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On Hopf-Galois extensions of linear categories

Anca Stănescu

Abstract

We continue the investigation of H-Galois extensions of linear cat-
egories, where H is a Hopf algebra. In our main result, the Theorem
2.2, we characterize this class of extensions in the case when H is fi-
nite dimensional. As an application, we prove a version of the Duality
Theorem for crossed products with invertible cocycle.

Introduction

The duality theorems for actions and coactions originated in the work of Na-
gakami and Tagasaki on operator algebras, see [12]. A first purely algebraic
version of the duality theorem was proved for actions of finite groups in [5].
Blattner and Montgomer showed that a similar result can be obtained for the
actions and the coactions of a finite dimensional Hopf algebra, see [2]. A vari-
ant of the duality theorem for k-linear graded categories was considered in [3]
in order to investigate the Galois coverings of a linear category.

In this paper we continue our work on Hopf-Galois extensions of linear
categories, started in [14]. Our main aim now is to prove a duality theorem for
the crossed product of linear category with a finite dimensional Hopf algebra.
Almost all of the contents of the article are the adaptation of the results known
for algebras to the case of linear categories.

In the first part of the article we fix the terminology and the notation that
we use. All the definitions of small linear categories and modules over them in
Subsection 1.1, as well as the results on projective modules in Subsection 1.5
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are essentially due to B. Mitchell, who was one of the pioneers of regarding
a small category as a ring with several objects (see [10]). Here we also recall
the definition of the key concepts and the most important results which we
obtained in the above mentioned paper.

Throughout, H will denote a finite dimensional Hopf algebra over a field k.
In the second section, following closely the method of [11, Chapter VIII], we
give some characterizations of H-Galois extensions of linear categories, see the
Theorem 2.2. A key step in the proof of this result is the Theorem 2.1, which
generalizes the well-known result due to Kreimer and Takeuchi [9], stating
that any H-comodule algebra is H-Galois, provided that the canonical Galois
map is surjective.

Given an H-Galois extension D ⊆ C of linear categories, as a corollary of
Theorem 2.2, we show that a certain functor π : C#H∗ −→ E(CD) is an iso-
morphism of linear categories, where E(CD) is the linear category constructed
in §1.6. If C is a crossed product with invertible 2-cocycle C ≃ D#σH, then
E(CD) is isomorphic to the linear category Mn(D) of square matrices of order
n with elements in D, where n = dimH. As an application, we immediately
get the Corollary 2.3, which is our version of the duality theorem.

1 Preliminaries

In this section we recall the main concepts needed in this paper. For this part
the reader is referred to [14]. We begin by recalling the definition and the
properties of Hopf-Galois extensions of linear categories.

1.1. H-Galois extensions of linear categories. A small k-linear category
is given by a set C0 and the vector spaces of morphisms from y to x in the
category C, denoted by xCy, for each x, y ∈ C0, together with the composition
maps

◦ : xCy ⊗ yCz −→ xCz

and the identity morphisms 1x ∈ xCx, for each x ∈ C0. These data satisfy the
associativity axiom and the identity morphism axiom.

If C is a linear category, a left C-module is given by a family of k-vector
spaces {xM}x∈C0 together with the structure maps

x◃y : xCy ⊗ yM −→ xM

which satisfy the equations (1) and (2) in [14]. The right C-modules are defined
similarly. A (C,D)-bimodule is defined by a family {xMy}(x,y)∈C0×D0

together
with the maps

x◃
u
y : xCu ⊗ uMy −→ xMy and x▹

v
y : xMv ⊗ vDy −→ xMy
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such that {uMy}u∈C0
is a left C-module with respect to {x◃uy}u∈C0

and, simi-
larly, {xMv}v∈D0 is a right D-module with respect to {x▹vy}v∈D0 , for any x in
C0 and y in D0. These modules will be denoted by •My and xM•, respectively.

Any linear category C can be regarded as a bimodule over itself. The
components of this bimodule are the spaces xCy, and the structure maps are
given by the composition maps of C. In particular, we can consider the right
C-module xC• and the left C-module •Cy, for any x, y ∈ C0. If M is a right
D-module and N is a left D-module one defines the k-vector space M⊗DN
as in [14, §1.8].

For a Hopf algebra H we shall say that a linear category C is a (right) H-
comodule category, if every xCy is a (right) H-comodule such that its structure
map

xρy : xCy −→ xCy ⊗H,

satisfies the relations

xρz(f ◦ f ′) =
∑

f0 ◦ f ′0 ⊗ f1f
′
1,

xρx(1x) = 1x ⊗ 1H ,

for any f ∈ xCu and f ′ ∈ uCy. In the above equations we used the Sweedler
notation xρy :=

∑
f⟨0⟩ ⊗ f⟨1⟩.

If H is finite dimensional, then the linear dual H∗ of H is a Hopf algebra
which acts on the spaces xCy by the operations

· : H∗ ⊗ xCy −→ xCy, α · f =
∑

α(f1)f0.

It is well know that C is an H∗-module category, i.e. we have

α · (f ◦ f ′) =
∑

(α1 · f) ◦ (α2 · f ′),

α · 1x = α(1)1x,

for any f and f ′ as above, α ∈ H∗ and x ∈ C0.
For an H-comodule algebra C one defines the linear subcategory of H-

coinvariant elements CcoH ⊆ C by CcoH
0 = C0 and

xC
coH
y := {f ∈ xCy | xρy(f) = f ⊗ 1H}, ∀x, y ∈ C0.

