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ON SOME ANALYTICAL MANIFOLDS OF
CONSTANT SECTIONAL CURVATURE

Nicolae Boja
To Professor Silviu Sburlan, at his 60’s anniversary

Abstract

This paper is a survey on some classes of n - dimensional differen-
tiable manifolds with indefinite metric, of index l(≤ n), and of constant
sectional curvature. These manifolds, denoted by Vn

l (q), (q ∈ K∗, K ≤
R) , comprise six types of non - Euclidean spaces.Two topologies, as
well as a metric structure and an analytical manifold structure on the
spaces Vn

l (q) are introduced. To make these, some isometries with spe-
cific quadrics in a pseudo - Euclidean space of dimension (n+1) and the
solutions of elliptic type and of hyperbolic type of a system of functional
equations are used.

1. Introduction

In his book, [12], J.A.WOLF studied some analytical manifolds of constant
sectional curvature K(6= 0), called pseudo-spherical and pseudo-hyperbolical
space forms,

Sn
s := {x ∈ Rn+1

s : bn+1
s (x,x) = r2}

Hn
s := {x ∈ Rn+1

s+1 : bn+1
s+1 (x,x) = −r2}

where r > 0, and, for x = (xi), y = (yi) ∈ Rn+1
k , (0 ≤ k ≤ n + 1),

bn+1
k (x,y) := −

k∑

i=1

xiyi +
n+1∑

j=k+1

xjyj .

The manifolds so obtained are Riemannian or pseudo-Riemannian real
manifolds of signature (s, n − s) and of constant curvatures K = 1/r2

or K = −1/r2.

Mathematical Reviews subject classification: 53B30, 53A35, 51H25, 51M101.
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In our paper [3], we established isometries of the pseudo-spherical and
pseudo- hyperbolic pseudo-Riemannian manifolds mentioned above and some
types of non- Euclidean spaces, Vn

l (q), as were defined in [2]. Vn
l (q) are n

– submanifolds, of (positive) index l, associated to a nonnul real number q,
of which points are obtained by identification of all pairs of points that are
diametrically opposite on the quadric:

Σ = {x ∈Rn+1
l |

n∑

i=1

εi(xi)2 − q(xn+1)2 = ρ2}, (1)

where εi = +1 for i ≤ l, εi = −1 for i > l, and ρ ∈ Cν ; here Cν denotes
a second order algebra with the minimal polynomial ϕ(t) = t2 − q ∈ R and
basis {1, ν}.

Σ is a hypersphere of radius ρ in Rn+1
l ; as an element of Cν , ρ can be

taken as a real or an imaginary number: ρ = ν, or ρ = ν′, (ν′ = ν /
√−1); we

have ν2 − q = 0.
So, the sectional curvature of Vn

l (q) is either 1/ + q , or 1/− q, for some
l ∈ 1, n and q > 0 or q < 0.

Because Rn+1
s is linearly isometric with Rn+1

l for l = n − s+1, the Vn
l (q)

are locally isometric with Σ.

2. Table of non-Euclidean spaces contained by Vn
l (q).

The non-Euclidean spaces Vn
l (q), and their “models” of type S or H

in the pseudo- Euclidean spaces Rn+1
k as one or another of the quadrics Σ of

which radii satisfy the equation ρ2 = εr2, (ε = ±1), are presented in the fol-
lowing table:
Non-Euclidian Sectional Type of Isometric Hypersphere
space Vn

l (q) curvature manifold quadric of of
value sign ,,The model” radius the

space
Rn(q) > 0 Sn

0 ρ = r Rn+1

1/− q Riemannian
Ln(q) < 0 Hn

0 ρ =
√−1r Rn+1

1

En
l (q)+ > 0 Sn

s−1 q = r Rn+1
s−1

1/− q
Pseudo-

Riemannian
Hn

l (q)− < 0 Hn
s−1 ρ =

√−1r Rn+1
s

En
l (q)− < 0

Pseudo-
Riemannian

Sn
s ρ = r

> 0 Hn
s ρ =

√−1r Rn+1
s+1

Hn
l (q)− s+1
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3. Tangent hyperspaces and polar hyperplanes

Let us consider a numerical field K (that is a subfield of C, as Q,Q(
√

2
), . . . ,R). Thus, for q ∈ K, Cν is isomorphic with a subalgebra of C. Now
Rn+1

l will be replaced by a pseudo-Euclidean vector space Vn+1
l (q) ·= V over

the field K with the metric structure defined by the following bilinear form:

〈X,Y 〉f :=
n∑

i=1

εix
iyi − qxn+1yn+1, (X,Y ∈ V),

where εi takes the same values as before.
A vector X ∈ V is said to be ”a representative” of a point x ∈ Vn

l (q) if
〈X,X〉f = ρ2; if X is a representative of a point in Vn

l (q), then also −X
will be a representative of the same point.

