
An. Şt. Univ. Ovidius Constanţa Vol. 11(1), 2003, 113–124

META-MODELLING BASED

SPECIFICATIONS FOR ADAPTIVE

COLLABORATIVE ENVIRONMENTS

Cristina Mândruţă

To Professor Silviu Sburlan, at his 60’s anniversary

Abstract

The paper presents a metamodel for open distributed collaborative

systems. Based on this metamodel there are also presented the specifica-

tions of a framework for collaborative applications dynamic development

and execution and for adaptive integration of agents in collaborative

applications.This framework allows both dynamic modelling of collabo-

rative applications and dynamic modelling of support API in order to

allow any application definitions. The framework contains four typical

platform services as support for collaborative executions and a service

based on metamodelling that offers possibilities for modelling and dy-

namic building of system entities. It contains a communication model

for the system components that allows adaptive integration of agents

based on a negotiation process. The model for data communication is

that of a shared information space managed by a specific service of the

framework. Modelling abilities offered by the framework are the basis

for collaborative applications dynamic development and for adaptive in-

tegration of agents in the collaborative application. When integrating

a new agent, the system functionality evolves by extending the system

interface semantics. As the application develops, the agent may ”learn”

new functions, according to system needs. It also may ”remember” what

it already knew when entering the system. The framework has the pos-

sibility to develop a ”socializing” mechanism. The agents must adapt

their functionality to the agents society needs. This mechanism offers

to the agents a set of facilities to negotiate the accepted functions and

the collaboration rules so that we can tell that the agents integration

process take into account their ”personality” and they can also readapt

in the future.

Key Words: Meta-modelling, collaborative environments, distributed agents systems,
adaptive integration, negotiation.

113



114 C. Mândruţă

1 Introduction

The existing collaborative frameworks offer different types of support for
collaborative activity. The static ones are concerned with collaborative ap-
plications execution [8]. The more flexible ones allow dynamic application
development and dynamic integration of new agents in the collaboration.

A Process Coordination Framework [1] presents a multilevel specifications
model used in e-business activities that allows the integration of different Web
services in collaboration. Distributed architectures for software modelling and
execution [5] allow collaborative software dynamic development. Agent-based
workflow architecture [6,7] is a support for a services workflow building and
executing. This architecture is flexible in the direction of the workflow agent’s
adaptation by global efficiency and correctness features negotiation. Differ-
ent distributed agents software systems allow extending the system interface
semantics by integrating new agents [4,9].

The paper presents the specifications of a collaborative framework that has
even higher flexibility because it allows both dynamic modelling of collabora-
tive applications and dynamic modelling of support API in order to allow any
application definitions.

A collaborative distributed system may be viewed as a society of collab-
orative agents where an agent is a general concept referring to a significant
functional element of a distributed application. Another feature of the frame-
work presented in this paper refers to a complex type of agent integration in
the agent’s society, based both on society needs and on agent “ personality” ,
and realized by a negotiation mechanism. There are at least three integration
models. The first model integrates new agents by creating them and pro-
viding them with a functionality defined by the society. The second model
integrates new agents by extending the functionality of the society with the
whole new agent functionality [1]. The third model, proposed in [10] integrates
new agents by integrating a part of the new agent offered functionality. This
was called adaptive integration and is realized in a negotiation process based
on new agent offered features and agent’s society needs.

2 Formal Model For Open Distributed Collaborative Systems

2.1 Interface model

From functionality point of view, a virtual machine is described by its
interface. The interface of the virtual machine may be formalized as in [3]:

Let S be a finite set of data types.
Let F be a finite set of function types called primitive functions of the

virtual machine.



Meta-Modelling based specifications 115

The function
fct : F → S∗

associates its arguments and result type sequence to each primitive function:

fct(f) = (s1, . . . , sn+1)

This interface is used by means of a language. This language allows build-
ing programs (composed functions) using functions composition operations,
each function in such a composition being a primitive function or a composed
one.

2.2 Implementation model

Let V be a finite set of carrier sets, instances ale types in S, so that for
each s ∈ S the carrier set sV ∈ V is associated.

Let P be a finite set of carrier function types so that for each f ∈ F the
set fP ∈ P ∗ is associated.