For simplicity we shall use the notation D = CcoH . Following [7], for all x and
y in C0 and any (right) H-comodule category D ⊆ C, one defines the Galois
canonical maps {xβy}x,y∈C0 by:

xβy : xC• ⊗D •Cy −→ xCy ⊗H, xβy(f ⊗D f ′) =
∑

f ◦ f ′0 ⊗ f ′1,
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where in the above formula f ∈ xCu and f ′ ∈ uCy. By definition, the extension
D ⊆ C is H-Galois if and only if xβy is bijective for all x, y ∈ C0.

Analogously, the maps {xβ′
y}x,y∈C0

are defined by:

xβ
′
y : xC• ⊗D •Cy −→ xCy ⊗H, xβ

′
y(f ⊗D f ′) =

∑
f0 ◦ f ′ ⊗ f1.

If the antipode of H is invertible, proceeding as in [11, p. 124], one shows
that the (right) H-comodule category D ⊆ C is H-Galois if and only if xβ

′
y is

bijective for all x and y in C0.

1.2. Crossed products. In [14] we have seen that the crossed product of
a linear category D and a Hopf algebra H is an H-Galois extension of lin-
ear categories. We recall that a crossed product is given by a weak action
{x·y}x,y∈D0 of H on D together with a normalized 2-cocycle σ := {σx}x∈D0

that satisfies the twisted module condition. The weak action is defined by the
maps x·y : H ⊗ xDy −→ xDy which satisfy the following conditions:

h x·z(f ◦ f ′) =
∑

(h1 x·yf) ◦ (h2 y·zf ′),

h x·x1x = ε(h)1x,

1H x·yf = f.

For simplicity we shall write h·f instead of h x·y f , for any h ∈ H and f ∈ xDy.
On the other hand, the 2-cocycle σ is given by the maps σx : H⊗H −→ xDx

such that the following relation holds:∑
[h1 · σx(h′1, h′′1)] ◦ σx(h2, h′2h′′2) =

∑
σx(h1, h

′
1) ◦ σx(h2h′2, h′′). (1)

The cocycle σ is normalized if for x ∈ D0 and h ∈ H we have:

σx(h, 1) = σx(1, h) = ε(h)1x,

and the weak action of H on D satisfies the twisted module condition if and
only if, for x, y ∈ D0, f ∈ xDy and h, h′ ∈ H,∑

[h1 · (h′1 · f)] ◦ σy(h2, h′2) =
∑

σx(h1, h
′
1) ◦ [(h2h′2) · f ]. (2)

The crossed product D#σH is the small linear category which is defined as
follows. Its set of objects is D0 and x(D#σH)y = xDy ⊗ H. The identity
maps are 1x ⊗ 1H and the composition is given by

(f#h)x◦yz(f ′#h′) =
∑

f ◦ (h1 · f ′) ◦ σz(h2, h′1)#h3h′2.

There is an obvious linear functor D −→ D#σH, which is the identity on
objects and sends f to f#1H . This allows to regard a D#σH-module as a
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D-module. Let C := D#σH. By construction D ⊆ C has the normal basis
property, i.e. there is an isomorphism •Cx ≃ •Dx ⊗H of left D-modules and
right H-comodules, for all x ∈ C0. In particular this means that •Cx is a free
left D-module, for all x ∈ C0.

Note that, in the case when H is finite dimensional, the left D-module

•Cx is also finitely generated. If, in addition, the 2-cocycle σ is invertible in
convolution then the right D-module xC• is free and finitely generated as well.
As a matter of fact, under these assumptions, xC• is isomorphic to xD• ⊗H,
for any x ∈ C0. By hypothesis, the antipode S of H is bijective. Let S denote
its inverse. Proceeding as in the proof of [6, Proposition 6.1.10(iv)] one can
show that the maps

xαy : H ⊗ xDy −→ xDy#H, xαy(h⊗ f) =
∑
σ−1
x (h2, Sh1) ◦ (h3 · f)⊗ h4

xβy : xDy#H −→ H ⊗ xDy, xβy(f ⊗ h) =
∑
h4 ⊗ (Sh3 · f) ◦ σy(Sh2, h1)

define morphisms of right D-modules

xα• : H ⊗ xD• −→ xD•#H and xβ• : xD•#H −→ H ⊗ xD•

which are inverses of each other. In particular, we deduce that xC• is iso-
morphic as a right D-module with xD

n
• , where n = dimH. Here xD

n
• is the

D-module whose components are the k-linear spaces xD
n
y = xDy ⊕ ... ⊕ xDy

(n summands), and the module structure is given by the composition maps of
D.

1.3. Hopf modules over finitely dimensional Hopf algebras. We recall
that if D ⊆ C is an H-comodule category, a left C-module (M,◃) is called Hopf
C-module if H coacts on M such that

ρ(f ◃ m) =
∑

f0 ◃ m0 ⊗ f1m1.

If H is finite dimensional then the component xM of M , for all x ∈ C0, is a
left H∗-module with respect to the action

α ·m =
∑

α(m1)m0.

To give a Hopf module (M,◃, ·) is equivalent to give a C#H∗-action (M,⇀).
These structures are related by the formula:

(f#α)⇀m = f ◃ (α ·m),

where f ∈ xCy, m ∈ yM and α ∈ H∗. This operation defines a C#H∗-module
structure because, for any α, f and m as above,

α · (f ◃ m) =
∑

(α1 · f) ◃ (α2 ·m).
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Remark that for any left Hopf module M we have (xM)co(H) = (xM)H
∗
.

