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Abstract

It is known that the composition algebrashave many applications in
physics. In this paper we give someproperties of these algebras.

De�nition 1. Let A be an arbitrary algebraover the �eld K . It is called a
division algebra , if for every a;b 2 A; a 6= 0; each of the following equations:

ax = b; ya = b;a;b 2 A; a 6= 0;

has a unique solution in A.
Every division algebra is a simple algebra. If it is an associative algebra,

then A is a unitary division algebra.

De�nition 2. An algebra A is called an alternativ e algebra if the
following relations

x2y = x (xy) andyx2 = (yx) x; 8x; y 2 A;
are satis�ed.

De�nition 3. An algebra A is called a power associativ e algebra if
every element of this algebra generatedan associative subalgebra.

De�nition 4. An algebraA is calleda comp osition algebra if a quadratic
form n : A ! K has beende�ned on the vector spaceA such that:

n (xy) = n (x) n (y; )
for every x; y 2 A, and the associated symmetric bilinear form
f : A � A ! K ; f (x; y) = 1

2 (n (x + y) � n (x) � n (y)) ; is non-degenerate.In
this casewe say that the form n permits comp osition on A. The quadratic
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form n is called the norm over A: The associated bilinear form f is asso-
ciativ e if and only if:

f (xy; z) = f (x; yz); 8x; y; z 2 A: (1)

An unitary composition algebra is called a Hurwitz algebra. A Hurwitz
algebra is an alternativ e algebra and a quadratic algebra, i.e. each element
satis�es the relation:

x2 � t (x) x + n (x) = 0;with t (x) ; n (x) 2 K
and they are called the trace and the norm of the element x.

Prop osition 5.[El, P�e; 96] (Hurwitz). Every Hurwitz algebra is isomor-
phic with one of the following algebras:

i) The base �eld K ; if charK 6= 2:
ii) K (� ) = (K ; � ) ; � 6= 0; if the polynomial X 2 + � is irr educible over K ;

otherwiseK (� ) = K � K :
iii) H (� ; � ) = (K (� ) ; � ) ; � 6= 0; the algebra of generalized quaternions.
iv) O (� ; � ; 
 ) = (H (� ; � ) ; 
 ) ; 
 6= 0; the algebra of generalized octonions

or the Cayley-Dickson algebra.2

Prop osition 6.[Ko, Sh; 95] Let A be a Hurwitz algebra. The following
sttementsare equivalent:

i) There is x 2 A; x 6= 0 such that n (x) = 0:
ii) There are x; y 2 A; x 6= 0; y 6= 0 such that xy = 0:
iii) A contains a non-trivial idempotent (i.e. e 6= 0; 1 such that
e2 = e ).2

De�nition 7. If a Hurwitz algebra satis�es one of the equivalent condi-
tions from Proposition 6, then it is called a split Hurwitz algebra.

Every Hurwitz algebra is split or it is a division algebra.( see[Ko; Sh, 90],
p. 91). When the �eld K is an algebraically closed �eld, then we �nd only
the split algebras.

De�nition 8. An algebraA is called a 
exibile algebra if the following
relation:

x (yx) = (xy) x; 8x; y 2 A

is satis�ed.

Prop osition 9. ([El, P�e; 96] ; Lemma 2.4., and [My; 86], p. 68, Lemma
2.3.). Let A be a composition algebra, over the �eld K with charK 6= 2: Then
the associated nondegenerate symmetric bilinear form f permits composition
and it is associative if and only if the following relations:

(xy) x = x (yx) = f (x; x) y; (2)
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are true.

