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Between Morphic and Hopfian

Grigore Călugăreanu and Lavinia Pop

Abstract

Relatively morphic submodules are defined and a new class of mod-
ules between morphic and Hopfian modules is singled out. Special care
is given to the Abelian groups case.

1 Introduction

In the 70’s, in two successive papers, Gertrude Ehrlich, defined and studied a
special class of (von Neumann) regular rings, called unit-regular rings. A ring
(with identity) R is unit-regular if for every a ∈ R there is a unit u ∈ U(R)
such that a = aua. Among other properties, Ehrlich (see [3]) proved the
following characterization:

Theorem. Let A be a ring with identity and let M be a right A-module
such that R = EndAM is a regular ring and let α ∈ R. The following state-
ments are equivalent:

(1) α is unit regular,
(2) there is an automorphism u : M −→M such that Imα⊕u kerα= M,
(3) kerα ∼= Co kerα (here Co kerα = M/Imα).
This was the starting point for studies concerning the dual of E. Noether

isomorphism theorem.
In a series of papers written by K. Nicholson and E. Sanchez-Campos, (see

[8], [9]) beginning in 2003, the interest for the dual of E. Noether isomorphism

Key Words: Relatively morphic submodule;δ-module;Abelian δ-groups;Hopfian module.
2010 Mathematics Subject Classification: Primary 16D80, 20K27; Secondary 16D70,

20K10, 20K15.
Received: January, 2012.
Revised: February, 2012.
Accepted: November, 2012.

51
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theorem flourished again. In 2004 (see [10]) morphic modules were defined
via the R-endomorphism ring: an endomorphism α was called morphic if
M/im(α) ∼= kerα, a module RM was called morphic if every endomorphism
is morphic and a ring R was called left (right) morphic provided that RR (or
RR respectively) is a morphic module. Among the basic characterizations, we
mention the following lattice type (see [10]): a module M is morphic if and
only if whenever M/K ∼= H where K and H are submodules of M , then
M/H ∼= K.

Nowadays, the subject continues to be investigated in several papers, in-
cluding the determination of morphic Abelian groups, the extension of morphic
definition to arbitrary groups, and to categories.

Since morphic Abelian groups turn out to be rare, and Hopfian Abelian
groups abound (and so a characterization is out of reach), finding classes of
Abelian groups in between seems to be of interest. This is what this paper
does.

For the sake of generality, the classes of interest and their general properties
are first introduced for modules (called δ-modules and γ-modules respectively).

A detailed study is made for Z-modules, that is, for Abelian groups.

2 Relatively morphic submodules

A submodule H will be called relatively morphic in a module M if whenever
M/K ∼= H holds for a submodule K of M , then M/H ∼= K.

While 0 is relatively morphic in any module M , it is readily checked that

Lemma 1. M is relatively morphic in M if and only if M has no proper
factor groups isomorphic with M if and only if it is Hopfian. �

Obviously, all submodules in a morphic module are relatively morphic.

Examples. 1) Proper submodules H < M , H ∼= M are not relatively
morphic. For instance, nZ is not relatively morphic in Z, for any n 6= 0,1.

2) Suppose in a module M , there are no proper submodules H, K with
M/K ∼= H. Then (trivially) all proper submodules are relatively morphic in
M . For instance, since every proper factor group of the full rational group Q
is torsion, all proper subgroups of Q are relatively morphic in Q (actually this
follows also because Q is morphic). Moreover, let A be a rank 1 torsion-free
Abelian group, i.e., Z < A < Q. The same argument shows that all proper
subgroups in A are relatively morphic in A.

3) In G = Z ⊕ Z there are subgroups (Z-submodules) which are not rela-
tively morphic. Indeed, take K = Z and H = nZ. Then (Z⊕ Z)/Z ∼= Z ∼=nZ
but G/nZ = (Z⊕ Z)/(0 ⊕ nZ) ∼= Z⊕ Z(n) 6∼= Z. Hence H = nZ is not rela-
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tively morphic in G, and so, not all the subgroups of a free Abelian group of
finite rank are relatively morphic.

4) Relatively morphic is not a transitive relation i.e., if L is relatively
morphic in H and H is relatively morphic in M , then L is not necessarily
relatively morphic in M .