If λ ∈ H∗ is a left integral, then

(1x#λ)⇀m = 1x ◃ (λ ·m) = λ ·m.

Therefore, for any α ∈ H∗ and m ∈ xM we have

α · [(1x#λ)⇀m] = α · (λ ·m) = (α ∗λ) ·m = α(1)λ ·m = α(1) [(1x#λ)⇀m] ,

where the product of H∗ is denoted by ∗. In conclusion (1x ⊗ λ) ⇀ m is an
element of (xM)H

∗
. In other words, this element is H-coinvariant. Since •Cy

is a left Hopf module for any y ∈ C0, we deduce in particular that

(1#λ)⇀ f ∈ xC
co(H)
y = xDy,

for any f ∈xCy. Let us notice that the C#H
∗-action (M,⇀) and the initial C-

action (M,◃) are compatible in the sense that, for any f ∈ xCy, z ∈ y(C#H
∗)u

and m ∈ uM ,
f ◃ (z ·m) = [(f#ε)z]⇀m.

Equivalently, the C-module (M,◃) is recovered from the C#H∗-module (M,⇀)
by the restriction of scalars via the inclusion functor C ↪→ C#H∗, which is the
identity function on the set of objects and maps any f in xCy to f ⊗ ε.

1.4. The diagonal action. Let H be a Hopf algebra over a field k. If V and
W are left H-modules then V ⊗W is a left H-module via the diagonal action,
which is defined by

h · (v ⊗ w) =
∑

(h1 · v)⊗ (h2 · w) ,

for all h ∈ H, v ∈ V and w ∈W. In particular, V ⊗H is a left H-module with
respect to the diagonal action.

On the other hand H ⊗ V is a left module with respect to the action

h · (k ⊗ v) = (hk)⊗ v.

If the antipode S of H is bijective, then µ : H ⊗ V → V ⊗ H which maps
h⊗ v to

∑
h1 · v ⊗ h2 is an isomorphism of left H-modules. Indeed, the map

v ⊗ h 7→
∑
h2 ⊗ Sh1 · v is an inverse of µ, where S denotes the inverse of

S. The map µ induces an k-linear isomorphism between the set of invariant
elements in V ⊗H and H ⊗ V. In the case when H is finite dimensional, we
have

(H ⊗ V )
H

= HH ⊗ V = kt⊗ V,

where t is a left integral inH. It follows that (V ⊗H)H = {
∑
t1 ·v⊗t2 | v ∈ V },

as any invariant element in V ⊗H can be written as µ(t⊗ v), for some v ∈ V.
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1.5. Projective D-modules. Let D be a linear category. A right D-module
M is projective and finitely generated if it is a direct sumand of a module
of the form

⊕n
i=1 xi

D• where x1, . . . , xn are some objects in D0. Indeed, by
definition, a right D-module M is finitely generated if and only if there exist
x1, . . . , xn ∈ D0 together with an epimorphism

π :
n⊕

i=1
xi
D• −→M.

Since M is projective the map π splits, i.e. there is a section σ of π in the
category of right D-modules. Thus M is a direct summand of

⊕n
i=1 xiD•.

Conversely, let us assume that M is a direct summand in X =
⊕n

i=1 xiD•.
Clearly, a direct summand of a projective module is projective too, and an
arbitrary direct sum of projective modules is projective. Therefore, in order
to prove that M is projective, it is enough to show that xD• is projective,
for any x ∈ D0. This property immediately follows from the definition of
projective D-modules.

We also need the following characterization of finitely generated projective
modules: the right D-module (M,▹) is projective and finitely generated if
and only if there exist a finite number of objects x1, . . . , xn ∈ D0, elements
mi ∈Mxi andD-linear morphisms φi :M −→ xiD• such that, for anym ∈Mx

we have:

m =

n∑
i=1

mi ▹ φi
x(m). (3)

Here, of course, φi
x : xiDx −→Mx denotes the x-component of φi.

To prove this characterization let us note that M is projective and finitely
generated if and only if there is an epimorphism π :

⊕n
i=1 xiD• −→ M that

splits in the category of right D-modules. Let σ be a section of π. We define

mi = πxi
(0, . . . , Idxi

, . . . , 0) ∈Mxi

and we denote by pi :
⊕n

j=1 xjD• −→ xiD• the canonical projection. If we

take φi := σ ◦ pi, then one can easily see that the equation (3) holds for any
m ∈Mx.

Conversely, let x1, . . . , xn ∈ D0. We assume that there are the elements
mi ∈Mxi and the morphisms φi :=M −→ xiD such that (3) holds. We define

πx :
n⊕

i=1
xi
Dx −→Mx, πx(f1, ..., fn) =

n∑
i=1

mi ▹ fi,

σx :Mx −→
n⊕

i=1
xiDx, σx(m) = (φ1

x(m), ..., φn
x(m)).
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Obviously π = {πx}x∈C0
and σ = {σx}x∈C0

are morphisms of D-modules and
σ is a section for π.

1.6. The category E(MD). Let C and D be two k-linear categories such
that C0 = D0 = S. Let (M,◃, ▹) be a (C,D)-bimodule with components
{xMy}x,y∈S . We define the k-linear category E(MD) such that E(MD)0 = S.
By definition,

xE(MD)y = HomD(yM•, xM•).

