Xj Kk

Now let us see which is the idea for this system. First we have the symbol
f (a checker) which goes back and forth from membrane 1 to membrane 2.
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It will react in different ways according to what it finds in the membrane 2.
In this membrane, by applying the rules of type Xjaj → Xjin

ajin
we “erase”

one symbol from each component in a step of computation. Up to the time
when one component is completely erased, the rules of type Ks → Kinfout

will be applied. The catalyst K is also executing a back and forth oscillation
between membranes 2 and 3, but with a different timing then f . This is
done because we would want that if there are still elements to delete, the
rules of type Xjaj → Xjin

ajin
must be executed before the rules of type

Ks → Kinfout. When one component is “removed” from the initial multiset
then the corresponding catalyst will not leave membrane 2, and so, the rule
Xjs → Xjout

yjout
can be applied. This means that we can send a signal

representing the fact that the object with the smallest multiplicity has been
reached. In the same time the corresponding catalyst will enter in membrane
1 and it will not participate anymore in further tasks. The process will keep
going on up to the time when all components will be exhausted. In this way we
obtain a ranking algorithm which will have the time complexity proportional
to the maximum multiplicity of the objects from the initial multiset. Now, once
we have the ranking problem solved we can go further to solve the sorting.
First, one can remark that a signal is a catalyst or a common object (the rule
to send signals in membrane 1 is of type Xjs → Xjout

yjout
). Of course, one

can send out a finite set of objects but this will not essentially affect the whole
process. Another remark is that, also, before the process begins, we can make
a copy of the initial multiset (for example, we replace the rule aj → ajin

by
the rule aj → ajin

aj in the membrane 1) for using later when we would like to
eliminate objects in the right order. Since a rule of type Xjyj → Xjyn1

j is not
good, because we would like to have a system that dissociates the input from
the implementation, we have to construct the output based on the signals that
we receive. Moreover, the elements cannot be eliminated all at once because
this is implied by the use of a non-cooperative rule; however, having such
kind of rules we cannot control the process. So, the only solution is to again
use catalysts. No matter how it is done, this will be a difficult task because
the signals representing the order are not sent out in the “right” interval
of time (the interval from which we can deduce easily the multiplicity of a
certain object). Consider the case when the multiplicities of the objects are
n1 < n2 < n3 · · · , then the first signal will appear after a time proportional
to n1, the second after a time n2 − n1 and so on. As it can be seen, if in
our example we have n1 > (n2 − n1), then we will have “overlapping” tasks
meaning that at a certain moment we will have more than one signal present
in the same membrane. To overcame this, one can use the same techniques
as were used before, to allow only one catalytic rule to work, up to the time
when all elements from a specified component will be exhausted.



A static sorting algorithm for p systems with mobile catalysts 201

Theorem 1 The time complexity for the ranking algorithm with P systems

with mobile catalysts is linear with respect to the maximum of elements to be

ranked; it does not depend on the number of elements.

Proof. The assertion is a consequence of the facts presented above. We
can remark only that the system depends on the number of elements to be
ranked (the number of catalysts is k + 1 where k is the number of elements).

Now, once we have obtained the ranking solution of the problem in linear
time, the next step is to expel the symbols to the environment, according
to the ranking solution. One can see that when we compute the ranking
problem, the catalysts leave the system according to the corresponding objects’
multiplicities.

Let us come back to the example with three numbers. In this example,
the first catalyst leaves the system after n1 steps, the second catalyst after an
extra n2 − n1 steps and finally the third catalyst after other n3 − n2 steps of
computation. Since we cannot use context-free rule for eliminating symbols
in the right order as we mention before we have to use catalytic rules. But
in this case, if we use directly rules of type Aa → Aaout we can have mixed
objects in the output (consider for example that n1 > n2 − n1; then catalysts
C and B will eliminate objects simultaneously).

In order to overcome this, we will design a P system which will be responsi-
ble for the elimination of symbols in the right order. Let us start with a three
integer sorting example. First let us denote by Rank the module presented
above. In order that the elimination of a certain symbol not to interfere with
the elimination of an another we have to distribute each catalyst which repre-
sents a signal in different, consecutive membranes in such a way that the first
signaling catalyst arrives to the outermost membrane, the second signaling
catalyst to the second outermost membrane and so on. This can be achieved
very easily by a construct like the following (let us consider for simplicity the
case of three signaling catalysts that leave the rank module; moreover for the
sake of simplicity we will show only the rules for the signal catalysts A – all
the other rules can be constructed in a very similar way):

Recall that in the Rank example n1 < n2 < n3 and so the signal catalysts
were eliminated in the order A, B and finally C. This means that the catalyst
A will leave the Rank module first and will arrive in region 4. There, by the
rule At → Aout, will consume an object t and will go to region 5. From there,
by using a rule of the same type as before, it will finally arrive in membrane
6. One can see that if another signal catalyst (say B) leaves the rank module,
it will arrive to region 5 and will not go further because all the objects t have
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Figure 2: The P system solving the 3 integer strong sorting problem.

been already consumed. In this way, signal catalysts are separated in different
membranes according to the multiplicity they represent.

