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Abstract

This paper considers the problem of estimating the mixture param-
eter θ, the scale parameters λ1, λ2, the location parameters u, ν and the
probability R = Pr (Y < X) when X and Y are independent, identically
Luceno random variables with common scale and mixture parameters
and unequal location parameters. The unbiased maximum likelihood es-
timators (MLE) of θ, λ1, λ2, u, ν and R are obtained. The performance
of these estimators for moderate sample sizes is studied by Monte Carlo
simulation. It appears that the procedure used to estimate the pa-
rameters, at least for the mixture parameter θ and the reliability R, is
reasonable.

1. INTRODUCTION

The probability R = Pr Y < X) is often used as a measure of the mechan-
ical reliability or performance of an item of strength X subject to a stress Y .
Awad and Fayoumi in [1] derived the MLE of R when X and Y have a dou-
ble exponential distribution with unequal location parameters and common
sample sizes. Bai and Hong in [2] obtained the uniformly minimum vari-
ance unbiased estimation of R with unequal sample sizes when X and Y are
independent two-parameter exponential random variables with an unknown
common location parameter.

A distribution of theoretical and some practical importance, because it
allow data analysis to be performed in the original scale, is that of a random
variable X with probability density function

g (x) =

{
g1 (x; θ, λ1, ν) ≡ θλ1 exp (−λ1 (x− ν)) x ≥ ν

g2 (x; θ, λ2, ν) ≡ (1− θ)λ2 exp (−λ2 (ν − x)) x < ν

Key Words: mechanical reliability; Luceno probability density family; parametric esti-
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with λ1, λ2 ≥ 0 λ1 + λ2 > 0 the scale parameters, ν ∈ R the location pa-
rameter and θ ∈ [0, 1] the mixture parameter. This distribution is called the
Luceno distribution; a survey of the properties and practical importance of
this distribution is given in [3]. We note that X is Luceno distributed with
X ∼ Luc (θ, λ1, λ2, ν). Observe that, in general, the Luceno distribution has
a jump discontinuity at the point ν. The case where ν is considered as a
change-point is of particular interest in the context of changepoint models in
reliability.

Consider a system, with stress Y and strength X. Assume that X and
Y are independent random variables distributed X ∼ Luc (θ, λ1, λ2, ν) and
Y ∼ Luc (θ, λ1, λ2, u) with unknown parameters and u 6= ν. In this paper
we obtain the MLE of θ, λ1, λ2, u, ν and R for the case of unequal selection
sizes when X and Y are distributed as above. Monte Carlo simulations with
small sample and moderate equal sample are made to compare the estimators.
Finally, we conclude that the suggested procedure appears to work well, at
least for θ and R, because the estimated biases, in the worsted situation, are
of the hundredth and thousandth order, respectively.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let be n,m ∈ N given sample sizes. Consider two independent samples
X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Ym) from Luc (θ, λ1, λ2, ν) and
Luc (θ, λ1, λ2, u) respectively, with unknown scale parameters λ1 and λ2, lo-
cation parameters ν and u and mixture parameter θ. Assume that in this
samples, the last n1 > 0 and m1 > 0 values are greater than or equal to
ν and u, respectively, and, consequently, the first n2 = n − n1 > 0 and
m2 = m−m1 > 0 values are less than ν and u, respectively.

The likelihood function can be written as

L (θ, λ1, λ2, ν, u) = θn1+m1 (1− θ)
n2+m2 λn1+m1

1 λn2+m2

2 ×

exp

[
−λ1

(
n1∑

i=1

(Xi − ν) +

m1∑

i=1

(Yi − u)

)]
×

exp

[
−λ2

(
n2∑

i=1

(ν −Xi) +

m2∑

i=1

(u− Yi)

)]

Let be

θ̂ (n1,m1) =
n1 + m1

n + m
,
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ν̂ (n1) =
(max1≤i≤n2