Since yM• is the right D-module having the components {yMu}u∈S , a mor-
phism in xE(MD)y is a family f := {fu}u∈S of k-linear maps fu : yMu −→
xMu, which defines a morphism of right D-modules f : yM• −→ xM•. The
composition in E(MD) is given by

◦ : xE(MD)y⊗yE(MD)z −→ xE(MD)z, {fu}u∈S ◦{gu}u∈S = {fu◦gu}u∈S

and the identity morphism of x is the family {IdxMu}u∈S .
The k-linear category E(CM) is similarly constructed. We set E(CM)0 = S

and

xE(CM)y = HomC(•My, •Mx).

Since •My is the left C-module having the components {uMy}u∈S , a morphism
in xE(CM)y is a family f := {fu}u∈S of k-linear maps fu : uMy −→ uMx,
which defines a morphism of right D-modules f : yM• −→ xM•. The compo-
sition in E(CM) is given by

◦ : xE(CM)y⊗ yE(CM)z −→ xE(CM)y, {fu}u∈S ◦{gu}u∈S = {fu ◦gu}u∈S

and the identity morphism of x is the family {IdxMu}u∈S .
For any (C,D)-bimodule M there exists a k-linear functor ΠC : C −→

E(MD), such that ΠC maps every object of C to itself. Moreover, for f ∈ xCy

we define xΠ
C
y (f) : yM• −→ xM• to be the morphism of right D-modules

whose u-component maps m ∈ yMu to f ◃ m, for any u ∈ S. Let us note that
the above definition makes sense as f ◃ m ∈ xMu for any m ∈ yMu. One can
easily see that in this way we obtain indeed a functor ΠC : C −→ E(MD).

The k-linear functor ΠD : Dop −→ E(CM) is defined in a similar way,
where Dop is the opposite category of D. By definition, ΠD(x) = x, for any
x ∈ S. For g ∈ xD

op
y the u-component of xΠ

D
y (g) maps m ∈ uMy to m ▹ g.

Let us notice that g is an element in xD
op
y = yDx, therefore m ▹ g ∈ uMx. In

conclusion xΠ
D
y (g) is well defined.

1.7. The categoryMn(D). Let us consider the (D,D)-bimoduleM = V ⊗D,
where V is a k-vector space. The components of M are xMy = V ⊗ xDy, and
the left and the right module actions are defined by

g′ ◃ (z ⊗ f) ▹ g′′ = z ⊗ (g′ ◦ f ◦ g′′),
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for any f ∈ xDy, g
′ ∈ uDx, g

′′ ∈ yDv and z ∈ V . If {e1, ..., en} is a basis on
V then an element m in xMu can be uniquely written as a sum

m =
n∑

i=1

ei ⊗ fi,

with fi ∈ xDu for any i. Therefore, if φ : V ⊗ yD• −→ V ⊗ xD• is a morphism
of right D-modules, then

φx(ei ⊗ 1y) =
n∑

j=1

ej ⊗ fji,

where fji ∈ xDy. Hence, for f1, . . . , fn ∈ yDu, it follows that we have:

φu(
n∑

i=1

ei ⊗ fi) =
n∑

i,j=1

ej ⊗ fji ◦ fi.

This relation shows us that φ is uniquely determined by the “matrix” Mn(φ)
whose (i, j)-entry is fij ∈ xDy, for any 1 ≤ i, j ≤ n. One can easily see that

Mn(φ ◦ ψ) =Mn(φ) ◦Mn(ψ)

and that Mn(IdV⊗xDx) = Ix, where Ix is the “unit matrix” whose (i, j)-entry
is 1x ∈ xDx for i = j, and 0 for i ̸= j.

From the foregoing discussion it follows that we can identify E ((V ⊗D)D)
with the k-linear category Mn(D) having the same objects as D, and whose
hom-spaces are xMn(D)y :=Mn(xDy). The identity of x inMn(D) is the unit
matrix Ix. The composition of the matrices (fij)i,j ∈Mn(xDy) and (gij)i,j ∈
Mn(yDz) is the matrix (hij)i,j ∈Mn(xDz), where

hij =
n∑

k=1

fij ◦ gjk.

2 The main results

In this section we prove our main results. We start by showing that the well
known Kreimer-Takeuchi Theorem holds true for comodule categories as well.
The proof of the Theorem 2.1 follows the lines of the proof given by H.-J.
Schneider in [11, Chapter VIII], Theorem 3.1. The proof of Theorem 2.2 also
follows the lines of the algebra case, using a straightforward generalization of
a result of J. Bergen and S. Montgomery in [1], Lemma 2.5, and the obvious
generalization of Morita theory for small linear categories (e.g. [7], Cor. 2.11,
etc). Moreover, the proof of Theorem 2.2 follows the lines of the proof of
Theorem 2.1 in [4].
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Theorem 2.1. Let H be a finite dimensional Hopf algebra. If D ⊆ C is an
H-comodule category such that the components of the canonical Galois map

β : C⊗D C −→ C⊗H

are surjective, then D ⊆ C is H-Galois and xC• is a projective right D-module,
for any x ∈ C0.

