




Errors estimation and the asymptotic distribution of probabilistic estimates 65
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For ρ and β we obtain the estimation using the least-squares formulation
method and limT→∞(1− ρ2)

1
T = 1, ρ ∈ (−1, 1), by minimizing

σ̂2(ρ̂)

(1− ρ̂2)
1
T

. (9)

Thus, to globally maximizing the likelihood function is equivalent to glob-
ally minimizing (9). From an asymptotic view point, the two above procedures

are equivalent, ∀ρ ∈ (−1, 1) and limT→∞(1− ρ2)
1
T = 1.

III. The asymptotic distribution of maximal probabilistic

estimations in the self-recessive errors model

Now, we come back at the estimations from Section II and we study
asymptotic distribution.

We firstly introduce the notation γ =
(

σ2ρβ
)
′

, and we observe that the

estimation satisfies the equality ∂L
∂γ = 0.

We extend the probabilistic function concerning the relation upon the vector
γ̄o as follows

∂L

∂γo
(γo) = − ∂2L

∂γ∂γo
(γo)(γ̄ − γo) + the order 3 terms. (10)

Now, we shall ”drop out” the above ”order 3 terms”, because, in this context,
they go to zero. (∂L∂γ) (γ̄o) is the gradient of the probability function.

We can write
∂L

∂ρ
or ∂2∂γ∂γo, (where γ̄o is implicitly understood) and we

then observe that:

∂L

∂σ2
= −1

2

T

σ2
+

1

2σ2
u′V −1u,

∂L

∂ρ
= − ρ

1− ρ2
=
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