The set fP is the set of functions whose composition, based on an algo-
rithm, represents the implementation of f . This represents the support, in
API acception, for execution of the programs written in the virtual machine
language.

A typical interpreter implements “fetch-decode-execute“ cycle for each op-
eration in F. The ” execute” component of this cycle means to apply the
composition (algorithm) defined for the operation f over the functions in fP .

The virtual machine has an internal events triggering mechanism. These
events (exceptions) are triggered based on a logical predicates set implemented
at the platform level.

Let E be the set of these predicates.

The virtual machine is defined by the following set of sets

V M = {S, F, V, P,E}.

The set E is refined into three categories.
The first category defines logic restrictions on the values from sets in V .

These are filters on the possible values sets, sV
i , for input data types. Let Ev

be the set of these predicates.
The second category are the predicates specific to a certain executions

model. In collaborative systems the model is that of parallel executions and
concurrent accesses to shared resources. In order to implement this model,
predicates for mutual exclusion will be specified. Let Ex be the set of these
predicates.



116 C. Mândruţă

The third category imposes restrictions on the results returned by different
compositions of the functions in f . Let Er be the set of these predicates.

A refinement of the virtual machine definition for the collaborative virtual
machine is the set

V M˜ = {S, F, V, P,Ev, Ex, Er}.

2.3 Open collaborative distributed system model

A collaborative distributed system is a collection of distributed processing
elements that execute a common activity. Each processing element, k, can
execute its own set of functions, denoted by Ik. This is a subset of the virtual
machine functions set Ik ⊆ F . The intersection of all Ik sets , denoted by⋂

k

Ik , contains a not empty collection of functions. These are the functions

specific to the collaborative work.
Open systems connect to the external environment by means of specialized

interfaces. The functions accessed by the interfaces are also part of the virtual
machine functions set. We denote by Ik

p the internal functions set, by Ik
ei the

input interface functions set and by Ik
eo the output interface functions set. The

following is true:

Ik = Ik
p ∪ Ik

ei ∪ Ik
eo.

As regarding the interactive activities in collaborative systems, we can
divide the interface functions into two categories.

The first category is represented by display operations for different infor-
mation types in the system.These represent the output interface functions set,
denoted by Ik

eo . It has three components that refer to agent choreography
in the collaborative system, to coordination and synchronization in the sys-
tem activity and to the agent view of the collaborative activity made of all
information necessary to the agent in order to play its role in the system chore-
ography. The set Ik

eo is composed of three subsets corresponding to the three
components, denoted by Ik

ou , Ik
os and Ik

ov respectively, so that

Ik
eo = Ik

ou ∪ Ik
os ∪ Ik

ov.

The second category has two components corresponding to the operations
activated by the user. We denote by Ik

u the set of the application operations
accessible by means of the interface controls and with Ik

s the set of system
operations accessible at the user interface level. The following is true:

Ik
ei = Ik

u ∪ Ik
s .



Meta-Modelling based specifications 117

The operation in these sets are specific to each agent type but are different
form the operations in the set Ik

p , and have, in general, non in empty inter-
sections with it. The functions in these intersections correspond to interface
operations implied in the collaborative activity among the human agents and
are a subset of the functions set

⋂

k

Ik.

In the collaborative activity each processing element executes an activity
described, using the collaborative virtual machine language, in a script.

An agent, in a large acception of semnificative functional element of a
system, is processing element executing an activity. Agents communicate by
using a shared communication space composed by information units. Each
activity operates with its own collection of information units called execution
context. The shared communication space is the intersection of the execution
contexts of the active agents in the system. The predicates in the set Ex

are associated to these intersections and are used to manage locks over the
information units.

3. Open distributed collaborative framework based on the formal

model

The model is the system abstraction at design time. The system is char-
acterized by a high flexibility if the model is available at runtime because,
changing the model, the system can be dynamically redesigned.

Based on the formal model defined previously we propose a framework for
open distributed collaborative systems.

The framework specifications contain data specifications, services specifi-
cations and inter-components communication model specifications.

3.1 Data specifications. Data and metadata

DataItemType represents an element s ∈ S and contains the type identifier
and the source for building the carrier set, sV , corresponding to the type.

