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Harmonic Maps on Kenmotsu Manifolds

Najma Abdul Rehman

Abstract

We study in this paper harmonic maps and harmonic morphisms on
Kenmotsu manifolds. We also give some results on the spectral theory of
a harmonic map for which the target manifold is a Kenmotsu manifold.

1 Introduction

Harmonic maps on Riemannian manifolds have been studied for many years,
starting with the paper of J. Eells and J.H. Sampson [2]. Due to their ana-
lytic and geometric properties, harmonic maps have become an important and
attractive field of research.

The study of harmonic maps on Riemannian manifolds endowed with some
structures has its origin in a paper of Lichnerowicz [11], in which he proved
that a holomorphic map between Kähler manifolds is not only a harmonic
map but also attains the minimum of energy in its homotopy class. After
that, Rawnsley [12] studied structure preserving harmonic maps between f-
manifolds. Later on Ianuş, Pastore, Gherghe, Chinea and some others (see [7],
[6], [1]) studied harmonic maps defined on some almost contact manifolds (i.e.
Sasakian, cosymplectic etc.).

The purpose of this paper is to obtain some results concerning harmonic
maps and harmonic morphism on Kenmotsu manifolds. After we recall some
wellknown facts about harmonic maps, harmonic morphisms and Kenmotsu
manifolds (section 2), we prove that any structure preserving map from a
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Kenmotsu manifold to a Kähler manifold is harmonic and that there are no
nonconstant harmonic holomorphic maps from a Kähler manifold to a Ken-
motsu manifold (section 3). In the same section we give some conditions for
a map from a Kenmotsu manifold to a Kähler manifold to be a harmonic
morphism.

In the last section we obtain some results on spectral theory of harmonic
maps for which the target manifold is a Kenmotsu space-form.

2 Preliminaries

In this section, we recall some well known facts concerning harmonic maps
and Kenmotsu manifolds.
Let F : (M, g) −→ (N,h) be a smooth map between two Riemannian mani-
folds of dimensions m and n respectively. The energy density of F is a smooth
function e(F ) : M −→ [0,∞) given by

e(F )p =
1

2
Trg(F ∗h)(p) =

1

2

m∑
i=1

h(F∗pui, F∗pui),

for any p ∈ M and any orthonormal basis {u1, . . . , um} of TpM . If M is a
compact Riemannian manifold, the energy E(F ) of F is the integral of its
energy density:

E(F ) =

∫
M

e(F )υ
g
,

where υg is the volume measure associated with the metric g on M. A map
F ∈ C∞(M,N) is said to be harmonic if it is a critical point of the energy
functional E on the set of all maps between (M, g) and (N, h). Now, let
(M, g) be a compact Riemannian manifold. If we look at the Euler-Lagrange
equations for the corresponding variational problem, a map F : M −→ N is
harmonic if and only if τ(F ) ≡ 0, where τ(F ) is the tension field which is
defined by

τ(F ) = Trg∇̃dF,

where ∇̃ is the connection induced by the Levi-Civita connection on M and
the F-pullback connection of the Levi Civita connection on N.

We take now a smooth variation Fs,t with two parameters s, t ∈ (−ε, ε)
such that F0,0 = F . The corresponding variation vector fields are denoted by
V and W.
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The second variation formula of E is:

HF (V,W ) =
∂2

∂s∂t
(E(Fs,t))

∣∣
(s,t)=(0,0)

=

∫
M

h(JF (V ),W )υg,

where JF is a second order self-adjoint elliptic operator acting on the space
of variation vector fields along F (which can be identified with Γ(F−1(TN)))
and is defined by

JF (V ) = −
m∑
i=1

(∇̃ui
∇̃ui
− ∇̃∇ui

ui
)V −

m∑
i=1

RN (V, dF (ui))dF (ui), (1)

for any V ∈ Γ(F−1(TN)) and any local orthonormal frame {u1, . . . , um} on
M. Here RN is the curvature tensor of (N, h) (see [5] for more details on har-
monic maps).

Tanno [13] has classified, into three classes, the connected almost contact
Riemannian manifolds whose automorphisms groups have the maximum di-
mensions:
(1) homogeneous normal contact Riemannian manifolds with constant ϕ- holo-
morphic sectional curvature;
(2) global Riemannian products of a line or a circle and a Kähler space form;
(3) warped product spaces L×f N , where L is a line and N a Kähler manifold.