Now, we have the catalyst A in the region 6 and also the multiset
an1 , bn2 , cn3 (an1 , bn2 , cn3 can be transported here from the input membrane
only using context-free rules). As we said before for the sake of simplicity
we will consider only the rules involving object a (the others are very similar,
namely, for instance, just add the rules obtained by replacing A with B, a

with b and Ka with Kb in membranes 6 and 7).

In region 6 we want to eliminate objects corresponding to the signal that we
receive. Once we finish this task we also would like for the next signal catalyst
(which stays in a queue) to enter in the region 6 and start the elimination
process again. Also, all other signal catalysts must ”advance” one region up.

Since in our case the catalyst A enters in region 6, the rule that can
be applied is Aa → AoutaoutX which will decrease by one the number of
objects a. As an effect, an object X will be produced and both the catalyst
A and the corresponding object a will arrive into region 7. There, by the
rule Kaa → Kainaout the object a will be sent to the environment, while the
catalyst Ka (a ”checker” – this catalyst will check if there are still objects a

present in region 6) will arrive into region 6; if there are still present objects a

the catalyst Ka will go to its initial position (region 7). Also, the catalyst A

will come back to region 6 and the process will start over again. If the catalyst
Ka does not find any object a in membrane 6, an object M (”message”)
will be sent to the inner membranes. This object will be responsible for the
”advancing” in the ”queue” of the signaling catalysts. The catalyst E present
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initially in the region 7 is responsible for ”cleaning” operations of undesired
symbols, while the objects X,X ′, X ′′ are used for synchronizing different
tasks. For a better understanding we present the table of configurations: The
case when n1 ≥ 2:

time region 5 region 6 region 7 environment
1 B? A, an1 , bn2 , cn3 Ka,Kb,Kc

Aa → AoutaoutX

2 B? an1−1, bn2 , cn3X Ka,Kb,Kc, E,A, a

X → X ′ Kaa → Kainaout

3 B? Ka, an1−1, bn2 , cn3 , X ′ Kb,Kc, E,A a

Kaa → Kaoutatout

X ′ → X ′′

4 B? an1−1, bn2 , cn3 , X ′′ Ka,Kb,Kc, E,A, t

Et → eint′

5 B? an1−1, bn2 , cn3 , X ′′, E Ka,Kb,Kc, A, t′

EX ′′ → Eout At′ → Ain

6=1’ B? A, an1−1, bn2 , cn3 Ka,Kb,Kc, E

· · · · · ·

The case when in region 6 remains only one object a:
time region 5 region 6 region 7 environment

1 B? A, a, bn2 , cn3 Ka,Kb,Kc

Aa → AoutaoutX

2 B? bn2 , cn3X Ka,Kb,Kc, E,A, a

X → X ′ Kaa → Kainaout

3 B? Ka, bn2 , cn3 , X ′ Kb,Kc, E,A a

X ′ → X ′′

4 B? Ka, bn2 , cn3 , X ′′ Kb,Kc, E,A

KaX ′′ → KaoutMint′out

5 B?,M bn2 , cn3 Ka,Kb,Kc, E,A, t′

M → Mint At′ → Ain

6 B?, t A, bn2 , cn3 Ka,Kb,Kc, E

Bt → Bout

7 C? A,B?, bn2 , cn3 Ka,Kb,Kc, E

Bb → BoutboutX ?
8 · · · · · · · · · · · ·

· · · · · · · · · · · ·
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For the k integer sorting problem we will have a number of membranes
proportional to k. The mechanism used in the example for advancing in the
queue of signal catalysts will be preserved. Practically we will have a system
with 3 (ranking problem) + k (the queue device) +1 membranes and a number
of 2k + 2 catalysts.

The fact that we consume an object from each component at a time because
we use only catalytic rules (the context free rules cannot be applied since with
them we cannot control the computation), and that we transport catalysts
to a precise position in a queue by using catalytic rules, and finally that we
eliminate objects also with the help of catalysts, gives a hint on the time
complexity of the hole algorithm.

Remark 3 The time complexity for the strong sorting algorithm with P sys-

tems with mobile catalysts is linear with respect to the maximum of the ele-

ments to be sorted. It also depends on the number of components to be sorted

and on the sum of elements.

The result is a consequence of the facts presented in the previous sections.
One can see that the ranking solution of the problem is given in linear time,
the transporting of catalysts to their right positions depends on the number of
membranes (and so, depends on the number of components). The elimination
process depends linearly on the sum of elements.

4 Conclusion

We have studied the possibility to solve the sorting problem using P system
with mobile catalysts. One interesting result concerning this topic is that
starting with objects that do not have any order and are mixed together in
what formally we call a multiset, we compute, and after a specified time we
obtain an ordered string. The characteristic of this algorithm is that we sort
by “carving” meaning that we consume objects iteratively, one symbol from
all the components at a time, and signaling when a modification occurs in the
system (usually we trigger a signal when a certain component was eliminated).
Sorting problems are among the most important problems in computer science
theory. Beside them there are a lot of other problems which are waiting to be
solved in the framework of P systems. The reason is that we can obtain better
results in time complexity than the classical algorithms by using the massive
parallelism feature of the P systems. We believe that some techniques (the
comparison method in the case of mobile catalysts and non-cooperative rules,
the synchronization methods used) developed in the paper can be also used
to construct systems that solve such kinds of problems. The improvements of
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current algorithms (by reducing the number of membranes when this is the
case, reducing the number of catalysts and so on) are also left open.
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