Proof. We first show that, for a given x, the right D-module xC• is projective.
For, we shall prove that there exist some objects x1, ..., xn ∈ C0, together with
the elements f i ∈ xCxi and the morphisms of right D-modules φi : xC• −→
xiD•, such that for any f ∈ xiCu we have

f =

n∑
i=1

f i ◦ φi
u(f). (4)

Since H is finite dimensional there exists a left integral λ ∈ H∗. Then

θ : H −→ H∗, θ(h) = λ ↼ h

is a k-linear isomorphism, where (α ↼ h)(k) = α(hk), for any α ∈ H∗ and
h, k ∈ H. Thus, there is an unique t ∈ H such that λ ↼ t = ε. Since the
components of β are surjective maps, there exist f i ∈ xCxi and g

i ∈ xiCx such
that

xβx(
n∑

i=1

f i ⊗D gi) = 1x#t. (5)

Let us notice that D ⊆ C is an H∗-module category, because H is finite
dimensional. The action of H∗ on xCy is given by the formula

α · f =
∑

α(f1)f0

for any α ∈ H∗ and f ∈ xCy. Clearly, by definition, we have xC
H∗

y = xC
co(H)
y ,

where the linear space of H∗-invariant elements is given by

xC
H∗

y = {f ∈ xCy | α · f = α (1) f, ∀α ∈ H∗}.

For any f ∈ xCu, we now define φi
u : xCu −→ xiDu by

φi
u(f) = λ · (gi ◦ f).

Let us notice that λ · f ′ is a morphism in xDy for any f ′ ∈ xCy, because λ is
a left integral in H∗, that is α ∗ λ = α(1H)λ, for any α ∈ H∗.
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We can now prove that the equality (4) is true, i.e. xC• is a projective
D-module. ∑

f i ◦ φi
u(f) =

n∑
i=1

f i ◦ λ · (gi ◦ f)

=
n∑

i=1

∑
f i ◦ (λ1 ◦ gi) ◦ (λ2 · f)

=
n∑

i=1

λ1(g
i
1)f

i ◦ gi0 ◦ (λ2 · f)

=
n∑

i=1

∑
λ1(t)1x ◦ (λ2 · f)

=

n∑
i=1

∑
λ1(t)λ2 · f.

Let us shortly explain how the above equalities have been obtained. The first
one is obvious, by the definition of the morphisms φi

u. The second one results
by the fact that D ⊆ C is an H∗-module category, and for the third identity we
used the definition of the element λ1 · gi. The fourth identity is an immediate
consequence of the relation

∑n
i=1 λ1(t)f

i ◦ gi0 = λ1(t)1x, which in turn follows
by (5). On the other hand,(∑

λ1(t)λ2

)
(x) =

∑
λ1(t)λ2(x) = λ(tx) = (λ ↼ t)(x).

Thus, in view of the foregoing computations and of the fact that λ ↼ t = ε
we get

n∑
i=1

fi ◦ φi
u(f) =

∑
λ1(t)λ2 · f = (λ ↼ t) · f = ε · f = f.

It remains to prove that the components of β are injective. Since H is finite
dimensional we can use β′ instead of β, see the last paragraph of the subsection
§1.1. Let us choose an element ξ :=

∑m
j=1 f

′
j ⊗
D
g′j in Ker xβ

′
y, where f

′
j ∈ xCuj

and g′j ∈ ujCy. By (4) and the fact that φi
uj
(f ′j) ∈ xiDuj we get

ξ =

m∑
j=1

n∑
i=1

fi ◦ φi
uj
(f ′j)⊗D g′j =

n∑
i=1

fi ⊗D

m∑
j=1

φi
uj
(f ′j) ◦ g′j .

Moreover, by the construction of φi and the definition of the H∗-action on
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xi
Cuj

we have

ξ =
n∑

i=1

fi ⊗D

m∑
j=1

[λ · (gi ◦ f ′j)] ◦ g′j

=

n∑
i=1

fi ⊗D

m∑
j=1

∑
λ1(g

i
1)λ2

((
f ′j
)
1

)
gi0 ◦

(
f ′j
)
0
◦ g′j .

Since ξ is in the kernel of xβ
′
y we deduce that ξ = 0, that is the components

of β′ are injective.

Let D ⊆ C be an H-comodule category, where H is finite dimensional.
Recall that C is an (C#H∗,D)-bimodule, so we can consider the functor

ΠC#H∗
: C#H∗ −→ E(CD), ΠC#H∗

(f#α)(f ′) = f ◦ (α · f ′),

where f ∈ xCu and f ′ ∈ uCy, and α ∈ H∗. For brevity we shall write Π instead
of ΠC#H∗

.
We choose a left integral λ ∈ H∗ and an element t ∈ H such that t ∈ H

such that λ ↼ t = ε.

Theorem 2.2. Let D ⊆ C be an H-comodule category where H is a finite
dimensional Hopf algebra. The following statements are equivalent:

(i) The extension D ⊆ C is H-Galois.

(ii) The functor Π : C#H∗ −→ E(CD) is an isomorphism of linear categories
and xC• is a finitely generated projective right D-module, for any x ∈ C0.

(iii) The map xγy : xC• ⊗D •Cy −→ xCy#H
∗, defined by

xγy(f ⊗D f ′) = (f#λ) (f ′#ε) =
∑

f ◦ (λ1 · f ′)#λ2,

for any f ∈ xCu and f ′ ∈ uCy, is surjective.

(iv) For any Hopf moduleM the canonical morphism φ : C⊗DM
co(H) −→M,

whose x-component is given by xφ(f ⊗D m) = f ◃ m for any f ∈ xCu

and m ∈ uM, is an isomorphism of Hopf modules.