For a counterexample we can use Example 14 in [10]: there exists a non-
morphic module M with submodule lattice 0 ⊂ Q ⊂ P ⊂ M . For our pur-
pose, notice that Q is relatively morphic in P and P is relatively morphic in
M . Indeed, first notice that isomorphic modules have isomorphic submod-
ule lattices. So P/K ∼= Q is possible only for K = Q (and this is true via c
d
0

 7−→
 d

0
0

) and so Q is relatively morphic in P . Finally, M/K ∼= P is

not possible for any K ∈ {0, Q, P,M}.
5) The conditions [H is relatively morphic in M ] and [M/H is morphic]

are logically independent. Indeed,

(i) since Q is morphic, every subgroup is relatively morphic. So Z is
relatively morphic in Q. However Q/Z ∼=

⊕
Z(p∞) is not morphic.

(ii) Z/nZ is morphic but nZ is not relatively morphic in Z (for n 6= 0, 1).

6) Not all direct summands are relatively morphic.

Example 2. Take G = Z(4) ⊕ Z(2)= 〈{a, b}|4a = 2b = 0〉 = A ⊕ B with
A = 〈a〉 , B = 〈b〉.

Clearly G/(2A⊕B) ∼= B but G/B ∼= A � 2A⊕B (cyclic-Klein). Hence B
is (a direct summand) not relatively morphic.

An equivalent definition of relatively morphic submodules using endomor-
phisms will be useful

Proposition 3. H is relatively morphic in M if and only if every endomor-
phism α ∈ End(M) with imα = H is morphic.

Proof. Indeed, for any endomorphism α (with or without imα = H), Noether
isomorphism theorem holds and so, if H = imα is relatively morphic,
M/ kerα ∼= imα implies M/imα ∼= kerα. Conversely, let K be a submodule
of M such that, M/K ∼= H and let σ : M/K −→ H be such an isomorphism.
Consider the composition α = iH ◦σ◦pK with inclusion iH : H ↪→M and pro-
jection pK : M � M/K. Then imα = H and kerα = K and by hypothesis,
M/imα ∼= kerα. Hence M/H ∼= K, as desired.
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3 Property (δ)

Since (H/S)⊕C ∼= (H ⊕C)/S holds for submodules H, C and S in a module
M with S ≤ H and C ∩H = 0, it is readily seen that

Proposition 4. For modules the following conditions are equivalent:
(i) all the direct summands are relatively morphic, and
(ii) for any direct summand C and submodule K, M/K ∼= M/C implies

K ∼= C.

We denote by (δ) this property. To simplify the wording, such modules
are also called δ-modules.

Since an indecomposable module has (δ) if and only if it is Hopfian, Z and
Q (moreover, all rank 1 torsion-free Abelian groups) satisfy (δ).

Clearly, morphic modules are δ-modules and δ-modules are Hopfian. Thus
we can characterize these three classes by their sets of relatively morphic sub-
modules

{all submodules}⊃{direct summands}⊃ {G} .

More important is the following

Proposition 5. (δ) is inherited by direct summands.

Proof. Suppose M = H⊕C and H has not property (δ). Then there are H =
S ⊕ T , U ≤ H with H/S ∼= H/U but S � U . Clearly S is a direct summand
also in M and U is also submodule in M . We show that M/S ∼= M/U using the
first line of this Section. S,U are submodules in H and H ∩C = 0. Therefore
(H/S)⊕ C ∼= (H ⊕ C)/S = M/S and (H/U)⊕ C ∼= (H ⊕ C)/U = M/U and
so H/S ∼= H/U indeed implies, M/S ∼= M/U .

Since property (δ) is inherited by direct summands, this property is worth
for a study. This is a new class of modules since Z and Example 2, Z(4)⊕Z(2)
(finitely generated and so Noetherian) show that both implications in

morphic =⇒ (δ) =⇒ Hopfian

are not reversible.
Combining Propositions 3 and 4 we obtain

Corollary 6. A module M has (δ) if and only if every image-direct endomor-
phism of M is morphic. �
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It is possible to characterize also Hopfian and Dedekind finite modules
respectively, by asking some special endomorphisms to be morphic.

Proposition 7. The following conditions are equivalent
(i) M is Hopfian
(ii) imα = M =⇒ kerα = 0
(iii) every epic endomorphism of M is morphic.