Prop osition 10.[Ok, Os; 81]An algebra A; over the �eld K with charK 6=
2; with nondegenerate associative symmetric bilinear form permitting compo-
sition, has dimension 1; 2; 4; 8:

Pro of. Sincethe bilinear form f is nondegeneratewe can �nd a 2 A such
that f (a;a) 6= 0;and let x= f -1 (a;a) a2: Then f (x; x)= f -2 (a;a) f

�
a2; a2

�
=1 ;

sincef permits composition. We de�ne a new multiplication on A :

v � w = (xv) (wx) : (3)

It follows from the relation (2) that x2 is the identit y element for the algebra
(A; � ) : Indeed, we have:

x2 � y =
�
xx 2

�
(yx) = f (x; x) x (yx) = f (x; x) y = y and

y � x2 = (xy)
�
x2x

�
= f (x; x) (xy) x = x:

Moreover, the bilinear form f permits composition on the algebra (A; � ) :
f (v � w; v � w) = f ((xv) (wx) ; (xv) (wx)) = f (xv; xv) f (wx; wx) =
= f (x; x) f (v; v) f (w; w) f (x; x) = f (v; v) f (w; w) : So that (A; � ) is a

Hurwitz algebra and has the dimension 1; 2; 4; 8:2

Prop osition 11.[Fl; 01] Let A be a division composition algebra,
f : A � A ! K ; n : A ! K ; be the associated bilinear form and the norm
form. Then ; for every v; w 2 A; with v 6= 0; w 6= 0; we have

f 2 (v; w) = f (v; v) f (w; w)

if and only if v = r w with r 2 K ; r 6= 0:

Pro of. If v = r w; r 2 K ; then the equality holds.
Reciprocally, if f 2 (v; w) = f (v; v) f (w; w) ; for v 6= 0; w 6= 0; it results

f 2 (v; w) 6= 0: We supposethat doesn't exist r 2 K such that v = r w: Then,
for every two nonzero elements a;b 2 K we have av + bw 6= 0:(Indeed, if
av + bw = 0 ) v = � b

a w with � b
a 2 K ; false).Hencewe obtain

f (av + bw; av + bw) 6= 0:

We get then a2f (v; v)+ b2f (w; w)+2abf (v; w) 6= 0: Let a = f (w; w) : We
have f (w; w) f (v; v) + b2 + 2bf (v; w) 6= 0 and for b = � f (v; w) we obtain
f (w; w) f (v; v) + f 2 (v; w) � 2f 2 (v; w) 6= 0: Hencewe get the relation:

f (w; w) f (v; v) 6= f 2 (v; w) ;

that it isn't true. Therefore av + bw = 0 ) v = r w:2
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Prop osition 12. If A is a division Hurwitz algebra, and a;b 2 A with
t (a) = t (b) = 0; then the equality

n (a) n (b) =
1
4

(ab+ ba)2 (4)

is true if and only if a = r b;with r 2 K : If n (a) = n (b) ; then r = 1 or r = � 1:

Pro of. Let A be a Hurwitz algebra. By Proposition 5, we know that
there are only four typesof Hurwitz algebras. If A = K or A = K (� ), these
relations are true.

Case I . A = H (� ; � ) : The relation (4) is equivalent with
n (ab) = (� a1b1 + � a2b2 + � � a3b3)2 :We get then

ab= � (� a1b1+ � a2b2+ � � a3b3) + (-a3b2� + a2b3� ) e1+

+ (-a1b3� + a3b1� ) e2 + (a1b2-a2b1) e3;

therefore n (ab) = (� a1b1+ � a2b2+ � � a3b3)2 + � (� a3b2� + a2b3� )2 +

+ � (-a1b3� + a3b1� )2 + � � (a1b2-a2b1)2 :

Relation (4) is equivalent with

� (� a3b2� + a2b3� )2 + � (� a1b3� + a3b1� )2 + � � (a1b2 � a2b1)2 = 0:

Then the element

(-a3b2� + a2b3� ) e1 + (-a1b3� + a3b1� ) e2 + (a1b2-a2b1) e3

hasthe norm zeroand weobtain -a3b2� + a2b3� =- a1b3� + a3b1� = a1b2-a2b1=0 ; since
H (� ; � ) is a division algebra.