DataItem is an instance d of the type s ,

d ∈ sV

and represents an interface to an information unit.
Let F be the set of function symbols associated to the operations of the

language.
The function

Intp : F → P ∗



118 C. Mândruţă

associates to each function in F the set of functions in P implied in its execu-
tion.

AgentType is characterized by a set of functionalities realized by means of
an interpreter. This set of functionalities is represented by Ik ⊆ F being a
subset of virtual machine operations set.

The interpreter of an AgentType is an algorithmic composition of the func-
tions from the co-domain of

Intpk : Ik → P ∗

If the agent is connected to the external environment the interpreter has
three components that correspond to the sets:

Intpk
p : Ik

p → P ∗; Intpk
ei : Ik

ei → P ∗; Intpk
eo : Ik

eo → P ∗ .

If the agent is connected through interactive interface, the interpreter can
be refined to six components corresponding to the following sets:

Intpk
p : Ik

p → P ∗; Intpk
u : Ik

u → P ∗; Intpk
s : Ik

s → P ∗;

Intpk
ou : Ik

ou → P ∗; Intpk
os : Ik

os → P ∗; Intpk
ov : Ik

ov → P ∗.

ActivityType defines an activity that must be executed by the agent. The
execution needs a certain interpreter, corresponding to the set Ik . Activity-

Type contains an algorithmic composition of some operations from the set Ik

, called script, the data types associated to these operations, i.e.DI ⊆ S as in-
put data and DO ⊆ S as output data. ActivityType also contains the interface
type with the external environment and script contains three subcomponents
dedicated to output activities, to synchronous executions and to input events
handling:scripto,scriptp and scripti respectively. In conclusion, ActivityType

is represented by: A = {InterfaceType,DI,DO, scriptp}.
Agent is an instance of AgentType .
InterfaceType specifies an interface type characterized by two sets of oper-

ations, operations at the application level and operations at the system level,
and by three sets of displayable data types. An interface type contains two
algorithmic compositions of functions from Ik

u and from Ik
s respectively, for

each category of interface activities responsible with events handling and an
algorithmic composition of functions from Ik

eo , corresponding to the output
activities. InterfaceType is represented by the set B = {scripto, scripti}
which can be refined to B˜ = {scripto, {scriptiu, scriptis}}

In the case of interactive interfaces dedicated to the human user, a new
refinement of the set B is introduced, according to the structure defined for
this interface:



Meta-Modelling based specifications 119

C = {{scriptou, scriptos, scriptov}, {scriptiu, scriptis}},

where scripto is refined to {scriptou, scriptos, scriptov} and scripti is refined
to {scriptiu, scriptis}. The element scriptou is the script that defines the
operations for displaying the choreography of the role to which the user is
attached, scriptos defines the operations for displaying the information about
the system state and the way in which the user is reported to them according
to the role he plays in the collaboration, and scriptov defines the operations for
displaying the application level information that must be known by the user in
order to realize his task. The input operations connected to the collaborative
application logic are defined in scriptiu and those corresponding to system
operations available to the user are defined in scriptov.

An InterfaceType is an instance of B type or of its refinements B˜ or C.

3.2 Services specifications

A flexible collaborative platform has two distinct functions: the function
of modelling and dynamic building of application and virtual machine compo-
nents and the function of executing the collaborative application.

According to this, the framework model has two components. The com-
ponent responsible to data creation, which hides the data creation details, is
realized using dynamic factories. Dynamic factories are components of the
modelling and dynamic building service and are responsible with data instan-
tiation in a flexible manner.

The component dedicated to collaborative executions represents the un-
derlying support for collaborative application execution. It has four services
specific to a typical runtime support.

These services are executions negotiation service, execution contexts man-

agement service, event service and predicate service.
The modelling and dynamic building service manages the set of types

S, F,Ev,Er,A and their corresponding refinements and offers operations for
creation and for elimination types from the system. The service is also re-
sponsible to entities dynamic building based on these type definitions. The
building operation uses carrier sets V and P . A subcomponent of this service
is that which models and builds different types of the interfaces to the exter-
nal environment. It is based on the model of the interfaces with the external
environment and uses the set B and its refinements.

