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SYZYGIETIC PROPERTIES OF A MODULE
AND TORSION FREENESS OF ITS

SYMMETRIC POWERS

Vittoria Bonanzinga and Gaetana Restuccia

Abstract

Let E be a finitely generated R-module of finite projective dimension.
We establish necessary and sufficient conditions for the q-torsion freeness
of the symmetric powers Symt(E), (t ≥ 1). In projective dimension > 1,
we study the connection between the acyclicity of the complex Z(E) of
a module E and the condition F0 on E.

Introduction

Let R be a commutative noetherian ring with unit and let E be a finitely
generated R-module. Let SymR(E) = S(E) =

⊕
t≥0

Symt(E) be the symmetric

algebra of E. It is well-known that if R is an integral domain, SymR(E) is
hardly ever an integral domain itself.

It is so if and only if each of the symmetric powers Symt(E) is a torsion
free R-module [6]. If E = I, an ideal of R, and (R, m) is local then SymR(m)
is an integral domain if and only if R is regular ([6]).

We say that an ideal I is of linear type ([13]) if the canonical epimorphism
SymR(I) → R(I) → 0, where R(I) =

⊕
t≥0

It is the Rees algebra of I, is an

isomorphism, and SymR(I) is an integral domain if and only if R is an integral
domain.

If E is a module of finite presentation Rm −→ Rn −→ E −→ 0 then the
torsion freeness of the symmetric powers of E is connected with some condi-
tions of finiteness for the depth of the Fitting ideals Fk(E) of E, e+1 ≤ k ≤ n
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when the module E admits rank e > 0. Consequently, we can deduce theoretic
properties of the symmetric algebra SymR(E) by the syzygetic properties of
the module E.

It is interesting to investigate the q-torsion freeness of the symmetric pow-
ers of E, by using acyclicity criteria for canonical complexes associated to the
symmetric algebra of E.

In projective dimension 1, the basic result of Avramov [2] solves the prob-
lem completely, in the sense, that, for each t, Symt(E) is q-torsion free if and
only if E is Fq:= depth(Fk(E)) > k − e + q, e + 1 ≤ k ≤ n .

In section 1, we consider modules of finite projective dimension and we
establish necessary and sufficient conditions for the q-torsion freeness of the
symmetric powers Symt(E) (t > 1).

In section 2, we examine the relation between the acyclicity of the Z(E)-
complex of a module E and the condition F0 on E, when the Z(E)-complex
coincides with the Koszul complex of the immersion 0 −→ L −→ Rn, with
0 −→ L −→ Rn −→ E a finite presentation of E and L not necessarily free.

1

We consider a module E of finite projective dimension with the following free
resolution

F. : 0 −→ Fs
fs−→ Fs−1

fs−1−→ . . .
f1−→ F0 −→ E −→ 0 (1)

with Fi, free R-modules.
By theorem 2.1 [11] we can associate to E a canonical complex Si(F.). The

goal of this section is to use this canonical complex in order to study when the
symmetric powers of E are q-torsion free (q > 1).

We recall that a module E is called q-torsion free if every R-regular se-
quence of lenght q is also E-regular.

Proposition 1 Let E be a module of finite projective dimension over a noethe-
rian ring R and let q be an integer. The following are equivalent:

1. E is q-torsion free.

2. For every prime ideal ℘ of R, depth(E℘) ≥ min(q, depth(R℘))

3. E is a q-th syzygy.

Proof. See [1], [2].
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Remark 1 In general, for an arbitrary module E, we have only the implica-
tions 3) ⇒ 2) ⇒ 1). We have also the equivalence for arbitrary modules if
R is a normal domain and q ≤ 2 ([10], prop. 1). In this case and in finite
projective dimension, the 2-torsion free modules are the reflexive ones.

Let E be a module generated by n elements. For the next theorem we
switch from determinantal ideals to Fitting invariants Fk(E) = In−k+1(f1),
where In−k+1(f1) denotes the ideal generated by the n − k + 1-sized minors
of f1.

We say that a module E has rank e if E ⊗R Q(R) is a free Q(R)-module
of rank e, where Q(R) the total quotient ring of R.