Proof. We start the proof by remarking that xγy satisfy the following relation:

xγy = (xCy ⊗ θ) ◦ xβy, (6)

where θ : H −→ H∗ is the k-linear isomorphism defined by θ(h) = λ ↼ h
and xCy ⊗ θ stands for the tensor product of the identity map of xCy and ⊗.
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Indeed, an easy computation shows us that the above equation is equivalent
to ∑

f ◦ (λ1 · f ′)#λ2 =
∑

f ◦ f ′0#(λ ↼ f ′1) , (7)

for any f ∈ xCu and f ′ ∈ uCy. On the other hand, the equation∑
(λ1 · f ′)#λ2 =

∑
f ′0#(λ ↼ f ′1)

clearly implies (7). Since two elements
∑n

i=1 fi ⊗ αi and
∑m

j=1 gj ⊗ βj are

equal in xCy ⊗H∗ if and only if
∑n

i=1 αi(h)fi =
∑m

j=1 βj(h)gj , for all h ∈ H,
the above identity follows by the computation below:∑

λ2(h)(λ1 · f ′) =
∑

λ1(f
′
1)λ2(h)f

′
0 =

∑
λ(f ′1h)f

′
0 =

∑
(λ ↼ f ′1)(h)f

′
0.

In conclusion, (6) holds. Using this relation we can now prove that (i) and
(iii) are equivalent. Since θ is an isomorphism, obviously (i) implies (iii).
On the other hand, if we assume that (iii) holds, then xβy is surjective for
any x, y ∈ C0. By Theorem 2.1 it follows that xβy is bijective, so D ⊆ C is
H-Galois.

We shall next show that (ii) implies (iii). Since xC• is projective and
finitely generated there exist the objects xi ∈ C0, the elements f i ∈ xCxi and
the morphisms φi : xC• −→ xiD•, with i ∈ {1, . . . , n}, such that (4) holds
for any f ∈ xCu. As xiDu ⊆ xiCu we can see every φi as a morphism in
HomD(xC•, xiC•) = xiE(CD)x. Since Π : C#H∗ −→ E(CD) is an isomorphism
of k-linear categories, there exists ξi ∈ xi

Cx ⊗H∗ such that xi
Πx(ξi) = φi. In

other words, for f ∈ xCu we have φi
u(f) = ξi ⇀ f. Recall that the action of

C#H∗ on xC• is given by the formula

(f ′#α)⇀ f = f ′ ◦ (α · f)

for any f ′ ∈ vCx, f ∈ xCu and α ∈ H∗. If we write ξi =
∑mi

j=1 fij ⊗ αij , with
fij in xiCx and αij in H∗, it follows that for every f ∈ xCu we have

φi
u(f) =

mi∑
j=1

fij ◦ (αij · f).

We claim that
n∑

i=1

mi∑
j=1

f i ◦ fij#αij = 1x#ε. (8)

Indeed, let ξ denote the left hand side of the equation (8). By the definition
of Π and using the relation (4), for an arbitrary element f in xCu, we obtain:

xΠx(ξ)(f) =
n∑

i=1

mi∑
j=1

f i ◦ fij ◦ (αij · f) =
n∑

i=1

f i ◦ φi
u(f) = f = xΠx(1x#ε)(f).
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It follows that xΠx(ξ) = xΠx(1x#ε), so (8) is proved as xΠx is isomorphism.
We also claim that ξi ∈ (xiCx ⊗H∗)H

∗
, where the H∗-module structure is

defined by the diagonal action. By the definition of xiΠx and the fact that C
is an H∗-module category, for α ∈ H∗ and f as above, we get

xiΠx(α · ξi)(f) =
mi∑
j=1

(α1 · fij) ◦ [(α2 ∗ αij) · f ] = α ·
mi∑
j=1

fij ◦ (αij · f).

Since φi
u(f) is an element in xiDu it follows that

xiΠx(α · ξi)(f) = α · φi
u(f) = α (1H)φi

u(f) = xiΠx(α (1H) ξi)(f).

Therefore α · ξi = α (1H) ξi, so our claim is proved. Since ξi is H
∗-invariant,

by §1.4, there exists an unique f ′i ∈ xiCx such that ξi =
∑
λ1 · f ′i#λ2. Then,

in view of of the definition of ξi and of the equation (8) we get

1x#ε =

n∑
i=1

f i ◦ (λ1 · f ′i)#λ2 =

n∑
i=1

(f i#λ)(f ′i#ε).

This means that 1x#ε is in the image of xγx. Now we can prove that every

yγx is surjective. Indeed, for f ∈ yCx and α ∈ H∗, we have

f#α = (f#α) (1x#ε) =
n∑

i=1

(f#α) (f i#λ)(f ′i#ε).

By using the definition of the multiplication in the smash product and the fact
that λ is a left integral in H∗ we obtain the following equalities:

f#α =
n∑

i=1

∑[
f ◦ (α1 · f i)#α2 ∗ λ

]
(f ′i#ε) =

n∑
i=1

[
f ◦ (α · f i)#λ

]
(f ′i#ε).

We conclude that yγx is surjective for any x, y ∈ C0, as

f#α =
n∑

i=1

[
f ◦ (α · f i)#λ

]
(f ′i#ε) = yγx

(
n∑

i=1

f ◦ (α · f i)⊗D f ′i

)
.