Kenmotsu [9] studied the third class and characterized it by tensor equa-
tions. A (2m+1)-dimensional Riemannian manifold (M , g) is said to be a
Kenmotsu manifold if it admits an endomorphism ϕ of its tangent bundle
TM, a vector field ξ and a 1-form η, which satisfy:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, ηoϕ = 0,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

(∇Xϕ)Y = −g(X,ϕY )ξ − η(Y )ϕX, (2)

for any vector fields X, Y on M, where ∇ denotes the Riemannian connection
with respect to g.

Example 2.1. Let N be a Kähler manifold, with the kählerian structure (J, h)
and let f : R −→ R be a function defined by f(t) = cet, where c ∈ R, c > 0.
Then the warped product M = R×f N is defined as being the manifold R×N
endowed with the Riemannian metric

g(t,x) =

[
1 0
0 f2(t)hx

]
.
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If we put ξ = d
dt , η(X) = g(X, ξ), and

ϕ(t,x) =

[
0 0
0 exp((tξ))∗J(x)exp((−tξ))∗

]
,

for any point (t, x) ∈ R × N and any vector field X tangent to M, then M is
Kenmotsu manifold [9].

3 Harmonic maps and harmonic morphisms on
Kenmotsu manifolds

A smooth map F : M → N between an almost contact metric manifold
M(ϕ, ξ, η, g) and an almost hermitian manifold N(J, h) is called to be a (ϕ, J)-
holomorphic map if its differential intertwines the structures, that is dF ◦ϕ =
J ◦ dF . We may ask now if such a map is harmonic in the case in which the
domain is a Kenmotsu manifold.

Theorem 3.1. Let M(ϕ, ξ, η, g) be a Kenmotsu manifold, N(J,h) be a Kähler
manifold and F : M −→ N be a (ϕ, J)-holomorphic map. Then F is a har-
monic map.

Proof. We know that F is a harmonic map iff τ(F ) = 0. So it will be enough
to prove that τ(F ) = 0. For a (ϕ, J)-holomorphic map we have the following
formula for its tension field see ([7]),

J(τ(F )) = F∗(divϕ)− trgβ, (3)

where β(X,Y ) = (∇̃XJ)F∗Y , ∇̃ being the connection induced in the pull-
back bundle F−1TN . Let {e1, ..., em, ϕe1, ..., ϕem, ξ} be a local orthonormal
ϕ-adapted basis on TM, Then we have

divϕ =

2m+1∑
i=1

(∇eiϕ)ei

=

2m+1∑
i=1

g(ϕei, ei)ξ − η(ei)ϕei = 0,

and thus the first term of the formula (3) vanishes. As N is a Kähler manifold
then ∇J = 0 and also the second term of the same formula vanishes. There-
fore J(τ(F )) = 0 i.e. τ(F ) ≡ 0 and F is harmonic. �
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Example 3.1. Looking at the Example 2.1, it is not difficult to see that the
canonical projection F : M −→ N is a (ϕ, J)-holomorphic map from a Ken-
motsu manifold to a Kähler manifold and therefore, from Theorem 3.1, F is a
harmonic map.

A smooth map F : N →M between an almost hermitian manifold N(J, h)
and an almost contact metric manifold M(ϕ, ξ, η, g) is called to be a (J, ϕ)-
holomorphic map if dF ◦ J = dF ◦ϕ. After the Theorem 3.1, a good question
to ask is if such a map defined from a Kähler manifold to a Kenmotsu manifold
is harmonic or not.

Theorem 3.2. Let N(J,h) be a Kähler manifold, M(ϕ, ξ, η, g) be a Kenmotsu
manifold and F : N −→M be a (J, ϕ)-holomorphic map. Then F is harmonic
map if and only if F is a constant map.

Proof. For a (J, ϕ)-holomorphic map we have a similar formula as (3)

ϕ(τ(F )) = dF (divJ)− trhβ,

where β(X,Y ) = (∇̃Xϕ)(dFY ).
As N is a Kähler manifold we have

divJ =

2n∑
i=1

(∇eiJ)ei = 0,

where {ei}i=1...2n is an orthonormal local basis on TN. Now, using the formula
(2) we obtain

Trhβ =

2n∑
i=1

(∇̃eiϕ)(dFei) = −
2n∑
i=1

η(F∗ei)ϕF∗ei,

and thus

ϕ(τ(F )) = −
2n∑
i=1

η(F∗ei)ϕF∗ei.