Execution contexts management service dynamically manages the sets of
instances sV

k of types sk ∈ S. Execution contexts contain sets of information
units accessed and operated in common by more agents. The service keeps
the consistence of these information units.



120 C. Mândruţă

The instances {sV
k , sk ∈ S | ∀i 6= k , sV

k ∩ sV
i = θ} can be transfered

to the agent and locally modified without consistency implications. This will
raise the performance of the executions.

The instances {sV
k , sk ∈ S | ∃i 6= k , sV

k ∩ sV
i 6= θ} need solutions for

consistency because are shared by more agents in the system. These instances
belong to the shared space and are represented by the predicate set Ex whose
content is dynamically modified during the collaborative activity evolution.

Executions negotiation service manages requests and offers for executions
and is responsible with distribution and coordination of the activities defined
in the collaborative application. It also contains the mechanism for adaptive
integration and re-adaptation of agents based on a negotiation process of the
functional offers and needs[10].

Executions negotiation service initiates agents creation and activation, agent
local machine services integration and dynamic change of the agent according
to dynamic change of the agent type. Agents are created by downloading the
corresponding algorithmic compositions of the functions from the sets defined
by

Intpk : Ik → P ∗,

composition that represents a component of the interpreter. Another com-
ponent of the interpreter is added in order to support local services access,
services offered by the agent and adaptive integrated in the system when the
agent is attached.

Event service has the classic functions of a service of this type. It interme-
diates the asynchronous inter-agent communication.

Predicate service implements the exception mechanism and has three pred-
icate types formally defined by Ev , Ex and Er. The component corresponding
to the predicates in the set Ex interfaces with execution contexts management

service in order to manage the consistency for instances in the set

{sV
k , sk ∈ S | ∃i 6= k , sV

k ∩ sV
i 6= θ}

The component Ev acts as an input filter for operations execution in the
system and the component Er acts post-operation for results validation.

3.3 Inter-components communication model

The dynamic view of the system model contains the mechanisms by which
dynamic modelling, collaborative executions and adaptive integration are re-
alized.

The modelling and meta-modelling component contains the mechanisms
for types dynamic integration, for agents adaptive integration and for dynamic



Meta-Modelling based specifications 121

predicates, defining internal system restrictions, integration. All the mech-
anisms for dynamic and adaptive integration use the facilities offered by the
dynamic modelling and building service and the interface specifications that
are designed for integration and are present in the interface of the service that
manages the integrated entity.

The component for collaborative application execution contains two mech-
anisms necessary for a collaborative application execution over a distributed
system with an architecture in which communication are based on shared in-
formation space. These are the executions request and negotiation mechanism

and the mechanism for shared information consistency. Each mechanism is
based on a collaboration between two or more services. The mechanism for

executions request and negotiation is realized by the executions negotiation

service in collaboration with the agents in the system. The mechanism for
shared information consistency is realized by the execution contexts manage-

ment service in collaboration with predicate service.

4. Dynamic Development and Adaptive Integration

Dynamic development of collaborative applications using the proposed
framework has five phases. The first two phases are dedicated to initial defi-
nition of the collaboration.

In the first phase, the initial functionality of the virtual machine is es-
tablished by defining the sets of types S, F, V, P,E and the correspondences
fct.

In the second phase, the initial functionality of the application is estab-
lished by defining the sets of types A,B , the correspondences Intp and their
refinements.

The next three phases represent the dynamic component of the collabo-
rative application development because are realized while the application is
executed.

The third phase modifies the virtual machine functionality. If the modi-
fication is realized at the information level, a new element in the carrier set
V is created. If the modification is realized at the operations level, a new
element in the carrier set P is created. The new element is registered at the
appropriate dynamic factory and the executions negotiation service is notified.

In the fourth phase, application functionalities are changed. This is re-
alized by creating an element in the set A, an element in the set B and, if
necessary, an element in the carrier set Intp. These elements are registered
to the appropriate dynamic factory and the executions negotiation service is
notified.