If n (a) = n (b) ; by equality (4) it results that the relation
(n (a) + � a1b1 + � a2b2 + � � a3b3) (n (a) � � a1b1 � � a2b2 � � � a3b3) = 0

is true if and only if a = r b;r 2 K : Replacing a = r b in the last relation we
get (n (a) + r n (a)) (n (a) � r n (a)) = 0; therefore n (a)2 (1 + r ) (1 � r ) = 0: It
results r = � 1or r = 1:

Case I I . A = O (� ; � ; 
 ) : Indeed, we make the ccomputation like in the
caseI, the relation (4) is equivalent to:

n (a) n (b) = (� a1b1+ � a2b2+ � � a3b3+ 
 a4b4+ � 
 a5b5+ � 
 a6b6+ � � 
 a7b7)2 :
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If n (a)= n (b) ; sincea= r b;weobtain (n (a) -r n (a)) (n (a) + r n (a))=0 ;therefore
r = 1 or r = � 1:2

Prop osition 13. [Fl; 01] Let A be an unitary division power associative
algebra (possibly in�nite dimensional). Then every subalgebra of A is unitary.

Pro of. Let B be a subalgebraof A and b 2 B ; b 6= 0 We denotewith B (b)
the B � subalgebrageneratedby b; which is an associative division algebra.
We get that B (b) is unitary , therefore B is unitary .2

Prop osition 14.[Fl; 02] Let (A; � ) be a non-unitary algebra over the �eld
K , with the symmetric nondegenerate bilinear form S and the associated quadratic
form, denoted in the sameway, satisfyng the relations:

(a � b) � a = a � (b� a) = S (a) b: (5)

If the elementsf x; x � xg are linearly dependent for all x 2 A; then

x � x = � (x) x

and � : A ! K is a K -algebra morphism.

Pro of. If in the relation (5) we take a = b = x and we have:
(x � x) � x = S (x) x: It results (� (x) x) � x = S (x) x; therefore
� 2 (x) x = S (x) x; and we obtain:

� 2 (x) = S (x) (6)

Let the elements x; y 2 A be arbitrarily chosen. Then we get:
(x + y) � (x + y) = � (x + y) (x + y) ; therefore

x � x + x � y + y � x + y � y = � (x + y) x + � (x + y) y )

) � (x) x + � (y) y + x � y + y � x = � (x + y) x + � (x + y) y;

and we obtain:

(� (x+ y) -� (x)) x+ (� (x+ y) -� (y)) y= x � y+ y � x; 8x; y 2 A: (7)

Since

S (x; y) =
1
2

(S (x+ y) -S (x) -S (y)) =
1
2

�
� 2 (x+ y) -� 2 (x) -� 2 (y)

�
;

we have:

� 2 (x + y) = � 2 (x) + � 2 (y) + 2S (x; y) ; 8x; y 2 A: (8)
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We apply S ( ; x) to the relation (7) and we obtain:

(� (x + y) � � (x)) S (x; x) + (� (x + y) � � (y)) S (x; y) =

= S (x � y; x) + S (y � x; x) :

By hypothesiswe get then S ( ; ) is associative and permits composition, no
matter if ! is in K or not. ThereforeS (x � y; x) = S (x; x � y) = S (x � x; y) =
� (x) S (x; y)and S (y � x; x) = S (y; x � x) = � (x) S (x; y) :

We have :

(� (x + y)-� (x)) � 2(x)+( � (x + y)-� (y))S(x; y) = 2� (x)S(x; y); 8x; y 2 A: (9)

We denote � (x + y) = z; � (x) = a; � (y) = b and (8) and (9) becomes:

z2 = a2 + b2 + 2S (x; y) ; (10)

(z � a) a2 = (b+ 2a � z) S (x; y) : (11)