As F is a (J, ϕ)-holomorphic map, we have

η(F∗ei) = −η(F∗J
2ei) = −η(ϕF∗Jei) = 0,

and thus ϕ(τ(F )) = 0, that is τ(F ) = η(τ(F ))ξ. We have just obtained that
F is harmonic if and only if g(τ(F ), ξ) = 0.
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On the other hand

g(τ(F ), ξ) =

2n∑
i=1

g(∇̃eiF∗ei − F∗∇eiei, ξ)

=

2n∑
i=1

g(∇̃eiF∗ei, ξ)−
2n∑
i=1

g(F∗∇eiei, ξ)

= −
2n∑
i=1

{g(∇̃eiϕ(F∗(Jei)), ξ)− g(ϕ ◦ F∗(J∇eiei), ξ)}.

In the last equality we have used that N is Kähler and F is a (J, ϕ)-holomorphic
map. Now the second term vanishes and we get

g(τ(F ), ξ) =

2n∑
i=1

g(∇M
F∗eiϕF∗(Jei), ξ)−

2n∑
i=1

g(ϕ(∇M
F∗eiF∗Jei), ξ)

= −
2n∑
i=1

g(∇M
F∗eiϕF∗(Jei), ξ).

Using the formula (2) and the fact that η(F∗ei) = 0 we get

g(τ(F ), ξ) =

2n∑
i=1

g(F∗ei, F∗ei).

Therefore F is a harmonic map iff g(F∗ei, F∗ei) = 0 for any i = 1, . . . , 2n and
thus F is a constant map.�

Harmonic morphism are maps which pull back germs of real valued har-
monic functions on the target manifold to germs of harmonic functions on the
domain, that is, a smooth map F : (M, g) → (N,h) is a harmonic morphism
if for any harmonic function f : U → R, defined on an open subset U of N
such that π−1(U) is non-empty, the composition f ◦ F : π−1(U) → R is a
harmonic function. The following characterization of harmonic morphisms is
due to Fuglede and Ishihara: A smooth map F is a harmonic morphism if and
only if F is horizontally conformal harmonic map (see [3] and [4]). Now we
look for harmonic morphisms defined on Kenmotsu manifolds.

Theorem 3.3. Let F : M −→ N be a horizontally conformal (ϕ, J)-holomor-
phic map from a Kenmotsu manifold M(ϕ, ξ, η, g) into an almost Hermitian
manifold N(J, h). Then F is a harmonic morphism if an only if N is a semi
Kähler manifold.
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Proof. We know that for a horizontally conformal (ϕ, J)-holomorphic map
F from an almost contact metric manifold to an almost hermitian mani-
fold, any two of the following conditions imply the third: (i) divJ = 0 (ii)
dF (divϕ) = 0 (iii) F is harmonic and so is harmonic morphism see ([7]). Let
{e1, ..., em, ϕe1, ..., ϕem, ξ} be a ϕ- adapted local frame on TM then taking
e2m+1 = ξ

divϕ =

2m+1∑
i=1

(∇eiϕ)ei =

2m+1∑
i=1

g(ϕei, ei)ξ − η(ei)ϕei = 0.

As F is a horizontally conformal (ϕ, J)-holomorphic map, it follows that F
is a harmonic morphism if and only if divJ=0, i.e. N is semi-Kähler. �

4 Spectral geometry on Kenmotsu manifolds

Let f : (M, g) −→ (N,h) be a harmonic map defined on a compact manifold
M. The corresponding Jacobi operator is an elliptic self-adjoint operator which
has discrete spectrum of eigenvalues with finite multiplicities, denoted by

Spec(J) = {λ1 ≤ λ2 ≤ · · · ≤ λj ≤ . . . ↑ ∞}.

Then the trace Z(t) =
∑∞

j=1 exp(−tλj) of the heat kernel for the operator J
has the asymptotic expansion

Z(t) ∼ (4πt)−m/2{a0(J) + a1(J)t+ a2(J)t2 + . . . } as t→∞. (4)

Using the results of Gilkey (see [8]) Urakawa obtained the expresions for the
first three coefficients (see [14]):

Theorem 4.1. For a harmonic map f : (Mm, g) −→ (Nn, h), the first three
coefficient of the expansion are given by

a0(D) = nV ol(M, g), (5)

a1(D) =
n

6

∫
M

τgυg +

∫
M

Tr(Rf )υg, (6)

a2(D) =
n

360

∫
M

(5τ2g − 2‖ρg‖2 + 2‖Rg‖2)dυg + (7)

1

360

∫
M

[−30‖R∇̃‖2 + 60τgTr(Rf ) + 180Tr(R2
f )]dυg,

where R∇̃ is the curvature tensor of the connection ∇̃ on the induced bun-

dle, which is defined by R∇̃ = f∗Rh (Rh is the Riemann curvature tensor of
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(N,h)), Rg, ρg, τg are the curvature tensor, Ricci tensor, scalar curvature on
M respectively, and Rf is the endomorphism of the induced bundle defined by
Rf (V ) = Trgf

∗R(V,−)−.