Let us show that (iii) implies (ii). Let x ∈ C0. Since, by hypothesis, xγx is
surjective for any x ∈ C0 there exist f i ∈ xCxi and f ′i ∈ xiCx such that

n∑
i=1

(f i#λ)(f ′i#ε) = 1x#ε, (9)
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where x1, ..., xn are some objects in C0. In order to show that xC• is a finitely
generated projective right D-module, for every i ∈ {1, . . . , n}, we shall con-
struct φi ∈ HomD(xC•, xi

D•) such that relation (4) holds, where u and f are
arbitrary elements in C0 and xCu, respectively. By definition, we take φi to
be the family of linear maps whose elements are given by

φi
u(f) = λ · (f ′i ◦ f).

Since λ is a left integral, φi
u(f) ∈ xiDu, so φ

i
u is well defined. Using once

again that λ is a left integral, and the fact that C is an H∗-module category it
results immediately that φi is a morphism of right D-modules. To prove the
relation (4) we remark that

n∑
i=1

f i ◦ φi
u(f) =

n∑
i=1

f i ◦ [λ · (f ′i ◦ f)] =
n∑

i=1

∑
f i ◦ (λ1 · f ′i) ◦ (λ2 · f).

On the other hand, using (9) we deduce that

n∑
i=1

∑
f i ◦ (λ1 · f ′i)⊗ λ2 ⊗ f = 1x ⊗ ε⊗ f.

Since C is a left H∗-module, applying IdxCx ⊗ · to the both sides of the above
equality and then using the composition of morphisms in C, we get

n∑
i=1

∑
f i ◦ (λ1 · f ′i) ◦ (λ2 · f) = f. (10)

Therefore (4) holds, so we have just proved that xC• is a finitely generated
projective D-module.

We still have to show that yΠx : yCx#H
∗ −→ HomD(xC•, yC•) is an

isomorphism. We start by showing that each map is injective. Let ξ =∑m
j=1 f

′′
j #αj be an element in Ker yΠx, where f

′′
j ∈ yCx and αj ∈ H∗. Then∑m

j=1 f
′′
j ◦ (αj · f) = 0 for any f ∈ xCu. Since ξ = ξ(1x#ε), and taking into

account the relation (9) we get

ξ =
m∑
j=1

n∑
i=1

(f ′′j #αj)(f
i#λ)(f ′i#ε) =

n∑
i=1

m∑
j=1

[
f ′′j ◦ (αj ◦ f i)#λ

]
(f ′i#ε) = 0.

Thus the kernel of yΠx is trivial. To prove that yΠx is surjective we pick up
µ : xC• −→ yC•, a morphism of right D-modules. For f ∈ xCu, we have

µu(f) = µu

(
n∑

i=1

∑
f i ◦ [λ · (f ′i ◦ f)]

)
=

n∑
i=1

∑
µxi(f

i) ◦ (λ1 · f ′i) ◦ (λ2 · f) ,
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as µ is a morphism of D-modules and λ · (f i ◦ f) =
∑

(λ1 · f i) ◦ (λ2 · f) is an
element in xiDu. We conclude that

µu(f) = yΠx

(
n∑

i=1

(
µxi(f

i)#λ
)
(f ′i#ε)

)
(f),

so yΠx is a surjection.

Let us show that (iii) implies (iv). We fix a Hopf module (M,◃, ·). Here
◃ and · denote the actions of C and of H∗on M, respectively. We have seen
that the category of Hopf modules is isomorphic to the category of left C#H∗-
modules. Therefore M may be regarded as a left C#H∗-module, whose struc-
ture map will be denoted by ⇀. Hence, for f ∈ xCy, α ∈ H∗ and m ∈M, we
have

(f#α)⇀m = f ◃ (α ·m).

As in the proof of the preceding implication, for a given x in C0, there exist
f1, . . . , fn ∈ xCxi and f ′i , . . . , f

′
n ∈ xiCx such that equation (9) holds. Let

ξi := (1xi#λ)(f
′
i#ε). Our goal is to prove that xφ : xC• ⊗D M co(H) −→ xM

is invertible. Let

xψ : xM −→ xC• ⊗D M co(H), xψ(m) =

n∑
i=1

f i ⊗D (ξi ⇀m) .

It is easy to see that xψ is well defined, that is ξi ⇀ m ∈ (xiM)co(H), as λ is
a left integral in H∗ and ξi ⇀m = λ · (f ′i ◃ m).

We can now prove that xψ is the inverse of xφ. With the above notations,
we have:

(xφ ◦ xψ)(m) =
n∑

i=1

xφ(f
i ⊗D ξi ⇀m) =

n∑
i=1

f i ◃ (ξi ⇀m) .

By the definition of the right C#H∗-action on M and using (9) we get

(xφ ◦ xψ)(m) =
n∑

i=1

[
f i ◦ (λ1 · f ′i)#λ2

]
⇀m = (1x#ε)⇀m = m.