Proof. Let α ∈ End(M) with imα = M . If M is Hopfian then kerα = 0 and
the dual of Noether isomorphism theorem holds: M/M ∼= 0. Conversely, if
the dual of Noether isomorphism theorem holds for an epic endomorphism,
M/M ∼= kerα and so kerα = 0.

Proposition 8. A module M has a Dedekind finite endomorphism ring if
and only if all retractions (right invertible endomorphisms) in End(M) are
morphic.

Proof. Let α be a retraction in End(M) and αβ = 1. Since End(M) is
Dedekind finite, we also have βα = 1 and so α is monic. Hence M/imα =
M/M ∼= 0 = kerα. Conversely, suppose αβ = 1 in End(M). Since α is a
retraction, it is morphic by hypothesis. Therefore kerα = 0 (as above), α is
monic and so an isomorphism (Ab is a balanced category). Hence β = α−1

and so βα = 1.

Therefore these four classes of modules can be characterized via their
classes of morphic endomorphisms:

{all endos}⊃{im-direct endos}⊃{epic endos}⊃{retractions} .

4 Abelian δ-groups

4.1 Divisible δ-groups

Since for Z(p∞) property (δ) fails, we can prove

Proposition 9. Torsion divisible groups are not (δ) nor Hopfian.

Proof. Since torsion divisible groups are direct sums of quasicyclic groups
and these are indecomposable, these are (δ) if and only if they are Hopfian.
However, Z(p∞) is isomorphic with every proper factor group, so it is not
Hopfian, nor (δ). Therefore, there are no torsion divisible groups with (δ) nor
Hopfian (because both classes are closed to direct summands).
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Therefore in all these three classes: morphic, δ, and Hopfian Abelian
groups, divisible groups are torsion-free, and so finite direct sums of Q.

However, [torsion-free =⇒ divisible], valid for morphic groups, fails for (δ)
or Hopfian groups: indeed, Z is (δ) and (so) Hopfian, but not divisible. Hence
we proceed by characterizing some torsion-free δ-groups.

4.2 Torsion-free δ-groups

Since Z has property (δ), the first step is

Proposition 10. Finite rank free groups are δ-groups.

Proof. Let H, K be arbitrary subgroups in a finite rank free group G and let
G/H ∼= G/K. Since r(G) = r(H) + r(G/H) and similar for K, and all these
ranks are finite, r(G/H) = r(G/K) implies r(H) = r(K). But subgroups
of free groups are also free and having the same rank, they are isomorphic.
Hence H ∼= K and the claim follows from Proposition 4.

Remarks. 1) The condition that at least one of the subgroups H and K
should be a direct summand was not used. Thus, finite rank free groups share
a stronger property than (δ): for every two subgroups H, K in G, H ∼= K
whenever G/H ∼= G/K.

2) Being finitely generated, these groups are (also) Hopfian.
3) An infinite rank free group is not Hopfian and so nor (δ).

All finite rank torsion-free groups are Hopfian (this is due to the rank
formula for torsion-free groups). However, since nonisomorphic subgroups
may have the same rank, this fails for δ-groups.

In an attempt to characterize completely decomposable (i.e., direct sums
of rank 1 torsion-free) δ-groups (of finite rank), we first need the following

Proposition 11. If Hom(M,N) = 0 = Hom(N,M) holds for δ-modules M
and N , then M ⊕N satisfies (δ).

Proof. According to Corollary 6, a group G has (δ) if and only if every image-
direct endomorphism α of G is morphic. Using the characterization of morphic
endomorphisms given in Lemma 1, [10], and the pattern proof of Lemma 25,
[10], the only thing which remains to be verified is that in the hypothesis of

the Lemma, if λ ∈ end(M ⊕ N) =

[
End(M) 0

0 End(N)

]
is image-direct,

and λ =

[
α 0
0 β

]
in matrix form, then α is image-direct in M and β is

image-direct in N . Since in this case imλ = imα⊕ imβ, if λ ∈ end(M ⊕N) is
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image-direct, with M ⊕N = imλ⊕ P = imα⊕ imβ ⊕ PM ⊕ PN , clearly both
imα, imβ are also image-direct in M and N , respectively.

Indeed, then α′ ∈ endM and β′ ∈ endN do exist with imα = kerα′,
kerα = imα′, imβ = kerβ′, and kerβ = imβ′ and so imλ = kerλ′ and

kerλ = imλ′, where λ′ =

[
α′ 0
0 β′

]
.