Let ϕX ∈ V∗ be the linear form associated to X that sets in correspon-
dence to Y 7−→ 〈X, Y 〉f ∈ K. Let us denote by V1(⊂ V) the orthogonal
complement of ϕX . This is both a proper maximal subspace of V and a normal
divisor of the additive group (V,+).

In [3] it was shown that, for every A ∈ V there exists a canonical epi-
morphism h : V −→ V / V1such that when V1 = ϕ−1

A (0) and V1⊕V2= V,
where V2 = AK, the image h (A) ·= HA is a hyperplane (orthogonal to A)
and also has been put in evidence a family of hyperplanes {HαA}(α∈K)with
the same n-dimensional direction as that of HA and being in correspondence
with the elements of the subspace of V∗, Φ1= [ϕA] ,generated by ϕA.

Definition 1. Consider α ∈ K\ {−1, 0, 1} and A ∈ V, which is a represen-
tative of the point a ∈ Vn

l (q).The intersection Vn
l (q)∩HαA

·=α Sn−1 (a) ,when
it is not empty, is called a non-Euclidean hypersphere of center a.

Remarks 1. Let us fix l = n and K = R. For |α| < 1 and q < 0 the
hypersphere αSn−1 (a) is real, and for q > 0 it is imaginary. Conversely, for
|α| > 1.

2. We may consider only the case l ≥ (n + 1) /2, because the spaces
Vn

l (q)− and Vn
n−l+1(q)+ are isometric; the signs ± at lower position indicate

the type of curvature.

Definition 2. The tangent space at x ∈ Vn
l (q) is the set Tx (V) of all

elements Z ∈ Vn+1
l (q) with the property 〈X ′, Z〉f = 0, where X ′ (= ± X)

is one of the representatives of the point x.
Proposition 1. If a ∈ Vn

l (q) and A is its representative in Vn+1
l (q)

then HαA for α = ±1 is the tangent space at a to Vn
l (q).

Proof. Fixing α = 1 we have HA ∈ V / V1,where V1 = ϕ−1
A (0), with

0 ∈ K. If Z ∈ V1 then as ϕA (Z) = 0 we have 〈A,Z〉f = 0.But V1is maximal
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in V and HA = A +V1. It results that V1 is the set of all vectors at a with
the property in definition of the tangent space. Because the case α = −1 does
not change the previous assertions, −A being the representative of the same
point a ∈ Vn

l (q), the proof is end.

Proposition 2. The tangent space Tx (V) , when Vn
l (q) is real, is:

(i). an Euclidean space, Rn,at any point x ∈ Rn(q) or x ∈ Ln(q),
(ii). a pseudo-Euclidean space, Rn

l ,at every point x ∈ En
l (q)+ or x ∈

Hn
l (q)− ,
(iii).a pseudo-Euclidean space, Rn

l+1or Rn
l−1,at every point x ∈ En

l (q)− or
x ∈ Hn

l (q)+, respectively.

Proof. It is enough to observe that any quadratic form 〈X ′, X ′〉f , when
X ′ are representatives of some points of En

l (q)+ or En
l (q)−, will contains

l +1 positive terms, while for the points of Hn
l (q)+ or Hn

l (q)− will contains
only l positive terms. ·

Remark 3. The isotropic cone of Rn+1
l , defined by 〈X ′, X ′〉f = 0, limits

two regions of Vn
l (q), known as ‘proper domain’ and ‘ideal domain’, while the

cone itself is the ‘absolute domain’ of the non-Euclidean space.
In the sequel by notation α −→ 0 we mean that α runs through a

sequence {αn}n∈N ⊂ K which is convergent with limit 0.
Let a be an arbitrary point of one of the non-Euclidean spaces Vn

l (q). The
set [a]S

n−1 := limα−→0 (HαA ∩ Vn
l (q)) is said to be the polar hyperplane of

the point a. This is the variety that we call a non-Euclidean hyperplane.