The spectral geometry for the Jacobi operators of harmonic maps into a
Sasakian or cosymplectic space form was studied by Kang and Kim (see [10]).
We study now the spectral geometry for the case when the target manifold is
a Kenmotsu space form.

A Kenmotsu manifold with constant ϕ-sectional curvature c is called a
Kenmotsu space form and its curvature tensor R is expressed by

R(X,Y )Z =
(c− 3)

4
{g(Y,Z)X − g(X,Z)Y }+

(c+ 1)

4
{g(X,φZ)φY −

−g(Y, φZ)φX + 2g(X,φY )φZ + +η(X)η(Z)Y −
−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.

Let N(c) be a (2n+1)-dimensional Kenmotsu space form with constant ϕ-
sectional curvature c. Let f : (Mm, g) −→ N(c) be a harmonic map from
a compact Riemannian manifold into Kenmotsu space form. If we make the
notations c1 = c−3

4 and c2 = c+1
4 , after some long but straightforward compu-

tations we get:

Tr(Rf ) =

m∑
i=1

2n+1∑
a=1

h(R(va, f∗ei)f∗ei, va)

= 4(nc1 + c2)e(f)− 2c2(n+ 1)‖f∗η‖2, (8)

Tr(R2
f ) =

m∑
i,j=1

2n+1∑
a=1

h(R(va, f∗ei)f∗ei, R(va, f∗ej)f∗ej)

= 4[(2n− 1)c21 + 4c1c2 + c22]e(f)2 + (c21 + 9c22)‖f∗h‖2 −
−6c1c2‖f∗φ‖2 − 4(c1c2 + 4c22)f∗(η × η × g) +

+2(n+ 7)c22‖f∗η‖4 − 8(nc1c2 + 2c22)e(f)‖f∗η‖2, (9)

‖R∇̃‖2 =

m∑
i,j=1

2n+1∑
a,b=1

h(Rh(f∗ei, f∗ej)va, vb)h(Rh(f∗ei, f∗ej)va, vb)

= −2(c21 + c22)‖f∗h‖2 + 8c1c2f
∗(η × η × g) +

+8(c21 + c22)e(f)2 − 16c1c2e(f)‖f∗η‖2 +

+[12c1c2 + 8(n+ 1)β2]‖f∗φ‖2, (10)

for any local orthonormal basis {ei : i = 1 . . .m} and {va : a = 1 . . . 2n + 1}
on M and N respectively. In the above formulas we have used the following
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notations:
‖f∗η‖2=

∑m
i=1 η(f∗ei)η(f∗ei),

f∗(η × η × g) =
∑m

i,j=1 h(f∗ei, f∗ej)η(f∗ei)η(f∗ej),

‖f∗φ‖2 =
∑m

i=1 h(f∗ei, ϕf∗ej),
‖f∗h‖2 =

∑m
i=1 h(f∗ei, f∗ej).

Finaly, substituting (8) ∼ (10) into (5) ∼ (7), we get

Theorem 4.2. Let f : (M, g) −→ N(c) be a harmonic map from a m-
dimensional compact Riemanniann manifold (M, g) into a (2n+1)-
dimensional Kenmotsu space form N(c). Then the coefficients a0(Jf ), a1(Jf )
and a2(Jf ) of the asymptotic expansion for the Jacobi operator Jf are respec-
tively given by

a0(Jf ) = (2n+ 1)V ol(M, g), (11)

a1(Jf ) =
2n+ 1

6

∫
M

τgυg + 4(nc1 + c2)E(f)−

−2c2(n+ 1)