Theorem 2 Let E be a module of projective dimension 2 over a noetherian
ring R, of rank r and with resolution

F. : 0 −→ F2
f2−→ F1

f1−→ F0 −→ E −→ 0 (2)

where F2, F1, F0 are free R-modules of rank p, m, and n, respectively. Suppose

that E is 2(i − 1) + q-torsion free, (q ≥ 1), i ≥ 2; i! is invertible in R. Then
we have:

1. Symi(E) is q-torsion free

2. depth Fk(E) ≥ k − r + q, r + 1 ≤ k ≤ n.

Proof. It suffices to observe that the complex Si(F.) associated to E, of
theorem 2.1 [11], is acyclic, and by Corollary [14] Symi(E) is q-torsion free,
hence 1).

Since E is 2(i− 1) + q−torsion free, there exists an exact sequence

0 −→ E −→ G1 −→ · · · −→ G2(i−1)+q

with Gj−free of finite type.
Then the sequence (2) is extendable to the right by an exact sequence in

this way:

0 −→ F2
f2−→ F1

f1−→ F0 −→ E −→ G1 −→ · · · −→ G2(i−1)+q.

By Buchsbaum-Eisenbud criterion we must necessarily have depth(Ir1(f1)) ≥
2(i−1)+q+1, where r1 = rank Im f1 = m−p. But Ik(f1) ⊇ Ir1(f1), ∀k ≤ r1,
then depth(Ik(f1)) ≥ depth(Ir1(f1)), ∀k ≤ r1.
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In particular depth(Ir1−i+1(f1)) ≥ 2i + q − 1 > i + q − 1 ≥ i + q; if we put
r1 − i + 1 = k, then

depth(Ik(f1)) > r1 − k + q + 1

hence 2).

Theorem 3 Let E be a module of projective dimension 2 over a noetherian
ring R, of rank r and with resolution (2), with depth Ip(f2) ≥ m− p− 1. Let
q be an integer, q ≥ 1 and let i be an integer ≥ 2; such that 2i < m− p; i! is
invertible in R. We suppose that:

depth Fk(E) ≥ k − r + q, r + 1 ≤ k ≤ n.

Then Symi(E) is q − torsion free.

Proof. It follows by [1.9, 11] that

pdR(Symi(E)) ≤ 2i ∀i > 0.

Then, if ℘ is a prime ideal such that depth(R℘) ≥ 2i + q, we have:

depth(Symi(E)℘) = depth(R℘)− pdR℘(Symi(E)℘) ≥
≥ 2i + q − pdR℘(Symi(E)℘) ≥ 2i + q − 2i = q.

Now, we consider a prime ideal ℘ such that

depth(R℘) < 2i + q.

By hypothesis, depth(I1(f1)) ≥ (m−p)+q > 2i+q and we have that I1(f1) *
℘. It follows that the module E℘ admits a free resolution over R℘

0 −→ F ′2 −→ F ′1
f ′1−→ F ′0 −→ E℘ −→ 0

with F ′0 = Rn
℘ = Rn−1

℘ ⊕ R℘, F ′1 = Rm
℘ = Rm−1

℘ ⊕ R℘ Moreover, since
Ik−1(f ′1) = Ik(f1)℘, we have the inequalities

depth(Ik−1(f ′1)) ≥ (m−1)−p− (k−1)+1+q, for 1 ≤ k−1 ≤ (m−1)−p

We can then apply the induction on m. In fact, if m = 0, E is free and the
result is trivial. By induction, then we can conclude that

depth (Symi(E)℘) ≥ min(q, depth(R℘)).
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Corollary 4 Let E be a module of projective dimension 2 over a noetherian
ring R, 2(i− 1) + q-torsion free of rank r and with resolution (2). Let q be an
integer ≥ 1 and let i be an integer ≥ 2; such that 2i < m − p; i! is invertible
in R. Then the following conditions are equivalent:

1. depth (Fk(E)) ≥ k − r + q, r + 1 ≤ k ≤ n

2. Symi(E) is q-torsion free.

We say that a module E satisfies Fq if ht It(f1) ≥ rank f1− t+1+ q, 1 ≤
t ≤ rank f1, where q ≥ 0 is an integer and rank f1 = sup{t/It(f1) 6= 0}

Theorem 5 Let E be a module of finite type over R, of rank e, generated by
n elements, of finite projective dimension. Let q be an integer, q ≥ 1. We
suppose that:

1. pdR (SymR(E))≤ n − e

2. E is Fq.

Then Symt(E) is q − torsion free, ∀ t > 0.

Proof. We consider a presentation of the module E

Rm f1=(aji)−→ Rn −→ E −→ 0 (3)

and let
0 −→ L −→ Rn −→ E −→ 0.

We have pdR (Symi(E)) ≤ n− e = ` = rank L ∀ i > 0.
Let ℘ ∈ Spec(R) such that depth (R℘) ≥ ` + q. Then
depth (Symi(E)℘) = depth (R℘) − pdR℘(Symi(E)℘ ≥ ` + q − ` = q =

min(q, depth(R℘)).
Let ℘ ∈ Spec(R) such that depth (R℘) < ` + q.
By Fq, depth(I1(f1)) ≥ ` + q, I1(f1) * ℘ and localizing (3) at the prime

ideal ℘, we have:

Rm−1
℘ ⊕R℘

f ′1⊕id−→ Rn−1
℘ ⊕R℘ −→ E℘ −→ 0

and E℘ has the presentation:

0 −→ L
′
℘

f ′1−→ Rn−1
℘ −→ E℘ −→ 0

L℘ = L
′
℘ ⊕R℘, rank (L

′
℘) = rank(L℘)− 1 and Ik−1(f

′
1) = Ik(f1)℘ ∀k.
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We proceed by induction on `.
If ` = 0, E is free and the equivalences are trivial.
By induction hypothesis,

depth Ik−1(f
′
1) ≥ `− k + q + 1 = (`− 1)− (k − 1) + q + 1

where 1 ≤ k − 1 ≤ `− 1 and it follows
depth (Symi(E)℘) ≥ q ≥ min(q, depth(R℘)).

Remark 2 If R is a Cohen-Macaulay ring and E is a module of finite
type over R of finite projective dimension 1, which is F0(or, equivalently, if
Symt(E) is torsion free, ∀ t > 0 ), the condition pdR(SymR(E)) ≤ n − e is
always verified. In fact, in this case SymR(E) has a free finite resolution ([5],
Prop. 4.1) of lenght n− e.

Theorem 6 Let E be an R-module of finite type, being R a Cohen-Macaulay
ring, of rank e, of finite projective dimension. Let q ≥ 1 be an integer and we
suppose that:

1. For all prime ideal ℘ of R such that depth (℘R℘) > `, depth Ik(f1)℘ ≥
`− k + q + 1, 1 ≤ k ≤ `;

2. Symt(E) is q-torsion free, ∀ t > 0.

Then E is Fq.

Proof. We proceed by induction on ` = rank L, L = ker(Rm → E).
If ` = 0, the assertion is trivial.
If rank L = `, by theorem 3.1 [9], we have:

depth I1(f1) ≥ `.

Let ℘ ∈ Spec(R) such that depth ℘R℘ ≤ `. Then I1(f1) * ℘ and, localizing
(3) at the prime ideal ℘, we have:

Rm−1
℘ ⊕R℘

f ′1⊕id−→ Rn−1
℘ ⊕R℘ −→ E℘ −→ 0

and the presentation:

0 −→ L
′
℘

f ′1−→ Rn−1
℘ −→ E℘ −→ 0

rank (L
′
℘) = rank(L℘)−1 and Ik−1(f

′
1) = Ik(f1)℘. By induction hypothesis:

depth Ik−1(f
′
1) ≥ (`− 1)− (k − 1) + q + 1 = `− k + q + 1.
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Since for every prime ideal ℘ ∈ Spec(R), depth Ik(f1)℘ ≥ `− k + q + 1, then
we can suppose that R is local and it results that depth Ik(f1) ≥ `−k + q +1,
1 ≤ k ≤ `, i. e., E is Fq.

2

Let E be a module of finite presentation:

Rm f1=(aji)−→ Rn ϕ−→ E −→ 0

and let
0 −→ L−→Rn −→ E −→ 0.

If E has rank e, then we have

rank L = ` = n− e.

We introduce the Z-complex, Z(E), of the module E that is a complex of
graded S = S(Rn)-modules:

Z(E) := 0 −→ Zn−e ⊗ S[−`] −→ ... −→ Z1

⊗
S[−1] −→ S −→

SymR(E) −→ 0,

where Zi = Zi(E) = ker(
i∧

Rn ∂−→
i−1∧

Rn ⊗ E), ∂(a1 ∧ . . . ∧ ai) =∑
(−1)j(a1 ∧ . . . ∧ âj ∧ . . . ∧ ai)⊗ ϕ(aj), S[−j]r = Sr−j .
We consider the case when the complex Z(E) coincides with the Koszul

complex of immersion 0 −→ L −→ Rn

S(L.) := 0 −→ ∧̀
L⊗S[−`] −→

`−1∧
L⊗S[−`+1] −→ ... −→ L

⊗
S[−1] −→

S −→ SymR(E) −→ 0.
We need some preparatory lemmas

Lemma 7 Let F be a module of finite type over R, not necessarily free. Let

SR(F ) =
⊕

i≥0

Symi(F ) =
⊕

i≥0

Si(F )

be the symmetric algebra of F and
∧

F =
⊕
i≥0

i∧
F the exterior algebra of F .

Then we have:

1. Si(F
⊕

R) ∼=
i⊕

j=0

Sj(F );
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2.
i∧

(F
⊕

R) ∼=
i∧

F
⊕ i−1∧

F

Proof. For F free see lemma 3 [12], lemma 2 [14].
1. If F is not free, we consider a presentation of F :

0 −→ L −→ Rn f−→ F −→ 0

and the induced exact sequence:

0 −→ J −→ S (Rn) −→ S (F ) −→ 0 .

We have
0 −→ L −→ Rn⊕R

f⊕id−→ F ⊕ R −→ 0 ,

and the induced exact sequence

0 −→ J −→ S (Rn⊕R) −→ S (F ⊕ R) −→ 0

0 −→ J i−→ S i(R
n⊕R) −→ S i(F ⊕ R) −→ 0

where Ji = J ∩ Si(Rn ⊕ R). Since Si(Rn ⊕ R) =
i⊕

j=0

Sj(Rn), Ji = J ∩
(

i⊕
j=0

Sj(Rn)

)
=

i⊕
j=0

Jj . Hence Si(F⊕R) ∼= Si(Rn⊕R)/Ji
∼=

i⊕
j=0

Sj(Rn)/Jj
∼=

i⊕
j=0

Sj(F ).

2. We consider the presentation 0 −→ L −→ Rn f−→ F −→ 0 and by
0 −→ L −→ Rn⊕R

f⊕id−→ F ⊕ R −→ 0 the induced exact sequence:

0 −→ B −→
∧

(Rn ⊕R)−→
∧

(F ⊕ R)−→0

0 −→ B i−→
i∧

(Rn ⊕R)−→
i∧

(F ⊕ R)−→0

where Bi = B ∩∧i (Rn⊕R) = B ∩ (
∧i Rn⊕∧i−1 Rn).

Hence
∧i (F ⊕ R) ∼= ∧i (Rn⊕R)/B i

∼= ∧i Rn⊕∧i−1 Rn/B i
∼=

i∧
F

⊕ i−1∧
F .
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Lemma 8 Let E be a module of finite type on R and let K. := 0 −→ L
f1−→

F0 −→ E −→ 0; K ′. := 0 −→ L ⊕ R
f1⊕idR−→ F0 ⊕ R −→ E −→ 0 be

two presentations of E, L not necessarily free, F0 free on R. Then the Koszul
complexes S(L.) and S(L.′) of immersion 0 −→ L

f1−→ F0, 0 −→ L⊕R
f1⊕idR−→

F0 ⊕R −→ E have the same homology.

Proof. If we call S(L.) and S(L.′) the two Koszul complexes of immersions
0 −→ L −→ F0, 0 −→ L′ −→ F0⊕R, L′ = L⊕R, in the component of degree
t > 0, we have:

St(L.) := ... −→
i∧

L⊗ St−i(F0) −→
i−1∧

L⊗ St−i+1(F0) −→ ...

St(L.′) := ... −→
i∧

L′⊗St−i(F0⊕R) −→
i−1∧

L′⊗St−i+1(F0⊕R) −→ ...

Let:

(St(L.))i =
i∧

L⊗ St−i(F0) and (St(L.′))i =
i∧

L′ ⊗ St−i(F0 ⊕R).

From lemma 7, we have:

(St(L′.))i =
i∧
(L⊕R)⊗ St−i(F0 ⊕R) ∼=

∼=
(

i∧
L⊕

i−1∧
L

)
⊗ (St−i(F0)⊕ St−i−1(F0)⊕ ...⊕ F0 ⊕R) =

= (St(L.)i ⊕ St−1(L.)i ⊕ ...⊕ Si+1(L.)i ⊕ Si(L.)i)⊕
⊕ (St−1(L.)i−1 ⊕ St−2(L.)i−1 ⊕ ...⊕ Si(L.)i−1 ⊕ Si−1(L.)i−1).
We proceed in a similar way to that contained in [12] or [14], prop. 3, and

we can conclude that S(L.) and S(L.′) have the same homology.

Theorem 9 Let E be a torsion free module of finite type on R, Cohen-
Macaulay ring of finite projective dimension, of rank e and with resolution:

0 −→ Rp −→ ... −→ Rm f1−→ Rn −→ E −→ 0. (4)

We suppose that:

1. E is F0;

2. If 0 −→ L −→ Rn −→ E −→ 0, ` = rank L, the complex S(L.) is exact
⇐⇒ S(L.)⊗R℘ is exact, for all ℘ ∈ Spec(R) such that depth(℘R℘) < `;

3.
r∧

L = (
r∧

L)∗∗ for r < rank L.
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Then the complex Z(E) is acyclic.

Proof. Since E is a torsion free module of finite projective dimension, then
E℘ is a free R℘-module for every ℘ ∈ Spec(R) such that depth (R℘) ≤ 1. By

prop. 4.1, [5], we have (
r∧

L)∗∗ ∼= Zr(E), ∀r < rankE.

Being L of finite projective dimension,
(∧̀

L

)∗∗
= det L = R and the

Z(E)-complex of E is the following:

Z(E) := 0 → R⊗ St−`(Rn) →
`−1∧

L⊗ St−`+1(Rn) → ... →
→ L⊗ St−1(Rn) → St(Rn) → St(E) → 0
We show, by induction on `, that Z(E) is acyclic. If ` = 0, E is free and

Z(E) is acyclic.([8]).
We suppose that ` > 0. Let ℘ ∈ Spec(R). Since F0 implies depth I1(f1) ≥

`, I1(f1) * ℘.
Localizing (4) at the prime ideal ℘,we have:

Rm−1
℘ ⊕R℘

f ′1⊕id−→ Rn−1
℘ ⊕R℘ −→ E℘ −→ 0

with the presentation:

0 −→ L′℘
f ′1−→ Rn−1

℘ −→ E℘ −→ 0

L℘ = L′℘ ⊕ R℘, rank(L′℘) = rank(L℘)− 1 and Ik−1(f ′1) = Ik(f1)℘, where
depth Ik(f ′1) ≥ (` − 1) − (k − 1) + q + 1 = ` − k + q + 1, 1 ≤ k − 1 ≤ ` − 1,
the module E℘ is F0. We can suppose then R is local and we can conclude by
lemma 8 and by the induction hypothesis.

Theorem 10 Let E be a module of finite type over R, Cohen-Macaulay ring
of finite projective dimension, of rank e and with resolution (4). We suppose
that:

1. the complex S(L.) is exact ⇐⇒ S(L.)⊗R℘ is exact for all ℘ ∈ Spec(R)
such that depth (℘R℘) < `;

2. E is free on the prime ideals ℘ such that depth (℘R℘) ≤ 1;

3.
r∧

L =
(

r∧
L

)∗∗
, ∀ r < rank L;

4. depth I1(f1) ≥ ` and
`−1∧

L ∼= R`;

5. Z(E) is acyclic.
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Then the module E is F0.

Proof. We have the maps:

r∧
L −→ Zr(E)

where the modules are reflexive.
Localizing at the prime ideals ℘ ∈ Spec(R) such that depth (℘R℘) ≤ 1,

the modules
r∧

L and Zr(E) coincide. Hence :

Z(E) := 0 → R⊗St−`(Rn) d`→ R`⊗St−`+1(Rn) d`−1→
`−2∧

L⊗St−`+2(Rn) →
... → L⊗ St−1(Rn) d1→ St(Rn) → Sym(E) → 0

Since the complex Z(E) is exact, depth I(`
`)(d`) = depth I1(f1) ≥ `.

Let ℘ ∈ Spec(R) such that depth (℘R℘) < `. Then I1(f1) * ℘. Localizing
(4) at the prime ideal ℘, we obtain:

Rm−1
℘ ⊕R℘

f1⊕idR−→ Rn−1
℘ ⊕R℘ −→ E℘ −→ 0

with the presentation:

0 −→ L′℘
f1−→ Rn−1

℘ −→ E℘ −→ 0

L℘ = L′℘ ⊕R℘, rank(L′℘) = rank(L℘)− 1 and Ik−1(f ′1) = Ik(f1)℘.
By lemma 8 , the complex Z(E)⊗R℘ is acyclic and

depth Ik(f1)℘ = depth Ik−1(f ′1) ≥ (`− 1)− (k − 1) + 1 = `− k + 1,

1 ≤ k ≤ `− 1, by the induction hypothesis. Then we can suppose that R
is local and we can conclude that E is F0.

Example 1 We exibit an example of a module that is high torsion free, con-
taining a field and that fulfills the hypothesis in theorem 10. More precisely,
let E be a q-torsion free module, where q = (t − 1)(` − 1) + `, ` = rankL,
pdE = t, t > 1, ` ≥ 3, and d > t(`− 1) + 2, where d = depthR. We verify all
points of theorem 10.

1. L is (q + 1)-torsion free, then
i∧

L is (`− 1)-torsion free, ∀ i ≤ `− 1.

If ℘ ∈ Spec(R) such that depthR℘ ≥ `, depth (
i∧

L)℘ ≥ min{` − 1, `} =
`− 1. Then the complex (S(L.))℘ = S(L.)⊗ R℘ is exact, by the criterion of
Peskine-Szpiro, [14, theorem B].
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Then we have to verify only that (S(L.))℘ is exact for every ℘, depthR℘ < `.
2. Since E is torsion free and of finite projective dimension, then hypothesis

2 is verified.
3. L is of projective dimension t−1 and L is q−1 = (t−1)(`−1)+(`−1)-

torsion free. Moreover L is (t− 1)i + (`− 1)− torsion free, for every i ≤ `− 1,
because (t − 1)i + (` − 1) ≤ (t − 1)(` − 1) + (` − 1). By Corollary [14], this

implies
i∧

L is (`− 1)-torsion free, for every i ≤ `− 1 and since ` ≥ 3,
i∧

L is

2-torsion free, for every i ≤ `− 1. By Corollary [14] and since
i∧

L has a finite

projective dimension,
i∧

L is a reflexive module for every i (Remark 1).

4. Since E is (t− 1)(`− 1) + `-torsion free, by the exact sequence

0 −→ Ft −→ · · · → F1
f1−→ F0 −→ G1 −→ · · · −→ G(t−1)(`−1)+`,

depthIr1(f1) ≥ (t− 1)(`− 1) + ` + 1, depthIr1(f1) ≥ t(`− 1) + 2 ≥ `, since
t > 1. Since Ir1(f1) ⊂ I1(f1), depthI1(f1) ≥ depthIr1(f1) ≥ `.

We show that
`−1∧

L is a free module. Since rank
`−1∧

L = `, we have to

prove that
`−1∧

L ∼= R`.

L`−1F is a resolution of
`−1∧

L of length (t−1)(`−1), depth
`−1∧

L = depthR−
pd

`−1∧
L = d− (t− 1)(`− 1) ≥ t(`− 1) + 2− (t− 1)(`− 1) = 2 + `− 1 = ` + 1,

by [4], syzygy theorem,
`−1∧

L is free and is isomorphic to R`.

5. Z(E) is acyclic. For every i ≤ ` − 1, depth
i∧

L = depthR − (t − 1)i ≥
d− (t− 1)(`− 1) ≥

≥ d− (`− 1)t > t(`− 1) + 2− (`− 1)(t− 1) =
= t(`− 1) + 2− t(`− 1) + ` = 2 + ` > i and the complex is acyclic by the

acyclicity of Peskine-Szpiro, [3, lemma 3], [7, lemma 1.8].
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