Remark 4. It results that the polar hyperplane of the point a, [a]S
n−1,

is the limit of the hyperspheres of center a, αSn−1 (a) , when α −→ 0.

Definition 3. For r ∈ 1, n− 1 let us fix m = n − r. Then, if the
intersection ∩r

i=1{Vn
l (q) ∩ HαiAi} ·= Sm is not empty, Sm is called a non-

Euclidean m- sphere.
Consequently, for αi −→ 0, (i ∈ 1, r), Sm will define a non-Euclidean m-

plane.

4. Topological structures on a non-Euclidean space Vn
l (q)

Let us denote by V the connect component of Vn
l (q), or even this space

if it is connected. Let x ∈V and Tx (V) be a point and the corresponding
tangent space. We also consider the K-vector space Vn+1

l (q) ·= V of the
representatives of points of Vn

l (q) and denote by X ′ one of the representatives
± X of the chosen point, x, of V.

If {Ei, En+1} , (i = 1, 2, ..., n) ,is an ‘orthonormal’ basis of V in selected it
in such a manner that En+1 should have the direction of X ′, its subsystem
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{Ei} ,
(
i ∈ 1, n

)
, will constitute an orthonormal basis for Tx (V) , and we have

(for ε = ±1, εq = ρ2 and q ∈ K

〈Ei, Ej〉f = εδij, 〈Ei, En+1〉f = 0, (i, j = 1, 2, ..., n) , (3)

where 〈·, ·〉f is the inner product on V defined by the nondegenerate
bilinear form f , whose image on the pair of repeated last vector of the basis
is f (En+1, En+1) = q, that complete the list of conditions (3).

At each point x of V we consider the subspace of Tx (V) , Ux | r := 〈Xα〉r,
generated by the finite system of vector fields {Xα} , (α = 1, 2, ..., r ; r ≤ n) ;
Xo = 0 and we put Ux | o = 〈0〉o for the null subspace.

Now we define

U⊥
x | r := {Xx ∈ Tx (V) : 〈Xx, Xα〉f = 0, (∀) Xα ∈ Ux | r}. (4)

As well as in the case of Ux | o the condition from (4) is fulfilled for every
Xx, such that we have U⊥

x | o = Tx (V) .As for the rest, U⊥
x | r being a proper

linear subspace of Tx (V) , we have dim U⊥
x | r + dimUx | r = n, and, so,

U⊥
x | r is the orthogonal complement of the subspace Ux | r ≤ Tx (V) . It is

a nondegenerate subspace because of the restriction f |Tx (V) , which is a
nondegenerate bilinear form. This tells us that Tx (V) = U⊥

x | r ⊕ Ux | r.

Concerning these elements the following result was established ([4]):

Theorem 3. Fixing λo > 0, for every x ∈Vn
l (q) we define the set

Vx [λo, r]= λX ′+U∗x | r,

where λ crosses one of the intervals (λo,1] .= IE if q < 0 or [1, λo)
.= IH

if q > 0 (with λo chosen such that this thing be possible), X ′ is one of the
representatives +X or −X of the point x in Vn+1

l (q), and
U∗

x | r = {Xx ∈ U⊥
x | r : 〈Xx, Xx〉f = ρ2(1− λ2)}.

Let Ux be a part of Vn
l (q) with the property that any be Y ∈ Vx [λo, r]

this is a representative of a point y ∈ Ux. Let us now symbolize by Vx the
family of these sets when x crosses Vn

l (q) and for every r ≤ n.
In these conditions Vx is a fundamental system of neighborhoods for a

topology τV on Vn
l (q).

Remarks 5. The family Vx ⊂ P (Vn
l (q)) is a basis for the topology τV

because a sufficient condition for this to be true (acc. to [11], Theorem 7.3) is
that for every U1

x, U2
x ∈ Vx we have U1

x ∩ U2
x ∈ Vx.

6. For r = 0, U⊥
x | o is a hyperplane of Vn

l (q). Because of this fact the
topology τV on Vn

l (q), defined by the fundamental system of neighborhoods
Vx((∀)x ∈Vn

l (q)), is said to be a “topology of hyperplanes”.
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7. The neighborhoods of the form Ux of a point x ∈Vn
l (q) can be reduced

to open neighborhoods of that point if any be a point y ∈ Ux there exists
λ ∈ IE(or, respectively, IH) such that its representative in Vn+1

l (q) can be set
under the form Y = λX ′ + Xx, and the following condition 〈Xx, Xx〉f =
ρ2(1− λ2) holds.