Corollary 12. Every finite rank completely decomposable (torsion-free)
Abelian group with incomparable type summands is a δ-group.

Example. If Z(p) = {mn |(n; p) = 1}, for any finite set of prime numbers

P ,
⊕
p∈P

Z(p) is a completely decomposable δ-group.

In another direction, notice that G⊕G is a δ-group for G ∈ {Z,Q}.
Finally, since there plenty of direct summands in direct products which are

difficult to handle we leave open the following
Question. Is

∏
α∈J

Mα a δ-group iff each Mα is a δ-group ?

We just mention that this question has an affirmative answer for Hopfian
modules.

4.3 Torsion δ-groups

Since there are no torsion divisible δ-groups, the torsion δ-groups are reduced.
First an expected reduction

Proposition 13. A torsion group has property (δ) if and only if all its primary
components have property (δ).

Proof. The primary components being direct summands, the conditions are
necessary ((δ) is inherited by direct summands).

Conversely, let G =
⊕

pGp be the decomposition of G into p-components.
Each subgroup N of G has a corresponding decomposition into primary com-
ponents N =

⊕
pNp with Np subgroup of Gp, for all p. Therefore G/N ∼=⊕

p(Gp/Np).
Now suppose G/N ∼= H for a direct summand H of G. Using a similar

decomposition of H =
⊕

pHp,
⊕

p(Gp/Np)
∼=
⊕

pHp and so Gp/Np ∼= Hp.
Since every Gp is (δ), Gp/Hp

∼= Np and accordingly G/H ∼= N , as desired.

Therefore, only the p-groups with property (δ) must be singled out.
First we mention the following generalization of Example 2

Lemma 14. If m < n are positive integers, the direct sum A = Z(pm)⊕Z(pn)
is not (δ).
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Proof. Consider N = Z(pm) ⊕ pmZ(pn) and H = Z(pm) ⊕ 0. Then A/N ∼=
Z(pm) ∼= H but A/H ∼= Z(pn) � N .

Recall that a direct sum of cyclic p-groups is called homogeneous if all its
components are isomorphic.

Theorem 15. A (reduced) p-group G has property (δ) if and only if it is finite
and homogeneous.

Proof. Since the condition is sufficient according to Theorem 26, [10] (such p-
groups are morphic), suppose a p-group G is (δ) and let B be a basic subgroup
of G.

We first show that B must be finite and homogeneous, that is, all its
Ulm-Kaplansky invariants are zero, with (at most) one exception, say fG(n),
which is finite. Indeed, if two different invariants are not zero, say fG(m) 6=
0 6= fG(n) with m < n then the basic subgroup contains a direct summand
Z(pm) ⊕ Z(pn), which is pure and bounded in G, so a direct summand of G.
But this contradicts the previous Lemma.

Further on, if the only nonzero invariant is infinite, arguing as above, G
contains a direct summand which consists in a direct sum of infinitely many
isomorphic cyclic p-groups, which is not morphic (not even Hopfian), so again
a contradiction.

Finally, if G contains a finite homogeneous basic subgroup, again as pure
and bounded, this must be a direct summand of G, say G ∼= B⊕ (G/B) where
G/B is divisible. Since G/B is (δ) as a direct summand of G, we must have
G/B = 0 (there are no divisible p-groups with (δ)) and so G = B is finite and
homogeneous.

Therefore

Corollary 16. A p-group is (δ) if and only if it is morphic. So torsion δ-
groups are exactly the torsion morphic groups.

Example.
⊕
p∈P

Z(p) satisfies (δ). Indeed,
⊕
p∈P

Z(p) is morphic, so (δ) and

Hopfian.

Remark. Since Noetherian modules are Hopfian, we could ask whether
Noetherian modules satisfy property (δ). Example 2 shows that this is not
the case: Z(4) ⊕ Z(2) is finitely generated (and so Noetherian and Hopfian)
but not a δ-group.



BETWEEN MORPHIC AND HOPFIAN 59

4.4 Mixed δ-groups

Just by browsing the known properties for morphic and Hopfian groups (see
[2] and [1], [12]) respectively, we can formulate (and answer) some questions:

Proposition 17. If G is (δ) then so is its torsion part T (G).