∫
M

‖f∗η‖2υg, (12)

a2(Jf ) =
2n+ 1

360

∫
M

(5τ2g − 2‖ρg‖2 + ‖Rg‖2)dυg +

+
2

3

∫
M

(c21 + 7c22)‖f∗h‖2υg −

−8

3

∫
M

(c1c2 + 3c22)f∗(η × η × g)υg +

+
4

3

∫
M

[(3n− 2)c21 + c22 + 6c1c2]e(f)2υg −

−2

3

∫
M

[6c1c2 + (n+ 1)c22]‖f∗φ‖2υg +

∫
M

(n+ 7)c22‖f∗‖4υg +

+
2

3

∫
M

(c1n+ c2)τge(f)υg −
1

3

∫
M

c2(n+ 1)‖f∗η‖2τgυg +

+
4

3

∫
M

[(1− 3n)c1c2 − 6c22]‖f∗η‖2e(f)υg. (13)

A first application of the above theorem is the following

Corollary 4.1. Let f, f̃ be two harmonic maps from a compact Riemannian
manifold M into a Kenmotsu space form N(c). If Spec(Jf ) = Spec(Jf̃ ) and

the structure vector field ξ is normal to f(M) and f̃(M), then E(f) = E(f̃).

Proof. Since the vector field ξ is normal to f(M) and f̃(M), then
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‖f∗η‖2 =

m∑
i=1

η(f∗ei)η(f∗ei) =

m∑
i=1

g(f∗ei, ξ)g(f∗ei, ξ) = 0

and similar for ‖f̃∗η‖. On the other hand, as Spec(Jf ) = Spec(Jf̃ ) we have

a1(f) = a1(f̃), put and we get E(f) = E(f̃). �

Let N(ϕ, ξ, η, h) be a (2n+1)-dimensional Kenmotsu manifold and f :
M −→ N be isometric immersion of a Riemannian manifold (M, g) into N. f
is said to be an invariant immersion if ϕ(f∗TM) ⊂ f∗TM and ξ is tangent
to f(M) everywhere on M. If f is an invariant immersion then it is minimal.
Indeed, any invariant submanifold M with induced structure tensors, which
will be denoted by same letters (ϕ, ξ, η, g) as M , is also a Kenmotsu mani-
fold. Using the Gauss formula, is not difficult to prove that B(X, ξ) = 0 and
B(X,ϕY ) = B(ϕX, Y ) = ϕB(X,Y ) for any vector fields X and Y tangent to
M . Here we have denoted by B the second fundamental form of M . Now, for
any x ∈M and any ϕ-adapted basis of Tx(M) {e1, . . . , en, ϕe1, . . . , ϕen, ξ} we
have

n∑
i=1

[B(ei, ei) +B(ϕei, ϕei)] +B(ξ, ξ) =

n∑
i=1

[B(ei, ei) + ϕ2B(ei, ei)] + 0 =

=

n∑
i=1

[B(ei, ei)−B(ei, ei) = 0,

that is f is minimal. On the other hand any isometric immersion is harmonic
if and only if is minimal.

Using the above corollary and the asymptotic expansions we get the fol-
lowing

Proposition 4.1. Let f and f̃ be isometric minimal immersions of compact
Riemannian manifolds (M, g) and (M̃, g̃) into a Kenmotsu space form respec-
tively. Assume that Spec(Jf ) = Spec(Jf̃ ) and the structure vector field ξ is

normal (or tangent) to f(M) and f̃(M̃). Then we have

1. dim(M) = dim(M̃);

2. V ol(M, g) = V ol(M̃, g̃);

3.
∫
M
τgdυg =

∫
M̃
τg̃dυg̃.
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Proposition 4.2. Let f, f̃ be invariant immersions of compact Riemannian
manifolds (M, g) and (M̃, g̃) into a Kenmotsu space form N respectively. As-
sume that Spec(Jf ) = Spec(Jf̃ ). If f is a totally geodesic immersion, then so

is f̃ .

Proof. As Spec(Jf ) = Spec(Jf̃ ), using the relation (6) we have

n

6

∫
M

τgdυg +

∫
M

Tr(Rf )dυg =
n

6

∫
M̃

τg̃dυg̃ +

∫
M̃

Tr(Rf̃ )dυg̃

Using the part (3) of the previous propsition (i.e.
∫
M
τgdυg =

∫
M̃
τg̃dυg̃), we

get ∫
M

Tr(Rf )dυg =

∫
M̃

Tr(Rf̃ )dυg̃, (14)

where

Tr(Rf ) =

m∑
i=1

2n+1∑
a=1

h(Rh(Va, f∗ei)f∗ei, Va)

Tr(Rf̃ ) =

m̃∑
i=1

2n+1∑
a=1

h(Rh(Va, f̃∗ẽi)f̃∗ẽi, Va)

Now, the proposition follows by using the Gauss equation. �
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