Now we also have in view the ’natural topology’ T V on Vn
l (q).It can be

defined with the help of the family of open sets on some hyperquadrics Σ in
Rn+1

l , ’the models’ of the corresponding non-Euclidean spaces Vn
l (q), as were

put in evidence in the section 1.
Thus, we can establish the following result:

Theorem 4. Let us consider the space Rn+1
l endowed with the natural

topology T . If Vn
l (q) is one of the non-Euclidean space stated above and Σ

is its model in Rn+1
l , then to the intersection of the open sets belonging to T

with Σ will correspond open sets on Vn
l (q) by the mapping which attaches to

every point of the model the corresponding point of the non-Euclidean space
represented.

Proof. We consider the topological space (Σ, T Σ), whose topology is
consisting in the family of sets T Σ := {Gα ∩ Σ}α∈A, where Gα is an open
set of the natural topology T of Rn+1

l .Let us denote by U the intersection
of Σ with an open set of T and let G be that set of the family {Gα}α∈A

whose intersection with Σ is U. Then U ∈ T Σ, hence it is open in Σ.

Thus T Σ is an induced topology on Σ by the natural topology T on
Rn+1

l , the environmental space of the manifold consisting in all points of the
hyperquadric.

Let us now consider the mapping = defined on the topological space
(Σ, T Σ) into Vn

l (q), which attaches to every point x ′ = (x′i)n+1 ∈ Σ the
corresponding point x = (xi)n+1 in the non-Euclidean space whose model is
Σ. This mapping is an isometry. Together with the point x ′ having as image
the point x ∈ Vn

l (q) will have the same image −x ′ as well, whose coordinates
differ by sign from those of the point x ′. Let U+ ∈ T Σ be an arbitrary open
set containing the point x ′.If we put =(U+) = U , then from the definition
of the mapping =, we also have =(U−) = U , where U− denotes the part of
Rn+1

l containing the points −x ′ when x ′ crosses U+ and which is, evidently,
a part of Σ, T Σ- open. Since U− ∈ T Σ, the pre-image =−1(U) of the set
U ⊂ Vn

l (q) will be T Σ- open, that is an open set on Σ, because U+ ∪U− ∈ T
Σ .

Then ( according to [11] ,Theorems 10,11) the family T V ⊂ P (Vn
l (q)),

that consists in all the sets U ⊂ Vn
l (q) of which pre-images by =−1 belong to

T Σ, is a topology on Vn
l (q). By this, the set U is T V−open. Taking now

U = U+ or U = U−, the assertion is proved.·
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Between the two topologies T V and τV defined on Vn
l (q) by the previous

two theorems there exists a certain relationship that will be emphasized below:

Theorem 5. The topologies T V and τV satisfy the relation of partial
order T V < τV , that is τV is a finer topology on Vn

l (q) than T V .

Proof. Indeed, we observe that for every set U which is T V−open
a point x ∈ U and a number λo can be found such that its corresponding
neighborhood in Vx for r = 0, Ux, to coincide with U . It results that U is
τV -open, which ends the proof.·

Theorem 6. The Vo
x subfamily of τV made up of all the Ux neighborhoods

(for r = 0) of the point x ∈ Vn
l (q) and of Vn

l (q) itself generates properly a
topology on the space Vn

l (q) which is exactly T V .

Proof. Let us consider the family B(Vo
x) containing all the finite inter-

sections of elements from Vo
x.This is a basis because the intersections of two

arbitrary elements from B(Vo
x) is the intersection of a finite number of ele-

ments from Vo
x and, consequently, it can be found in B(Vo

x).Then, according
to the Remark 5. this is a basis for a topology on Vn

l (q). It results that Vo
x

is a subbasis of the same topology on Vn
l (q). Let us denote by τo

V this topol-
ogy. But, since a family of sets determines unically a topology for which it is
subbasis and this one is the less finer topology containing the given family, it
follows, according to Theorem 5., that we have τo

V = T V .
This ends the proof.