In the next we suppose� (x) 6= 0: If b+ 2a � z = 0; it results � (y) + 2� (x) =
� (x + y) ; for every x; y 2 A: If we let y = 0; we obtain 2� (x) = � (x) ;
therefore � (x) = 0; false. Therefore b + 2a � z 6= 0: By relation (11) ; we

have S (x; y) = (z� a)a2

b+2 a� z and replace this in the relation (10) : It results z2 =

a2 + b2 + 2(z� a)a2

b+2 a� z ; therefore (b+2a-z) z2=
�
a2 + b2

�
(b+ 2a � z) + 2a2 (z � a) :

We obtain:

� z3 + (b+ 2a) z2 +
�
b2 � a2�

z � b(a + b)2 = 0:

The polynomial P (Z )=- Z 3+( b+2a) Z 2+
�
b2-a2

�
Z -b(a+ b)2 has the next

decomposition in to irreducible factors:

P (Z ) = � (Z � a � b)2 (Z + b) ;

thereforez1 = a+ band z2 = � bare the roots of the polynomial P: If z = a+ b;
it results that � (x + y) = � (x) + � (y) : If z= � b; we obtain � (x + y) =
� � (y) and for y = 0; we have � (x) = 0; contradiction. Therefore � (x + y) =
� (x) + � (y) ; 8x; y 2 A;with � (x) 6= 0: If � (x) = 0; by relation (9) ; we have
(z � b) S (x; y) = 0 for every y 2 A and x 2 A with � (x) = 0: Let z = b: We
get then:

� (x + y) = � (y) = � (y) + 0 = � (y) + � (x) :

If S (x; y) = 0; 8y 2 A; we obtain x = 0 ) � (0) = 0; therefore:

� (x + y) = � (x) + � (y) ; 8x; y 2 A: (12)



Some pr oper ties of the composition algebras 99

In the relation (7) let y = ax; with a 2 K and we have:

� ((a + 1) x) x � � (x) x + a� ((a + 1) x) x � a� (ax) x = 2a� (x) x )

) � (ax) x + � (x) x � � (x) x + a� (ax) x + a� (x) x � a� (ax) x = 2a� (x) x;

therefore:
� (ax) = a� (x) ; 8x 2 A: (13)

SinceS ( ; ) permits composition, we obtain that

S (x � y; x � y) = S (x; x) S (y; y) ) S (x � y) = S (x; x) S (y; y)

Therefore
� (x � y) = � (x) � (y) : (14)

By the relations (12) ; (13) ; (14) it results that � is a K -algebra morphism.2

Prop osition 15. Let A be a composition algebra satisfying the conditions
of the Proposition 14. If, in addition, A is an alternative algebra and for
every two elementsx; y 2 A we havethat x � y = � (x; y) y � x; 8x; y 2 A; with
� (x; y) 2 K ; then dimK A � 2:

Pro of. We know (x � y) � x = x � (y � x) = S (x) y: We get then
� (x; y) (y � x) � x = � (y; x) x � (x � y) : SinceA is an alternativ e algebra, we
obtain:

� (x; y) � (x) y � x = � (y; x) � (x) x � y ) � (x; y) � (x) y � x =

= � (y; x) � (x) � (x; y) y � x;

therefore � (x; y) � (x)= � (y; x) � (x) � (x; y) and we have � (y; x)=1 : It results
that A is a commutativ e algebra. We apply the Propositions 9 and 10, and
we �nd the element a 2 A such that S (a;a) 6= 0: We denote

� = S-1 (a;a) a � a = S-1 (a) a � a = � -2 (a) � (a) a = � -1 (a) a:

Then S (� ; � )= S� 2 (a;a) S (a � a;a � a)= � � 4 (a) � 2 (a) � 2 (a)=1 ; sinceS per-
mits composition. But 1 = S (� ; � ) = S (� ) = � 2 (� ) ; and we obtain � 2 (� ) = 1:
We de�ne a new multiplication on A :

vr w = (� � v) � (w � � ) ;

and by calculus we obtain that � 2 = � � � = � is the unit y of the algebra
(A; r ). With this multiplication the algebra A is a Hurwitz algebra. Since
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the multiplication " � " is commutativ e the multiplication " r " is commutativ e,
therefore dimK A � 2:2
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