Proof. As already noticed T (G) is always reduced. If T (G) is not (δ) then at
least one primary component is not (δ). According to Theorem 15, a primary
component is not finite or not homogeneous. As in the proof of the Theorem,
one can show that G is not (δ).

In any splitting mixed δ-group, G = T (G)⊕ F , the torsion part and F ∼=
G/T (G), as direct summands, are also δ-groups. In the reversed direction,
recall that in [2], we started with a special case of Lemma 24 from [10], namely

Lemma 18. If the direct sum of R-modules N⊕K is morphic and there exists
a R-linear epimorphism λ : K −→ N then K ∼= N ⊕ kerλ. �

Revision of the proof of Lemma 24 ([10]), shows that in the above state-
ment, ”morphic” can be replaced by (δ), and so yields the following: if there
exists a R-linear epimorphism λ : K −→ N and K has no direct summands
isomorphic to N then N ⊕K is not (δ).

Therefore the examples given in [2], may be used in order to show that:
(i) ”if both the divisible part D(G) and reduced R are (δ) then G =

D(G)⊕R is (δ)”, fails, and
(ii) ”if both T (G) and G/T (G) are (δ) then G is (δ)”, fails too.

4.5 Special relatively morphic subgroups

We may wonder when are the p-components in a torsion group and the torsion
part in a group, respectively relatively morphic. Here are some results.

Proposition 19. A p-component P is relatively morphic in a torsion group
G with only finitely many components if P is Hopfian. The converse holds for
any primary component in any torsion group G which satisfies (δ).

First recall that the subgroup lattice of a direct product of coprime groups
is lattice isomorphic with the direct product of the subgroup lattices: if Gi
(i ∈ I) are coprime groups, then L(

∏
i∈I Gi)

∼=
∏
i∈I L(Gi). Now we are able

to complete the
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Proof. To simplify the writing, suppose P is a Hopfian p-group and Q is a q-
group, for different primes p 6= q. Since P and Q are coprime, a subgroup K in
the direct product (or sum) P×Q is of the form K = P1×Q1 and (P×Q)/K =
(P × Q)/(P1 × Q1) ∼= (P/P1) × (Q/Q1). If these are also isomorphic to P ,
a p-group, and Q/Q1 is a q-group, we must have Q1 = Q and P/P1

∼= P .
Finally, since P is Hopfian, this gives P1 = 0 and so (P ×Q)/P ∼= Q ∼= K, as
desired.

Conversely, every primary component P is a direct summand of (a torsion
group) G, so it is relatively morphic by (δ).

Since it is a direct summand, the torsion part T (G) is relatively morphic
in every splitting mixed δ-group G.

Comments. (a) In a torsion-free group G, a subgroup H is pure if and
only if G/H is torsion-free. Thus, for two subgroups H, K, if G/K ∼= H then
K is a pure subgroup in G. Hence

Proposition 20. Only pure subgroups can be relatively morphic in a torsion-
free group.

From another point of view, if a subgroup H is not pure in G and we can
find a (pure) subgroup K with G/K ∼= H then H is not relatively morphic
(because G/H is not torsion-free, and so � K). Even only for torsion-free
groups, finding the subgroups which are isomorphic to suitable quotient groups
requires a separate study.

(b) The pure subgroups in a divisible group are divisible and hence direct
summands. In finite rank torsion-free divisible groups (these are morphic) all
subgroups are relatively morphic. So are the divisible subgroups and, as a
special case, so is D(G) the divisible part of a δ-group. In general we can have

Proposition 21. The divisible part D(G) is relatively morphic in an arbitrary
group G only if D(G) has finite rank.

Proof. Notice that K must be reduced whenever G/D(G) ∼= K. To simplify
the writing suppose D(G) =

⊕
ℵ0

Q and for a nonzero reduced group A, let

G = A⊕ (
⊕
ℵ0

Q). Then for K = A⊕Q we have G/K ∼= D(G) but G/D(G) ∼=

A � K.

Conversely, we mention

Example 22. Qn is relatively morphic in Z ⊕Qn for every positive integer
n.
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Let K be a subgroup of G = Z ⊕ Qn such that G/K ∼= Qn. Since in
this case G/K is, together with G, torsion-free, K must be a pure subgroup.
More, it must be a direct summand because G is completely decomposable,
and its reduced part is homogeneous (see [6]). Therefore, to check the claim
we are reduced to Z⊕Qn ∼= K ⊕Qn implies Z ∼= K, that is cancellation with
Qn. But cancellation by a torsion-free group of finite rank is permitted if the
complements are of rank 1 (see Exercise 13, 90, [5]).

Since D(G) = Qn, the divisible part, this can be slightly generalized by

Corollary 23. The finite rank divisible part D(G) is relatively morphic in a
torsion-free group G if its reduced part is of rank 1.

(c) A subgroup E is essential in a group G if and only if S(G) ≤ E and G/E
is torsion. As special case, if G is torsion-free, then E is essential in G exactly
when G/E is torsion. Therefore, for any proper subgroup K, G/E � K.
Hence, in a torsion-free group G, if for an essential subgroup E there is a
subgroup K such that G/K ∼= E, then E is not relatively morphic in G (the
study mentioned above would be necessary also in this case).

5 Simple morphic

A natural problem can be stated: find the modulesM such that for each proper
submodule H there is a submodule K such that M/K ∼= H but M/H 6∼= K,
i.e., the modules with no (proper) relatively morphic submodules (we call
such modules, simple-morphic). Obviously, simple modules are also simple-
morphic.

Since every idempotent (endomorphism) is morphic, every idempotent not
0 or 1 produces (the image) a proper relatively morphic direct summand.
Therefore, the endomorphism ring End(M) must have only 0, 1 idempotents.
Hence M must be indecomposable and we are reduced to the following ques-
tion: which indecomposable modules are simple-morphic?

Since for Abelian groups indecomposable groups are cocyclic or torsion-
free, we mention the following

Proposition 24. Z(pn) is not simple-morphic and Z(p∞) is simple-morphic.

Proof. As for the cocyclic, every Z(pn) is morphic, and so it is not simple-
morphic (unless n = 1). Further, for a proper subgroup H, and K 6= Z(p∞),
the isomorphism Z(p∞)/K ∼= H cannot happen (all proper subgroups are
finite, all proper quotients are isomorphic to Z(p∞)). Therefore, Z(p∞) is
trivially simple-morphic.
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What remains, are the torsion-free simple-morphic (indecomposable)
groups.

Proposition 25. The only rank 1 torsion-free (indecomposable) simple-
morphic group is Z.

Proof. For Z and for any nZ we take K = 0 in our previous definition. As
for the rest, let A be a rank 1 torsion-free Abelian group, i.e., Z < A ≤ Q.
In Section 2, we have noticed that all proper subgroups in A are relatively
morphic in A (clearly A/K is a subgroup in Q/K and so is also torsion).
Hence these groups are not simple-morphic.

The pathologies for (even) indecomposable torsion-free groups of rank 2 or
more are well-known from long time. Thus, finding the simple-morphic of this
type requires another separate study.

6 The duality

We can consider also a symmetric definition for dually relatively morphic sub-
modules: if M/H ∼= K then M/K ∼= H, and these two definitions are not
equivalent.

We just list dual properties without all (symmetric) proofs.
While M is dually relatively morphic in any module M , it is readily checked

that

Lemma 26. 0 is dually relatively morphic in M if and only if M has no
proper subgroups isomorphic with M if and only if M is co-Hopfian.

All subgroups in a morphic group are relatively morphic and dually rela-
tively morphic.

Remark. Whenever we have M/K ∼= H and M/H � K, both H is not
relatively morphic and K is not dually relatively morphic.

Question. Find the submodules which are both relatively and dually
relatively morphic in a module.

Equivalent definition using endomorphisms:

Proposition 27. H is dually relatively morphic if and only if for every en-
domorphism α ∈ End(M) with kerα = H is morphic.

Proposition 28. For modules the following conditions are equivalent
(i) M has only dually relatively morphic direct summands and
(ii) for any direct summand C and subgroup K, K ∼= C implies M/K ∼=

M/C.



BETWEEN MORPHIC AND HOPFIAN 63

Denote by (γ) the property above (also called γ-modules).

Examples. 1) Z is not (γ): 2Z ∼=3Z but Z/2Z = Z(2) � Z(3) = Z/3Z.
(Obvious, also not co-Hopfian)

2) The essential subgroups in a torsion-free Abelian group are (trivially)
dually relatively morphic.

Indeed, if G is a torsion-free group then E is an essential subgroup if and
only if G/E is torsion. If, for an essential subgroup E, there is a subgroup
K ≤ G such that G/E ∼= K then necessarily K = 0 and G/E = 0 implies
E = G. Hence E = G ∼= G/0 = G/K.

Therefore all the nonzero subgroups of Z and Q are dually relatively mor-
phic. Actually this is clear in the second case, because Q is morphic.

Clearly morphic modules are γ-modules and γ-modules are co-Hopfian.
Thus we can characterize these three classes by their sets of dually relatively
morphic submodules

{all submodules}⊃{direct summands}⊃{0} .

Since an indecomposable group has property (γ) if and only if it is co-Hopfian,
Z(p∞) satisfies (γ).

This is a new class of modules since Z(p∞) and once again Example 2 show
that both implications in

morphic =⇒ (γ) =⇒ co-Hopfian

are not reversible.
Two simple connections

Proposition 29. Let M = H ⊕ C. If M is a δ-module and C is dually
relatively morphic then H is relatively morphic. If M is a γ-module and H is
relatively morphic then C is dually relatively morphic. �

Less favorable than the property (δ), in order to have the closure for direct
summands for (γ), we need more.

A module M has cancellation for direct summands if A ∼= B whenever
C ⊕A ∼= C ⊕B with direct summand C and submodules A,B.

Proposition 30. (γ) is inherited by direct summands, in groups with cancel-
lation for direct summands. �

Combining Propositions 27 and 28 we obtain
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Corollary 31. A module M has property (γ) if and only if every kernel-direct
endomorphism α of M is morphic.

It is possible to characterize also co-Hopfian and Dedekind finite modules
respectively by asking some special endomorphisms to be morphic.

Proposition 32. The following conditions are equivalent
(i) M is co-Hopfian
(ii) kerα = 0 =⇒ imα = M
(iii) the monic endomorphisms of M are morphic.

Proposition 33. A module M has a Dedekind finite endomorphism ring if
and only if all sections (left invertible endomorphisms) in End(M) are mor-
phic.

Therefore all these four classes of modules can be characterized via the
validity of the dual of Noether isomorphism theorem for some classes of endo-
morphisms:

{all endos}⊃{ker-direct endos}⊃{monic endos}⊃{sections} .

6.1 Abelian γ-groups

Using integer multiplications as Z-endomorphisms, now we can prove

Proposition 34. Torsion-free γ-groups are divisible.

Therefore

Corollary 35. The only torsion-free γ-groups are the finite direct sums of Q.

Corollary 36. Every splitting mixed γ-group G, decomposes as G = T (G)⊕
D(G), with D(G), a finite direct sum of Q.

However the converse, that is, ”every divisible γ-group is torsion-free”,
fails (take Z(p∞)). It is considerably harder to characterize torsion γ-groups
mainly because we don’t always have cancellation. However, we can prove a
structure result for torsion (divisible) γ-groups.

Proposition 37. The torsion divisible γ-groups are exactly the divisible tor-
sion groups with finite p-ranks (that is, for each prime number p, direct sums
of finitely many copies of quasicyclic groups (i.e., Z(p∞)).
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Proof. The proof is similar to the one of Proposition 13, because for such
groups we have (general) cancellation. Indeed, for (quasi-)injective modules,
the cancellation property is equivalent to co-Hopfian (or Dedekind finite) prop-
erty (see [13] or [7]), and so holds for γ-groups.

Using the same result, since an Abelian group is quasi-injective if and only
if it is divisible or torsion with homogeneous p-components (see [4]), we deduce

Corollary 38. Torsion groups with homogeneous p-components are γ-groups
if and only if each p-component is a γ-group.

Clearly, each p-component must have finite rank (otherwise it is not co-
Hopfian nor Dedekind finite). Finally, since homogeneous p-groups of finite
rank are morphic, we obtain

Corollary 39. Torsion groups with homogeneous p-components of finite rank
are γ-groups.

Similarly to the way we already used Z(4)⊕ Z(2), one can prove

Lemma 40. If m < n are positive integers, the direct sum A = Z(pm)⊕Z(pn)
is not (γ).

However, although this Lemma is (as Lemma 14 was for Theorem 15)
crucial for proving the statement ”a (reduced) p-group G has property (γ) if
and only if it is finite and homogeneous”, one can see that final argument in
the proof of Theorem 15 (G/B divisible implies G = B) does not work here.
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