To prove that xψ ◦ xφ is the identity of xC• ⊗D M co(H) let us pick up an
element ζ =

∑p
j=1 f

′′
j ⊗D mj , with f

′′
j ∈ xCuj

and mj ∈ uj
M co(H) = uj

MH∗
.
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Thus

(xψ ◦ xφ)(ζ)
(A)
=

n∑
i=1

p∑
j=1

f i ⊗D

[
ξi ⇀ (f ′′j ◃ mj)

]
(B)
=

n∑
i=1

p∑
j=1

f i ⊗D

[
(1#λ)(f ′i#ε)(f

′′
j #ε)

]
⇀mj

(C)
=

n∑
i=1

p∑
j=1

∑
f i ⊗D

[
(λ1 · f ′i) ◦ (λ2 · f ′′j )#λ3

]
⇀mj

(D)
=

n∑
i=1

p∑
j=1

∑
f i ⊗D

[
(λ1 · f ′i) ◦ (λ2 · f ′′j )

]
◃ (λ3 ·mj)

(E)
=

n∑
i=1

p∑
j=1

∑
f i ⊗D

[
(λ1 · f ′i) ◦ (λ2 · f ′′j )

]
◃ mj

(F )
=

n∑
i=1

p∑
j=1

f i ⊗D

[
λ · (f ′i ◦ f ′′j )

]
◃ mj

(G)
=

n∑
i=1

p∑
j=1

f i ◦
[
λ · (f ′i ◦ f ′′j )

]
⊗D mj

(H)
=

n∑
i=1

p∑
j=1

∑
f i ◦ (λ1 · f ′i) ◦ (λ2 · f ′′j )⊗D mj

(I)
=

p∑
j=1

f ′′j ⊗D mj = ζ.

Let us briefly explain the above computation. The relations (A) and (B)
follows by the definition of the map xψ and of the element ξi, respectively. The
relations (C) and (D) are consequences of the definition of the composition of
morphisms in C#H∗ and of the C#H∗-module structure on M . By using the
fact that mj ∈ ujM

co(H) we obtain (E). The relations (F) and (H) hold as C
is an H∗-module category. For (G) one uses the observation that λ · v is H∗-
invariant, for any left integral λ ∈ H∗ and any element v in a left H∗-module
V . For a fixed j, tensorising both sides of (9) to the right with f ′′j we obtain

n∑
i=1

fi ◦ (λ1 · f ′i)⊗ λ2 ⊗ f ′′j = 1x ⊗ ε⊗ f ′′j .
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Using the H∗-module structure of xCuj
and then the composition in C, we get

n∑
i=1

fi ◦ (λ1 · f ′i) ◦ (λ2 · f ′′j ) = 1x ◦ f ′′j = f ′′j .

Thus (I) holds true as well. To finish the proof of this implication we have
to show that φ is an isomorphism of C#H∗-modules. Indeed, for f ∈ xCu,
f ′ ∈ uCv, α ∈ H∗ and m ∈ vM we have:

xφ ((f#α)⇀ (f ′ ⊗D m)) = xφ([(f#α)⇀ f ′]⊗m) = [f ◦ (α · f ′)] ◃ m.

On the other hand, as M is a Hopf module and m is H∗-invariant, we have:

(f#α)⇀ uφ (f ′ ⊗m) =
∑

f ◃ (α1 · f ′) ◃ (α2 ·m) = [f ◦ (α · f ′)] ◃ m,

so our claim has been proved.
It remains to show that (iv) implies (iii). We have to prove that xγy is

surjective for all x ∈ C0. Proceeding as in the proof of the implication (ii)
⇒ (iii) it is sufficient to show that 1x ⊗ ε belongs to the image of xγx. For
this, we consider the left C#H∗-module •Cx#H

∗, whose action is induced
by the composition of morphisms in the smash product category. Let us
denote it by (M,⇀). By assumption, the components of the morphism φ :
C ⊗D M co(H) −→ M are bijective. Thus 1x ⊗ ε ∈ xM is in the image of xφ,
so there exist f1, . . . , fn ∈ xCxi

and m1, . . . ,mn ∈ xi
M co(H) such that

n∑
i=1

fi ◃ mi = 1x#ε.

On the other hand we saw that every H∗-invariant element in yCx ⊗H∗ is of
the form (1⊗ λ)(f ′ ⊗ ε), with f ′ ∈ yCx. Then there exist f ′i ∈ xiCx such that

mi = (1xi#λ)(f
′
i#ε) =

∑
λ1 · f ′i#λ2.

Therefore,

1x#ε =
n∑

i=1

fi ◃ mi =
n∑

i=1

fi ◦ (λ1 · f ′i)#λ2 = xγx

(
n∑

i=1

fi ⊗ f ′i

)
,

so the theorem is proved.

Corollary 2.3. Let H be a Hopf algebra of dimension n. If C = D#σH is
a cross product with invertible cocycle then

(D#σH)#H∗ ≃Mn(D).
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Proof. By [14, Theorem 3.6 and Theorem 3.9] the extension D ⊆ C is H-

Galois. In view of the previous theorem, C#H∗ ≃−→ E(CD). Since H is finite
dimensional and σ is invertible in convolution it follows that xC• is aD-module
isomorphic with xD

n
• , see §1.2. Hence, by §1.6, we conclude that E(CD) ≃

Mn(D), whereMn(D) is the category of square matrix of order n with elements
in D.

References

[1] J. Bergen and S. Montgomery, Smash products and outer derivations,
Israel J. Math. 53 (1986), no. 3, 321-345.

[2] R. J. Blattner and S. Montgomery, Crossed products and Galois exten-
sions of Hopf algebras, Pacific J. Math. 137 (1989), no. 1, 37-54.

[3] C. Cibils and A. Solotar, Galois coverings, Morita equivalence and smash
extensions of categories over a field, Doc. Math. 11 (2006), 143–159.

[4] M. Cohen, D.Fischman and S. Montgomery, Hopf Galois extensions,
smash products, and Morita equivalence, J. Algebra 133 (1990), no. 2,
351-372.

[5] M. Cohen and S. Montgomery, Group-graded rings, smash products, and
group actions, Trans. Amer. Math. Soc. 282 (1984), 237–258.
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