The fifth phase is represented by the dynamic integration of changes and is
realized after each phase that implies a change. The dynamic integration oper-



122 C. Mândruţă

ations are realized automatically based on the mechanisms implemented in the
collection of the framework services. Following the change notifications, the
executions negotiation service starts the integration mechanism that collabo-
rates with the agents in order to identify the integration moment. Integration
of an activity type can be executed only if the activity is not currently exe-
cuted at any agent. Similarly, the integration of a data type modification can
be executed only if that type is not currently used in the system.

The adaptive integration of the agents in the system has three phases.
In the first phase a new agent is created by the executions negotiation

service. The functionality of this new agent is initialized according to the
AgentType.

This new agent is created in a context that can have a specific available
functionality. In the second phase this functionality can be partially integrated
in the system using the adaptive integration mechanism based on negotiation
[10]. The results of the negotiation process will be new functionalities at the
virtual machine level.

The third phase modify the initial functionality of the virtual machine
according to the negotiation results. These modifications are applied to the
sets of types S, F, V, P,E and to the sets of correspondences fct and Intp.

5. Conclusions

This paper referred to the domain of adaptive collaborative environments
and introduced a simple mathematical model, based on the theory of sets[2]
and a framework that uses this model as support for flexibility.

Modelling abilities offered by the framework are the basis for collaborative
applications dynamic development and for adaptive integration of agents in
the collaborative application.

This framework allows both dynamic modelling of collaborative applica-
tions and dynamic modelling of support API in order to allow any application
definitions. The framework contains four typical platform services as support
for collaborative executions and a service based on metamodelling that offers
possibilities for modelling and dynamic building of system entities.

When integrating a new agent, the system functionality evolves by extend-
ing the system interface semantics. As the application develops, the agent may
“ learn” new functions, according to system needs. It also may “ remember”
what it already knew when entering the system. The framework has the pos-
sibility to develop a “ socializing” mechanism. The agents must adapt their
functionality to the agents society needs. This mechanism offers to the agents
a set of facilities to negotiate the accepted functions and the collaboration
rules so that we can tell that the agents integration process take into account
their “ personality” and they can also readapt in the future.



Meta-Modelling based specifications 123

This framework represents a resultant of different existing specifications
for collaborative systems from the flexibility point of view because it allows
dynamic changes on all dimensions of the application – virtual machine assem-
bly. Its flexibility refers both to the dynamic change of the virtual machine
API and of the collaborative application definitions and to the possibility of
new agents adaptive integration at runtime.

References

[1] Aissi Selim, Malu Pallavi, Srinivasan Krishnamurthy, E-Business Process Modelling:

The Next Big Step, Intel Labs, may 2002 IEEE.

[2] Bourbaki N., Elements of Mathematics Theory of Sets, Addison Wesley, 1968 (trans-
lated form French).

[3] Broy Manfred, Mathematical System Models as a Basis of Software Engineering, Com-
puter Science Today 1995.

[4] David L. Martin, Cheyer Adam J., Moran Douglas B., The Open Agent Architecture:

A Framework for Building Distributed Software Systems, 1998.

[5] Grundy J.C., Apperley M.D., Hosking J.G., Mugridge W.B., A Descentralized Ar-

chitecture for Software Process Modelling and Enactement, IEEE INTERNET COM-
PUTING, sept.-oct. 1998.

[6] Huhns Michael N., Singh Munindar P., Cognitive Agents, IEEE INTERNET COM-

PUTING, november-december 1998.

[7] Huhns Michael N., Singh Munindar P., Workflow Agents, IEEE INTERNET COM-

PUTING, july-august 1998.

[8] Living systems R transforming markets – living markets - Technical White Paper -
2001

[9] OAA specifications, v2.2 http://www.ai.sri.com/oaa2.

[10] C Mı̂ndruta, A meta-modelling based support for adaptive integration in agent-based

systems. The 10th Annual Concurrent Engeneering Conference’2003, apr. 14-16 2003,
Plymouth.

[11] C. Mı̂ndruta (2003) Contributions to the collaborative applications development using

distributed systems, PhD. Thesis, to be published.

”Ovidius” University of Constantza,
Department of Mathematics & Informatics ,
Bld. Mamaia 124,
8700 Constantza,
Romania
e-mail: cmandruta@univ-ovidius.ro



124 C. Mândruţă


