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Geodesic Flow on the Quotient Space of the
Action of ⟨z + 2,−1

z⟩ on the Upper Half Plane

Dawoud Ahmadi Dastjerdi, Sanaz Lamei

Abstract

Let G be the group generated by z 7→ z+2 and z 7→ − 1
z
, z ∈ C. This

group acts on the upper half plane and the associated quotient surface
is topologically a sphere with two cusps. Assigning a “geometric” code
to an oriented geodesic not going to cusps, with alphabets in Z \ {0},
enables us to conjugate the geodesic flow on this surface to a special
flow over the symbolic space of these geometric codes. We will show
that for k ≥ 1, a subsystem with codes from Z \ {0, ±1, ±2, · · · , ±k}
is a TBS: topologically Bernouli scheme. For similar codes for geodesic
flow on modular surface, this was true for k ≥ 3. We also give bounds
for the entropy of these subsystems.

Introduction

Let H = {z = x + iy : y > 0} be the upper half plane endowed with the

hyperbolic metric ds = |dz|
y . Then the geodesics are the vertical lines or the

semi-circles perpendicular to real axis. Let G be a finitely generated Fuchsian
group of the first kind with generators T (z) = z + 2 and S(z) = − 1

z . The
group G (= ⟨T, S⟩) acts on H discontinuously with a Dirichlet fundamental
domain

F = {z ∈ H : |z| ≥ 1, |Rez| ≤ 1} (1)

whose boundary consists of a semicircle and two vertical lines x = −1 and
x = 1 (see Figure 1). The associated quotient space G\H is a finite area

Key Words: geodesic flow, geometric code, arithmetic code, topological entropy
2010 Mathematics Subject Classification: 37D40, 37B40, 20H05
Received: February, 2011.
Revised: March, 2011.
Accepted: January, 2012.

37



38 Dawoud Ahmadi Dastjerdi, Sanaz Lamei

Riemann surface with one elliptic point, as its only singular point, and two
cusps. This surface is topologically a sphere with two punctures and we denote
it by M c2 (a sphere with two cusps). If G′ is another group giving a Riemann
surface with the same signature, then these two surfaces are quasi-conformally
equivalent [3]. One of our goals is to study the dynamics of geodesic flow on
M c2 which will not go to the cusps in either directions. We may do this by
considering oriented geodesics. A geodesic will not go to the cusp if it is the
projection of an oriented geodesic γ = (w, u) in H intersecting the real line
at irrationals u and w where we let u represent the repelling fixed point and
w the attracting fixed point of γ. Two geodesics γ and γ′ project to the same
geodesic on M c2 if there exists g ∈ G such that γ = gγ′g−1. Lifting the
geodesics to TM c2, the unit tangent bundle of M c2, gives the geodesic flow as
an invariant set on M c2.

When the generators are z 7→ z+1 and z 7→ − 1
z , correspondingly a surface

called modular surface arises. Modular surface has two singular points and a
cusp and we show it byM c1. Extensive studies has been done for the dynamics
of geodesic flow on M c1 [2], [5], [6], [8] and [13]. Here we do similar studies
for such dynamics on M c2. Our second goal is to have a comparison of some
of the main results in M c2 with similar ones in M c1.

Results on geodesic flow on M c1 are based on the codes which are assigned
to the geodesics. Several techniques for developing codes have been introduced
[4], [5] and [8] and one of the most natural codes is geometric codes appearing
in [15]. In this note, we introduce geometric codes for geodesic flow on M c2.
Basically, these codes are bi-infinite sequences of nonzero integers which tell
how a geodesic enters F infinitely many times in past and future.

In fact, these codes together with the length of geodesic between two suc-
cessive return of geodesic to F reveals the dynamics of geodesic flow. For
then we can construct a special flow, conjugate to our flow, whose base space
is the symbolic space obtained by these codes and its height function is the
aforementioned length.

Our technique for acquiring the codes is different from the one given in
[8]. We first introduce parameter space and then we will obtain the codes
from that space. This will considerably lessen the task of computations. For
instance in Theorem 2.3, rather easily will be shown that all geodesics whose
entries of their geometric codes are in Z \ {0, ±1} are topologically Bernouli
scheme which is a sort of 1-step Markov chain. For geodesic flow on M c1, this
is true when entries are from Z \ {n : |n| ≤ 3}.

Last section is devoted to give an upper and a lower bound for the topo-
logical entropy of subsystems with codes in Z \ {n : |n| ≤ k, k ≥ 2}.
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1 Geometric and arithmetic codes for geodesics on M c2

We apply Morse method to have the geometric codes of the geodesic flow on
M c2. This requires a cross section and we will show how F defines our cross
section. Recall that a cross section is a set that almost all flow lines intersect
infinitely many times in past and future. Let F be as in (1). Label the circular
side of F by s and the sides x = −1 and x = 1 by t−1 and t respectively (see
Figure 1). The left and right parts of the semicircle are identified by S and
the sides t−1 and t are identified by T and T−1.
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Figure 1: F is the fundamental domain for the action of G = ⟨z + 2,− 1
z ⟩ on

the upper half plane.

We consider the oriented geodesics which enter F via side s and call them
reduced geodesics. In Lemma 1.1, we will show that any geodesic on H is
G-equivalent to a reduced geodesic, that means for given γ ∈ H, there exists
g ∈ G and a reduced geodesic γ′ such that γ = gγ′g−1. If γ = (w, u) is a
reduced geodesic with repelling and attracting endpoints w and u respectively,
then |w| > 1 and |u| < 1. By Morse method we start from an initial point of a
reduced geodesic on s and move in the direction of the geodesic and count the
number of times that the geodesic hits sides t or t−1. A bi-infinite sequence
of non-zero integers will be assigned to γ called the geometric code of γ where
entries ni > 0 (respectively ni < 0) in geometric code shows the number of
times that γ has hit the side t (respectively t−1) between two successive hits
to s. Denote the geometric code of γ by [γ] = [..., n−1, n0, n1, ...]. This is
similar to geometric code given for geodesics in M c1 described in [8, 9].

Our method to compute the geometric code of γ is to consider the param-
eter space for the reduced geodesics in H. Consider the wu coordinate in the
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plane.
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Figure 2: The parameter space for reduced geodesics is T+ ∪ T−.

The lines w = ±1 and u = ±1 partition the plane to 9 regions named T+,
T−, S+, S−, U+ and U− (see Figure 2). Let T = T+ ∪ T−, S = S+ ∪ S− and
U = U+ ∪ U−. Also let Tn ⊂ T be the square whose opposite vertices are
(2n − 1, −1) and (2n + 1, 1), n ∈ Z \ {0} and let Sn := T−n(Tn) ⊂ S. The
action of transformations T (z) = z + 2 and S(z) = − 1

z induces a map TR on
R2 which is defined as

TR(w, u) =

 T−1(w, u) = (w − 2, u− 2) on T+ ∪ U+

S(w, u) = (−1
w , −1

u ) on S
T (w, u) = (w + 2, u+ 2) on T− ∪ U−.

(2)

We show TR by T or S when the domain is understood from context. The
geodesics whose one of their endpoints is a rational number will go to the cusp
and depending on cusps two cases happen. 1) After some iterations of TR, this
rational endpoint sits on zero which then the geometric code associated to the
direction of this endpoint is finite. 2) It eventually lands on 1 or -1 where
there remains forever. That is, the code will have at least a tail of 1’s or -1’s.
So as geodesics do not go to cusps, geometric codes are bi-infinite sequences
with no tails of 1’s or -1’s.

Lemma 1.1. Each geodesic in H is G-equivalent to a reduced geodesic.
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Proof. Suppose γ is a geodesic with endpoints (w, u) ∈ R2, w ̸= u. Let
D = T ∪ S ∪ U. It suffices to show that by finite applications of S, T and
T−1, the point (w, u) will map to T ∪ S. Evidently there is k ∈ Z such that
(T kw, T ku) ∈ (−1, 1) × R. Therefore, we only have to care about points
(w, u) such that (w, u) ∈ E := ((−1, 1)× R) \D.
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Figure 3: Any (w, u) eventually maps to T under TR.

Partition E to E0 ∪ E1 ∪ E2 ∪ E3 as in Figure 3. We have S(E0) ⊂
U+ ∩ {(w, u) : u > 0}, S(E1) ⊂ U− ∩ {(w, u) : u < 0}. Note that if
(w, u) ∈ E2 or E3, then there is ℓ ∈ Z \ {0} such that T ℓS(w, u) ∈ S and so
the associated geodesic will be reduced. We only give a proof for those (w, u)
in (−1, 0) × (−1, 0) = E0. The proof for E1 is similar. Consider the infinite
chain of squares shown in E0 in the Figure 3 which is the image under S of the
union of all squares with two vertices at (2n−1, 2n−1) and (2n+1, 2n+1) for
n ∈ N, that is S(∪n≥1[2n− 1, 2n+1]× [2n− 1, 2n+1]). Let sk be the image
of the square [2k− 1, 2k+1]× [2k− 1, 2k+1] in E0 under S. Call this chain
of squares E1

0 (= s1 ∪ s2 ∪ ...). Now S(E0\E1
0) is a subset of (1, ∞)× (1, ∞)

outside of the squares with vertices at (2n − 1, 2n − 1) and (2n + 1, 2n + 1)
and map to T by some finite applications of T and so the associated geodesics
are reduced.
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We have T−kS(sk) = E, k ∈ N. Hence a copy of E1
0 , say E1

0, k appears

in sk where by the same procedure any geodesic in sk\E1
0, k can be reduced.

Applying the same reasoning to the subsequence chains of squares in sub-
squares, all geodesics will be reduced.

Every irrational number x where |x| > 1 has a unique E-expansion (E for
even) of nonzero integers (n0, n1, ...) as follows:

Set x = x0. For k ∈ Z \ {0}, let ni = k if 2k − 1 ≤ xi < 2k + 1 where
xi+1 = − 1

xi−2ni
. Let γ = (w, u) ∈ T be a given geodesic whose E-expansion

of w and u are

w = 2n0 −
1

2n1 − 1

. . .

, u =
1

2n−1 − 1
2n−2− 1

...

. (3)

So to a reduced geodesic γ = (w, u), with respect to the E-expansion of its
endpoints, a bi-infinite sequence of nonzero integers is assigned. This sequence
is called the arithmetic code of γ and is denoted by

(γ) = (..., n−1, n0, n1, ...).

It is easy to see that the geometric and arithmetic codes of a reduced geodesic
on M c2 coincide. So if the reduced geodesic γ = (w, u) has the geometric code
[γ] = [..., n−1, n0, n1, ...], then w and u satisfy (3).

The block [n0, n1, ..., nk] is an admissible block if there is a geodesic γ
which has n0, n1, ..., nk as a part of its geometric code. Infinite blocks are
likewise defined.

It is a natural question to ask if a given bi-infinite sequence of nonzero
integers is realized by a geodesic. We will show in Corollary 1.3 that this is
the case when the sequence has not a tail of just 1 or -1 in either directions.

Now we show how the parameter space evolves geometric codes. Start
with a reduced geodesic γ = (w, u) ∈ Tn0 . The left (respectively right) edge
of Sn0 (= T−n0(Tn0)) will map to a short interval on the left (respectively
right) edge of T1 (respectively T−1) by S. By identifying −∞ and ∞, S(Sn0)
will be a long horizontal rectangle intersecting any Tn, n ∈ Z \ {0}. Let
ST−n0(w, u) ∈ Tn1 and set Tn0,n1 = ST−n0(Tn0) ∩ Tn1 . Inductively, let
Tn0, n1, ..., nk

:= ST−nk−1(Tn0, n1, ..., nk−1
)∩Tnk

containing the reduced geodesic
ST−nk−1ST−nk−2 ...ST−n0(w, u).

Note that Tn0, n1, ..., nk
contains all geodesics having ni as the ith entry in

their geometric code, 0 ≤ i ≤ k.
Likewise, S(Tn0) is a long vertical rectangle in S containing S(w, u) ∈

Sn−1 ⊂ S. Then Tn1Sn−1(w, u) is in a vertical rectangle Tn−1S(Tn0) denoted
by Tn−1, n0 . Inductively, Tn−k, ..., n−1, n0 will be constructed which contains all
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geodesics with ith entry ni, −k ≤ i ≤ 0. Carrying out the same process, the
geometric code of γ will be obtained.

Let A be a set of countable alphabets. Consider the space Σ ⊆ ΣA = {x =
(xi)

∞
i=−∞, xi ∈ A} and the shift map σ : Σ → Σ defined by σ(xi) = xi+1.

The symbolic dynamical system (Σ, σ) is called two-sided countable topological
Bernoulli scheme (TBS) if Σ = ΣA.

Set β2 = {B = [n, m] : n, m ∈ A} to be the set of all blocks of length
two. Let τ : β2 → {0, 1} be the transition map, that is a map which assigns
1 to [n, m] ∈ β if [n, m] is an admissible block and zero otherwise. Then
the subsystem Xτ = {x ∈ {A} : τ([ni, ni+1]) = 1, ∀i ∈ Z} is a 1-step Markov
chain. Obviously, a TBS is a 1-step Markov chain.

Let B ⊆ Z \ {0, ±1} and ΣB be the space of geometric codes whose alpha-
bets are from B. The easy proof of the following theorem shows how using
the parameter space to detect the properties associated to geometric codes is
effective.

Theorem 1.2. The space ΣB is a TBS.

Proof. Consider the region Tn0
, n0 ∈ B. Since ST−n0(Tn0

)∩Tn1
is nonempty

for all n1 ∈ B it follows that [n0, n1] is an admissible block.

A similar theorem can be stated for geodesic flow over modular surface
M c1 and then we must choose B = Z \ {n : |n| ≥ 3}. That is because a
bi-infinite sequence · · · , n−1, n0, n1, · · · is realized as a geodesic code when
| 1
ni

+ 1
ni+1

| < 1
2 [8, Theorem 1.5]. When this sufficiency condition holds we

say that geometric code satisfies Katok’s criterion.
A geodesic goes to a cusp in future or past if and only if its geometric code

in that direction is finite or has a tail of all 1 or all −1. Now the following is
immediate.

Corollary 1.3. Let · · · , n−1, n0, n1, · · · be a bi-infinite sequence in Z \ {0}
whose tails are neither all 1 nor all −1. Then this sequence represents a
geometric code of an oriented geodesic on M c2 not going to cusps in positive
or negative times.

2 Entropy

When codes are from a set of infinite symbols, there are not much routines
available to compute the entropy of the geodesic flow. Savchenko [12] is the
first who defines the entropy for a class of systems called topological Markov
chains (TMC): a system which can be represented by a countable directed con-
nected graph. The first application on practical problems appears in [11] for a
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subclass of TMC called the local perturbation of a TBS. In a local perturbation,
one considers the graph of TBS which is a complete graph and deletes some
finite edges. Then this was extended to a larger class in [1] with a different and
simpler technique. We use the method in [1] to give bounds for topological
entropy on our subsystems which are all TBS. Clearly the same results will be
obtained if one uses the method and formulas in [11]. The subsystems we have
chosen are those whose alphabets are in Z\{0, ±1, ±2, ..., ±k} and those with
alphabets in N\{1, 2, ..., k}, k ≥ 2. Recall that geometric codes for modular
surface M c1 has also Z \ {0} as its alphabets. Hence similar subsystems can
be defined there as well. For M c1, bounds for entropies of subsystems with
alphabets in Z\{0, ±1, ±2}, N\{1, 2} and Z\{0, ±1} which satisfy Katok’s
criterion has been reported in [9, 5, 1]. Hence our results is for a class of
subsystems not just some individual examples. See also Remark 2.4

First we recall a general theorem for the quantity of topological entropy of
the action of the geometrically finite Fuchsian groups on H which implies the
geodesic flows on both M c1 and M c2 have entropies equal to 1.

Theorem 2.1. [5, Theorem 12]. The topological entropy of geodesic flow on
a quotient of H by a geometrically finite Fuchsian group of the first kind is
equal to 1.

Our computations are done via special flows conjugated to our subsys-
tems. To define this special flow, let (Σ, σ) be a subsystem of geodesic codes
and let ℓ(x) be the length of geodesic between two successive hits of s. Set
Y (G) = {(x, t) : x ∈ Σ, 0 ≤ t ≤ ℓ(x)} with the points (x, ℓ(x)) and (σ(x), 0)
identified. Then for 0 ≤ s, s+ t ≤ ℓ(x), set T s

ℓ,Σ(x, t) = (x, s+ t). