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SYZYGIETIC PROPERTIES OF A MODULE
AND TORSION FREENESS OF ITS
SYMMETRIC POWERS

Vittoria Bonanzinga and Gaetana Restuccia

Abstract

Let E be a finitely generated R-module of finite projective dimension.
We establish necessary and sufficient conditions for the g-torsion freeness
of the symmetric powers Sym:(E), (¢t > 1). In projective dimension > 1,
we study the connection between the acyclicity of the complex Z(FE) of
a module E and the condition §p on E.

INTRODUCTION

Let R be a commutative noetherian ring with unit and let E be a finitely
generated R-module. Let Symp(E) = S(E) = @ Sym:(E) be the symmetric
>0

algebra of E. It is well-known that if R is an integral domain, Symp(E) is
hardly ever an integral domain itself.

It is so if and only if each of the symmetric powers Sym;(F) is a torsion
free R-module [6]. If E = I, an ideal of R, and (R, m) is local then Sympg(m)
is an integral domain if and only if R is regular ([6]).

We say that an ideal [ is of linear type ([13]) if the canonical epimorphism
Sympg(I) — R(I) — 0, where R(I) = € I' is the Rees algebra of I, is an

t>0
isomorphism, and Symg(I) is an integral domain if and only if R is an integral
domain.

If F is a module of finite presentation R"™ — R™ — E — 0 then the
torsion freeness of the symmetric powers of E is connected with some condi-
tions of finiteness for the depth of the Fitting ideals F,(F) of F,e+1 <k <n
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when the module E admits rank e > 0. Consequently, we can deduce theoretic
properties of the symmetric algebra Symg(FE) by the syzygetic properties of
the module E.

It is interesting to investigate the g-torsion freeness of the symmetric pow-
ers of F, by using acyclicity criteria for canonical complexes associated to the
symmetric algebra of E.

In projective dimension 1, the basic result of Avramov [2] solves the prob-
lem completely, in the sense, that, for each ¢, Sym;(E) is g-torsion free if and
only if E'is §q:=  depth(Fi(E)) 2k —e+q e+1<k<n.

In section 1, we consider modules of finite projective dimension and we
establish necessary and sufficient conditions for the g¢-torsion freeness of the
symmetric powers Sym(E) (t > 1).

In section 2, we examine the relation between the acyclicity of the Z(E)-
complex of a module E and the condition §y on E, when the Z(F)-complex
coincides with the Koszul complex of the immersion 0 — L — R", with
0 — L — R™ — FE a finite presentation of E and L not necessarily free.

We consider a module E of finite projective dimension with the following free
resolution

F.:. 0—F2p 2 g B o (1)

with Fj, free R-modules.

By theorem 2.1 [11] we can associate to E a canonical complex S;(F.). The
goal of this section is to use this canonical complex in order to study when the
symmetric powers of E are g-torsion free (¢ > 1).

We recall that a module F is called g-torsion free if every R-regular se-
quence of lenght ¢ is also E-regular.

Proposition 1 Let E be a module of finite projective dimension over a noethe-
rian ring R and let ¢ be an integer. The following are equivalent:

1. E is q-torsion free.
2. For every prime ideal p of R, depth(E) > min(q, depth(R,,))
3. E is a q-th syzygy.

Proof. See [1], [2]. B
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Remark 1 In general, for an arbitrary module E, we have only the implica-
tions 3) = 2) = 1). We have also the equivalence for arbitrary modules if
R is a normal domain and g < 2 ([10], prop. 1). In this case and in finite
projective dimension, the 2-torsion free modules are the reflexive ones.

Let E be a module generated by n elements. For the next theorem we
switch from determinantal ideals to Fitting invariants Fy(F) = I,—gt+1(f1),
where I, _r11(f1) denotes the ideal generated by the n — k + 1-sized minors
of fl-

We say that a module E has rank e if E®g Q(R) is a free Q(R)-module
of rank e, where Q(R) the total quotient ring of R.

Theorem 2 Let E be a module of projective dimension 2 over a noetherian
ring R, of rank r and with resolution

F: 0—R>2pnNp —-E—0 (2)
where Fy, Fy, Fy are free R-modules of rank p, m, and n, respectively. Suppose

that E is 2(i — 1) + g-torsion free, (¢ > 1), i > 2; i! is invertible in R. Then
we have:

1. Sym;(E) is q-torsion free

2. depth Fp,(E)>k—r+q,r+1<k<n.
Proof. It suffices to observe that the complex S;(F.) associated to E, of
theorem 2.1 [11], is acyclic, and by Corollary [14] Sym,(E) is g-torsion free,

hence 1).
Since F is 2(i — 1) + g—torsion free, there exists an exact sequence

0—F—Gi— - — Gaai-1)1q

with Gj—free of finite type.
Then the sequence (2) is extendable to the right by an exact sequence in
this way:

O—>F2f—2>F1 f—1>F0—>E—>G1—>"'—>GQ(Z'_1)+q.

By Buchsbaum-Eisenbud criterion we must necessarily have depth (I, (f1)) >
2(i—1)4+q+1, where r1 = rankIm f; = m—p. But I(f1) 2 I, (f1), Yk <1,
then depth(I(f1)) > depth(I,,(f1)), Vk < rq.
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In particular depth(l,,—;i+1(f1)) > 2i+qg—1>i+q—1>i+g; if we put
r1 —i+ 1=k, then

depth(]k(fl)) >ry—k+ q-+ 1
hence 2). B

Theorem 3 Let E be a module of projective dimension 2 over a noetherian
ring R, of rank r and with resolution (2), with depth I,(f2) > m —p—1. Let
q be an integer, ¢ > 1 and let i be an integer > 2; such that 2i < m — p; i! is
invertible in R. We suppose that:

depth Fr,(E) >k —r+q, r+1<k<n.
Then Sym,;(E) is q — torsion free.
Proof. It follows by [1.9, 11] that
pdr(Sym;(E)) < 24 Vi > 0.
Then, if p is a prime ideal such that depth(R,) > 2i + ¢, we have:

depth(Sym;(E),)

depth(R,,) — pdg,, (Symi(E),) >
> 2i+q—pdg, (Symi(E),) > 2i+q — 2i = q.

Now, we consider a prime ideal p such that
depth(R,) < 2i+g.

By hypothesis, depth(I1(f1)) > (m—p)+q > 2i+q and we have that I1(f1) €
. It follows that the module E, admits a free resolution over R,

0—F —FNE B, 0

with Fj = R" = R'"' @ Ry, F| = R = R""' @ R, Moreover, since
I—1(f1) = Ir(f1)p, we have the inequalities

depth(Ix—1(f])) > (m—1)—p—(k—1)+1+gq, for 1<k—-1<(m—1)—p

We can then apply the induction on m. In fact, if m = 0, E is free and the
result is trivial. By induction, then we can conclude that

depth (Sym;(E),) > min(q, depth(R,,)).
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Corollary 4 Let E be a module of projective dimension 2 over a noetherian
ring R, 2(i — 1) + g-torsion free of rank r and with resolution (2). Let q be an
integer > 1 and let i be an integer > 2; such that 20 < m — p; ! is invertible
in R. Then the following conditions are equivalent:

1. depth (Fx(E)) >k —r+4+q, r+1<k<n
2. Sym;(FE) is q-torsion free.

We say that a module E satisfies §, if ht I,(f1) > rank fi—t+1+q, 1<
t < rank fi, where ¢ > 0 is an integer and rank fi = sup{t/I;(f1) # 0}

Theorem 5 Let E be a module of finite type over R, of rank e, generated by
n elements, of finite projective dimension. Let q be an integer, ¢ > 1. We
suppose that:

1. pdp (Symp(E))<n—e
2. E is §q.
Then Sym(E) is ¢ — torsion free, ¥V t > 0.

Proof. We consider a presentation of the module F
m fi=(aji)
R — R"— FE —0 (3)

and let

0—L—R'—FE—0.

We have pdg (Sym;(E)) <n—e={=rank L ¥V i>0.

Let p € Spec(R) such that depth (R,,) > ¢+ g. Then

depth (Sym;(E)y) = depth (Ry) — pdr, (Symi(E), > £ +q— L =q =
min(q, depth(R,)).

Let p € Spec(R) such that depth (R,) < {+q.

By 3§, depth(I(f1)) > L+ q, i (f1) € g and localizing (3) at the prime
ideal g, we have:
fﬁd

R '@ R, RI'® R, — E, — 0

and E, has the presentation:
OHL;LRZA — E, —0

Ly, =L, & Ry, rank (L) = rank(L,) — 1 and Ij_1(f;) = Ir(f1)e k.
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We proceed by induction on /.
If £ =0, F is free and the equivalences are trivial.
By induction hypothesis,

depth I 1 (f) >l —k+q+1=(—1)—(k—1)+q+1

where 1 <k —1 </ —1 and it follows
depth (Symi(E),) > q > min(q, depth(R,,)).
|

Remark 2 If R is a Cohen-Macaulay ring and E is a module of finite
type over R of finite projective dimension 1, which is §o(or, equivalently, if
Symy(E) is torsion free, ¥ t > 0 ), the condition pdr(Sympr(E)) < n —e is
always verified. In fact, in this case Sympg(E) has a free finite resolution ([5],
Prop. 4.1) of lenght n — e.

Theorem 6 Let E be an R-module of finite type, being R a Cohen-Macaulay
ring, of rank e, of finite projective dimension. Let ¢ > 1 be an integer and we
suppose that:

1. For all prime ideal p of R such that depth (pR,) > £, depth I;(f1)p >
C—k+q+1,1<k<Y;

2. Symy(E) is q-torsion free, ¥V t > 0.
Then E is §q.

Proof. We proceed by induction on ¢ = rank L, L = ker(R™ — E).
If £ = 0, the assertion is trivial.
If rank L = ¢, by theorem 3.1 [9], we have:

depth I (f;) > ¢.

Let p € Spec(R) such that depth pRp < (. Then I;(f1) € p and, localizing
(3) at the prime ideal p, we have:

[ @®id
R 'oRr, "™ rlo R, — B, —0
and the presentation:
’ f{ n—1
0O—L,— R, — E,—0
rank (L;,) = rank(Ly)—1and Iy_1(f;) = I(f1)p- By induction hypothesis:

depth Ty_1(f}) > ((—1)— (k—1)+q+1=L—k+q+1.
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Since for every prime ideal p € Spec(R), depth Ii(f1)p > £ —k+ ¢+ 1, then
we can suppose that R is local and it results that depth I (f1) > € —k+q+1,
1<k<lie,Eisg, M

2

Let E be a module of finite presentation:
R Ny BN

and let

00— L—R"—FE—0.

If E has rank e, then we have
rank L=0=mn—e.

We introduce the Z-complex, Z(F), of the module E that is a complex of
graded S = S(R™)-modules:

ZE) = 0 — Zpe®S[-4 — ... — Z1QS5[-1] — S —
SymR(E) — 0,

i i—1
where Z; = Z(E) = ker(AR" -5 A R"® E), dar A ... A a;) =
(=DM ar A AG AL AN a) @ plag), S[—F]r = Sr—j.
We consider the case when the complex Z(E) coincides with the Koszul
complex of immersion 0 — L — R"

¢ £—1
S(L):= 0— ALRS[-{] — A LRS[-l+]1] — ... — LR S[-1] —
S — Symg(E) — 0.
We need some preparatory lemmas

Lemma 7 Let F be a module of finite type over R, not necessarily free. Let

Sr(F) = @Symi(F) = @Si(F)

i>0 i>0

be the symmetric algebra of F and N F = @ A\ F the exterior algebra of F.
>0
Then we have:

L S(F@R) =D 5(F)
=0

J
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o NF@RZAF N F

Proof. For F free see lemma 3 [12], lemma 2 [14].
1. If F is not free, we consider a presentation of F :

f

0—L—R"—F—0
and the induced exact sequence:
0— J— S(R") — S(F)— 0 .

We have

f@id

0—L—R'®R— F®R — 0,

and the induced exact sequence

0 — J— S(R"®R) — S(F®R) — 0

0 — Ji— S;(R"®R) — S, (F®R) — 0
where J; = J N S;(R™ @ R). Since S;(R" ® R) = @ J(R™), Ji = JnN
< R”)) @ J;. Hence S;(F®R) = S;(R"®R)/J; = @ J(R™)/J; =
5 ()
2. We consider the presentation 0 — L — R" JoFP 0 and by
0— L — R"®R 194 @ @ R — 0 the induced exact sequence:

0 — B — \(R"®R)— \(F & R)—0

0 — Bi—>/Z\(Rn ) R)—>/\(F ® R)—0

where B; = BN A" (R"®R) = BN (A R"& N R").

Hence \' (F ® R) A\ (R"®R)/B, 2N\ R*"® \'"' R"/B, /\ F @7\1 F.
[
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Lemma 8 Let E be a module of finite type on R and let K. :== 0 — L iR

R —FE — 0; K. := OHL@RJCI%RFOG}R—»E—»OIM

two presentations of E, L not necessarily free, Fy free on R. Then the Koszul

complexes S(L.) and S(L.") of immersion 0 — L N Fy,0 — LOR [1&4n

Fy ® R — E have the same homology.

Proof. If we call S(L.) and S(L.") the two Koszul complexes of immersions
0—L—Fy,,0—L — Fy®R, L' =L® R, in the component of degree
t > 0, we have:

i i—1
Sy(L.) = . —> /\L®St_i(Fo) — /\ L® Si—ip1(Fo) — ...
i i—1
S,(L.) == o —= N @S i(Fo@R) — A\ L'®Si_ip1(Fo®R) — ...

(Si(L.)); = AL ® Si—i(Fy) and (Sy(L.)); = \L' @ S,—i(Fo @ R).

From lemma 7, we have:
i

(Se(L'); = NL® R) @ S;—i(Fo © R) =
7 i—1
= </\L @ /\ L) 0y (St—i(FO) S St—i—l(FO) D..P0FyD R) =

=(Se(L)i®St—1(L.); ® ... ®Siy1(L.); @ Si(L.):) ®

@ (Si—1(L.)i—1 @ St—2(L.)i1 @ ... ® Si(L.)i—1 @ Si—1(L.)i—1).

We proceed in a similar way to that contained in [12] or [14], prop. 3, and
we can conclude that S(L.) and S(L.") have the same homology. B

Theorem 9 Let E be a torsion free module of finite type on R, Cohen-
Macaulay ring of finite projective dimension, of rank e and with resolution:

0— R — .. —R™ S g B0 (4)
We suppose that:
1. E s §o;

2. If0 —L— R*"— E — 0, { =rank L, the complex S(L.) is exact
< S(L.)®R,, is exact, for all p € Spec(R) such that depth(pR,) < {;

s

3. NL=(AL)** forr <rank L.
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Then the complex Z(F) is acyclic.
Proof. Since FE is a torsion free module of finite projective dimension, then
E, is a free R,-module for every p € Spec(R) such that depth (R,) < 1. By
prop. 4.1, [5], we have (A L)** = Z,.(E), Vr < rankE.
) ok
Being L of finite projective dimension, </\ L) = det L = R and the
Z(E)-complex of E is the following:

-1
Z(E) = 0—>R®S—¢(R") - N LRS;_p11(R") — ... —
— L®Si—1(R™) — Si(R™) — Si(E) — 0
We show, by induction on ¢, that Z(FE) is acyclic. If £ =0, E is free and
Z(E) is acyclic.([8]).
We suppose that £ > 0. Let p € Spec(R). Since §o implies depth I1(f1) >
6 Ii(f) € o

Localizing (4) at the prime ideal p,we have:

[ id
R e R, " Rl R, — B, — 0

with the presentation:

0— L, N Rt B, —0

L, =L, ® Ry, rank(L;,) = rank(Ly) — 1 and Ix—1(f]) = Ix(f1)e, where
depth T(f}) > (£ =1) = (k=) +q4+1=C—k+q+1,1<k—-1<(-1,
the module E, is Fy. We can suppose then R is local and we can conclude by
lemma 8 and by the induction hypothesis. Bl

Theorem 10 Let E be a module of finite type over R, Cohen-Macaulay ring
of finite projective dimension, of rank e and with resolution (4). We suppose
that:

1. the complex S(L.) is exact <= S(L.) @ Ry, is ezact for all p € Spec(R)
such that depth (pRg,) < {;

2. E is free on the prime ideals p such that depth (pR,) < 1;

3. NL= (/\L) , Vr <rank L;

-1
4. depth I,(f1) > ¢ and N\ L= R;

5. Z(FE) is acyclic.
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Then the module E is §g.

Proof. We have the maps:

AL — Z,(E)
where the modules are reflexive.
Localizing at the prime ideals p € Spec(R) such that depth (pR,) < 1,
the modules /T\L and Z,(E) coincide. Hence :
Z(B) = 0 — R&S,_o(R") % R'@Si_ i1 (B") “S' N L&Si_s1a(R) —

= L® S 1 (R S S, (R") — Sym(E) — 0
Since the complex Z(E) is exact, depth I(ﬁ) (d¢) = depth I(f1) > ¢.

Let p € Spec(R) such that depth (pR,,) < 0. Then I, (f1) € p. Localizing
(4) at the prime ideal p, we obtain:

Rr-1oR, " gl R, — B, —0
with the presentation:
0—>L%£>Rg*1 — E, —0

L, = pr ® R, r(mk(Lg,J) =rank(L,) — 1 and I—1(f]) = Ix(f1),.

By lemma 8 , the complex Z(E) ® R,, is acyclic and
depth I (f1), = depth I_1(f1) > ({—1)— (k—1)+1=0—-k+1,

1 <k </ —1, by the induction hypothesis. Then we can suppose that R
is local and we can conclude that E is §.

Example 1 We exibit an example of a module that is high torsion free, con-
taining o field and that fulfills the hypothesis in theorem 10. More precisely,
let E be a g-torsion free module, where ¢ = (t — 1)({ — 1) + £, £ = rankL,
pdE =t,t>1,¢>3, and d > t({ — 1) 4+ 2, where d = depthR. We verify all
points of theorem 10.

1. Lis (q+ 1)-torsion free, then A L is (¢ — 1)-torsion free, Vi < £ — 1.

If p € Spec(R) such that depthR, > ¢, depth (A L), > min{¢ — 1,{} =
¢ —1. Then the complex (S(L.)), = S(L.) ® R, is exact, by the criterion of
Peskine-Szpiro, [14, theorem B].
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Then we have to verify only that (S(L.)),, is exact for every p, depthR,, < £.

2. Since F is torsion free and of finite projective dimension, then hypothesis
2 is verified.

3. Lis of projective dimension t—1 and Lisg—1=(t—1)({—1)+(£—1)-
torsion free. Moreover L is (t —1)i 4 (¢ — 1)— torsion free, for every i < £ —1,
because (t —1)i+ (£ —1) < (t —1)(¢ — 1) + (¢ — 1). By Corollary [14], this

implies A L is (¢ — 1)-torsion free, for every i < ¢ — 1 and since £ > 3, A L is
2-torsion free, for every i < ¢ — 1. By Corollary [14] and since A L has a finite

7
projective dimension, A L is a reflexive module for every ¢ (Remark 1).

4. Since E is (t — 1)(¢ — 1) 4 {-torsion free, by the exact sequence

O—’Ft—>"'—>F1L’FO—>G1—’"'—>G(t71)(271)+€7

depthl., (f1) > (t—1)—1)+¢+1, depthl, (f1) >t({—1)+2 > ¢, since

t > 1. Since I, (f1) C I1(f1), depthIi(f1) > depthl, (f1) > L.
-1 -1
We show that A L is a free module. Since rank A L = ¢, we have to

-1
prove that A L = R’.
-1 =1
Ly_1Fis aresolution of A\ L oflength (t—1)(¢—1), depth N\ L = depthR—

-1
pd N L=d—(t-1D({-1)>tl-1D+2—(t-1{l—-1)=24+L—-1=10+1,
-1
by [4], syzygy theorem, A L is free and is isomorphic to R’.

5. Z(E) is acyclic. For every ¢ < ¢ — 1, depth A L = depthR — (t — 1)i >
d—({t-1)¢-1)>

>d—(l-1t>tl-1)+2—-((-1)(t—-1)=

=t(l—-1)4+2—t(f—1)+{=2+{>1iand the complex is acyclic by the
acyclicity of Peskine-Szpiro, [3, lemma 3], [7, lemma 1.8].
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