(Xi) + min1≤i≤n1
(Xi))

2
,

û (m1) =
(max1≤i≤m2

(Yi) + min1≤i≤m1
(Yi))

2

λ̂1 (n1,m1) =
n1 + m1

T 1
1 (n1) + T 1

2 (m1)
and λ̂2 =

n2 + m2

T 2
1 (n1) + T 2

2 (m1)

where

T 1
1 (n1) =

n1∑

i=1

(Xi − ν) ; T 1
2 (m1) =

m1∑

i=1

(Yi − u) ;

T 2
1 (n1) =

n2∑

i=1

(ν −Xi) ; T 2
2 (m1) =

m2∑

i=1

(u− Yi) .

The MLE’s of θ, ν, u, λ1, and λ2 are given, respectively, by

(n̂1, m̂1) =

arg max
3≤m1≤m,3≤n1≤n

L (θ (n1,m1) , λ1 (n1,m1) , λ2 (n1,m1) , ν (n1) , u (m1) , n1,m1) ,

θ̂ = θ (n̂1, m̂1) ,

ν̂ = ν (n̂1) û = u (m̂1) ⇒ ρ̂ = û− ν̂

λ̂1 = λ1 (n̂1, m̂1) , λ̂2 = λ2 (n̂1, m̂1)

In the above formula we consider the maximum only for n1 ∈ {3, . . . , n−3}
and m1 ∈ {3, . . . ,m− 3} because, in order to obtain consistent estimators, n1

must be greater than or equal to [θn] + 1 and m1 must be greater than or
equal to [θm] + 1, where [•] is the function ”integer part” (observing that θ is
the probability to generate a Luceno distributed value greater than or equal
to ν and u, respectively, for θ = 0.1 and n = 25 = m we obtain the above
bounds).

Finally, the MLE of R is R̂ ≡ p
(
ρ̂; θ̂, λ̂1, λ̂2

)
where

p (ρ; θ, λ1, λ2) ≡ Pr (Y < X) =
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



θ (−2λ2 + θ (λ1 + λ2))

2 (λ1 − λ2)
exp (−λ1ρ) +

(1− θ) ((1 + θ)λ1 − (1− θ) λ2)

2 (λ1 − λ2)
exp (−λ2ρ)

if ρ ≡ u− v ≥ 0

1−
θ (−2λ2 + θ (λ1 + λ2))

2 (λ1 − λ2)
exp (λ1ρ)−

(1− θ) ((1 + θ) λ1 − (1− θ)λ2)

2 (λ1 − λ2)
exp (λ2ρ)

if ρ < 0

(see [4]).

3. A SIMULATION STUDY

In this section we present some numerical results regarding the sample

mean square error - MSE [f ] = 1
N

N∑
i=1

(
f − f̂

)2

- of f , where

f ∈ {θ, λ1, λ2, ν, u,R}.
Samples of sizes

n = 25 = m, n = 50 = m, n = 100 = m

from X ∼ Luc (θ, λ1 = 1.0, λ2, ν = 1.), Y ∼ Luc (θ, λ1 = 1.0, λ2, u) respec-
tively, with θ ∈ {0.1, 0.5, 0.9} , λ2 ∈ {0.2, 1.01, 5.0} and
u ∈ {1.0, 1.2, 1.5, 1.8, 2.0, 6.0, 11.0, 21.0} were generated.

To estimate the selection means the experiment was repeated N = 100
times.

The main results are given in Tables 1-2.
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Table 1 (λ1 = 1.00, λ2 = 0.20, ν = 1.0 )

θ → 0.1 0.5 0.9

u → 1.0 11.0 21.0 1.0 11.0 21.0 1.0 11.0 21.0
R → 0.5000 0.0700 0.0095 0.5000 0.0592 0.0080 0.5000 0.0159 0.0022
MSE
↓

n=25=m

θ̂ 0.0359 0.0464 0.0472 0.0199 0.0092 0.0154 0.0043 0.0057 0.0070
λ̂1 0.5627 1.1786 0.6464 0.3447 0.1168 0.7505 0.0484 0.0300 0.0347
λ̂2 0.0013 0.0016 0.0009 0.0022 0.0020 0.0032 0.6880 7.2196 4.1454
ν̂ 1.2650 2.6707 1.7487 0.2756 0.2808 0.1773 0.0140 0.0285 0.0292
û 1.4126 1.8008 1.7676 0.3975 0.1029 0.4058 0.0236 0.0373 0.0231
R̂ 0.0056 0.0060 0.0001 0.0037 0.0004 0.0000 0.0022 0.0002 0.0000

n=100=m

0.0148 0.0189 0.0135 0.0016 0.0016 0.0013 0.0007 0.0005 0.0004
0.1095 0.1491 0.1044 0.0111 0.0100 0.0150 0.0055 0.0062 0.0062
0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0030 0.0052 0.0025
0.4939 0.5003 0.4396 0.0085 0.0058 0.0094 0.0007 0.0005 0.0011
0.4465 0.6349 0.5082 0.0071 0.0129 0.0162 0.0008 0.0003 0.0005
0.0011 0.0020 0.0000 0.0003 0.0001 0.0000 0.0002 0.0001 0.0000

Table 2 (λ1 = 1.00, λ2 = 5.00, ν = 1.0 )

θ → 0.1 0.5 0.9

u → 1.0 11.0 21.0 1.0 11.0 21.0 1.0 11.0 21.0
R → 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000
MSE
↓

n=25=m

θ̂ 0.0073 0.0047 0.0143 0.0131 0.0184 0.0117 0.0429 0.0375 0.0417
λ̂1 13.946 76.221 9.9803 0.1071 0.0678 0.0503 0.0235 0.0427 0.0261
λ̂2 0.6928 0.7957 0.9596 6.1591 4.6956 4.7726 27.939 24.685 14.213
ν̂ 0.0009 0.0008 0.0018 0.0100 0.0175 0.0107 0.0638 0.0563 0.0605
û 0.0009 0.0008 0.0013 0.0105 0.0110 0.0079 0.0615 0.0567 0.0636
R̂ 0.0020 0.0000 0.0000 0.0031 0.0000 0.0000 0.0049 0.0000 0.0000

n=100=m

0.0005 0.0005 0.0005 0.0012 0.0014 0.0013 0.0118 0.0159 0.0108
0.1127 0.1700 0.1485 0.0157 0.0127 0.0090 0.0068 0.0074 0.0050
0.1715 0.1276 0.1854 0.3418 0.3161 0.3880 1.9885 2.0159 2.0780
0.0000 0.0000 0.0000 0.0003 0.0005 0.0004 0.0167 0.0182 0.0137
0.0000 0.0000 0.0000 0.0004 0.0003 0.0005 0.0164 0.0210 0.0141
0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0014 0.0000 0.0000
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The simulation study showed that:
a) R̂ estimate R with an error of the thousandth order, in the ’worsted’

situation. θ̂ estimate θ with an error of the hundredth order, in the ’worsted’
situation. The rest of the parameters λ1, λ2, ν and u are estimated by the
MLE’s with an error, in general, of the tenth order;

b) The exceptions from the above last affirmation are doing to the following
facts:

- the moderate size of N (only 100) for the exceptions from Table 1;
- the small sizes of n and m and the fact that only 10% of the sample

is used to estimate λ1 and λ2 for θ = 0.1 and θ = 0.9, respectively, in the
exception cases from Tables 2 and 3;

c) The MSE is a decreasing function in the sample size;
d) For a fixed n the MSE decrease when ρ > 1. This means that, when

the two distributions become well separated, we can estimate the reliability R

more precisely.
In conclusion, it appears that the estimators works well for Luceno dis-

tributed data.
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