5. The metric structure on Vn
l (q)

The metric structure of a non-Euclidean space Vn
l (q) follows from the for-

mulas of angle between two non-Euclidean straight-lines at a point x, defined
as an angle between the tangent vectors in Tx (V) to the considered above
lines. The original formulas (for pseudo-Euclidean spaces) can be found in
[6] , (pp.49, 525), and may be applied in our case because the tangent space
to Vn

l (q) at every x is one or another of the pseudo-Euclidean n - spaces
Rn, Rn

s , Rn
s−1, Rn

s+1. In [7] , (pp.51, 127, 210, 211),B.A. ROZENFELD estab-
lished the appropriate relations for the analyzed cases, separately.

In this section we want to give for all the cases presented in the first section
a single formula for the distance between two points in anyone of the spaces
contained in Vn

l (q).
To make it, the solutions of a system of two functional equations are used.
So we consider the following system of functional equations

C2(ϕ)− q S2(ϕ) = 1 (5)
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C(ϕ− ψ) = C(ϕ)C(ψ)− q S(ϕ)S(ψ), (5′)

where q ∈ R, and C, S : R → R are continuous unknown functions. We
observe that (5,5’) generalize the system of trigonometric equations that define
the usual functions {cosϕ, sin ϕ} , as well as the system defining the hyperbolic
functions {cosh ϕ, sinhϕ} .

If {C(ϕ), S(ϕ)} denotes a solution of the system (5,5’), we can prove that
the following pairs of functions are solutions of this system with respect to the
chosen q :

C(ϕ) = cos qϕ, S(ϕ) =
1√−q

sin qϕ, (q < 0) (6)

called ’elliptical functions’,

C(ϕ) = 1, S(ϕ) = ϕ, (q = 0), (7)

called ’parabolic functions’, and

C(ϕ) =
1
2
(eqϕ + e−qϕ), S(ϕ) =

1
2
√

q
(eqϕ − e−qϕ), (q > 0), (8)

called ’hyperbolic functions’.
Now we define the number q ∈ K(≤ R) by means of the equation εq = ρ2,

where ρ denotes the radius of the hyperquadric Σ, the ’model’ of Vn
l (q) in

Rn+1
l , and ε = ±1.

Theorem 7. Let V be a connected component of a non-Euclidean space
of index l and dimension n. The the distance d between two points x 1 and
x 2 of V is given by

C(
d

ρ
) =

〈X1, X2〉f
ρ2

, (9)

where X1 and X2 are the representatives of the considered above points in
the associated K-space Vn+1

l (q), and f is the corresponding bilinear form.

Proof. It results immediately by comprising the elliptic and hyperbolic
cases.·

In (9) the C(.) is one or another of the first components of the solutions
(6) or (8) of the system (5,5’). The specific choice is made with respect to the
type of non-Euclidean space we have in view, as will be mentioned below

6. The analytical manifold structure on Vn
l (q)

Using the previous elements one can introduces a real analytical manifold
structure on Vn

l (q) by means of an anlytical mapping f : U −→ Rn, where
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U is an ope set in the natural topology of the pseudo-Euclidean space, of
dimension n + 1 an index l. Moreover, we need of an appropriate frame on
Vn

l (q) to express the local coordinates of the points; this one is defined as
follows.

A selfpolar frame on Vn
l (q) is a system of n + 1 points, ei, of the space

such that for every j 6= i, (i, j = 1, 2, ..., n + 1), to have ej ∈ [ei]S
n−1, where

[ei]S
n−1 is the polar hyperplane of the point ei (see section 3.). This frame

will be denoted by Ra = {ei}n+1.
Now, we can formulate the following result:

Theorem 8. On the non-Euclidean spaces Vn
l (q) one can introduces a

differentiable real manifold structure, of class C∞ and of dimension n.
The proof actually consists in the construction of such a structure on Vn

l (q),
defined simultaneously for all the spaces contained in it. The manifolds so
defined will be pseudo-Riemannian manifolds of constant sectional curvature
(in the sense of [12]).

With respect to Ra the Cartesian coordinates uk, (k = 1, 2, ..., n), of a
point x ∈Vn

l (q) by the following relations are defined:

un−p := d(x(p),[en−p,...,en] S
n−p−1), (p = 0, 1, ..., n− 1), (10)

where x(p+1) denotes the projection of the point x(p), (x(0) = x),on the (n −
p−1) - planes [en+1, e1, ..., en−p−1], and the function d is a distance on Vn

l (q),
given by the length of the metric segment that connects the points x(p) and
x(p+1) and is entirely enclosed in the τV−open set U (p)

x for r = n− 1, (see
section 4.).

From here it results that, as a function of the domain of parameter varia-
tion, IE or IH , we have the following intervals of variation for the coordinates

−πρ ≤ u1 ≤ πρ, − π

2
ρ ≤ uk ≤ π

2
ρ, (k = 2, 3, ..., n),

whenever it is possible that λo −→ 0, and

−∞ ≤ uk ≤ +∞, (k = 1, 2, ..., n),

whenever it is possible that λo −→∞.
The uk coordinates are connected with the corresponding angles in Vn+1

l (q)
between the representatives Xp and Xp+1 of the points x(p) and x(p+1), for
each k = n− p, by the following relations

ϕk =
uk

ρ
(≡ uk

ν

√−1 or ≡ uk

ν
), (11)
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where ρ ∈ Cν(∼= K + νK) is the radius of the model Σ of Vn
l (q) in the

corresponding space Rn+1
l ,and{1, ν}is the basis of the second order division

algebra Cν , defined in 1.
Now we consider an open set U ∈ τV such that U 3 x and also contains

all its neighborhoods Ux for every r > 0. Let χ be a homeomorphism of
U into the arithmetic space Rn. The coordinates of the point x in the local
chart (U , χ) will be

uk = (ξk ◦ χ)(x), (k = 1, 2, ..., n), (12)

where ξk : Rn −→ R are the well known coordinate functions. The mapping χ
can be analytically obtained by solving the equations which define its inverse
mapping, χ−1,

xk = q

n∏

α=k+1

C(
uα

ρ
)S(

uk

ρ
), (13)

xn+1 =
n∏

h=1

C(
uh

ρ
), (h, k = 1, 2, ..., n), (13′)

where (x1, ..., xn+1) = η(X) are the Weierstrass’ coordinates of the represen-
tative X of x in the chart (Rn+1, η), V ∼= Rn+1.

Here
{
C(ϕk), S(ϕk)

}
are solutions of elliptic type of the system (5,5’) in

the case of the space Rn(q), and of hyperbolic type in the case of the space
Ln(q). For the spaces En

l (q)+ and Hn
l (q)− the first l functions are of

elliptic type, while the remaining n− l functions are of hyperbolic type; for
the spaces En

l (q)− and Hn
l (q)+, conversely.

According to the expressions (6-8) of the functions C and S, we observe
these admit continuous derivatives of any order with respect to the variables
uk.

Besides of this, the choice of the charts whose geometrical domains are the
sets U defined before to constitute a covering of Vn

l (q), as well as the chaange
of the charts can be made such that to obtain an atlas of class C∞ on the
manifold V.

Proposition 9. The real non-Euclidean spaces Vn
l (q) are separable locally

compact n - manifolds.

Proof. Indeed, Vn
l (q) are real analytical manifolds which satisfy the con-

dition: Vn
l (q) has dimension n at any point and, as a topological space, it is

separable and locally compact. This results from the fact that the associate
vector space Vn+1

l (q) is isomorphic with Rn+1
s , for s = n−l+1, which has the

mentioned above property because the field R itself is a nondiscrete normed
field, complete with respect to the norm, and locally compact. ·
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The metric characterization of the non-Euclidean spaces can be obtained
from now by using the general characterization of the Riemannian or pseudo-
Riemannian manifolds. For the symmetric Riemannian manifolds this is made
by I. SZENTHE in [9] .
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Timisoara, Seria Şt. Matem., Vol. X, 1, (1972), 35-39.

[4] N. Boja: ;On the topology of hyperplanes of a non-Euclidean space, Mathematica
Balkanica, Beograd, Vol.7, 3, (1977), 17-24.

[5] N. Bourbaki: Espaces Vectoriels Topologiques, Livre V, Hermann, Paris, 1958.

[6] B.A. Rozenfeld: Mnogomerǹıie Prostranstva, Izd. ”Nauka”, Moskva, 1966.

[7] B.A. Rozenfeld: Neevklidov̆ı Prostranstva, Izd. ”Nauka”, Moskva, 1969.

[8] S.Sternberg: Lectures on Differential Geometry, Prentice Hall, New Jersey,1964.

[9] I. Szenthe: A metric characterization of symmetric spaces, Acta. Math. Acad. Sci.
Hung., Tom 20, 3-4, (1969), 303-314.

[10] K.Teleman: Elemente de Topologie şi Varietăţi Diferenţiabile, Ed.Did.Ped., Bucureşti,
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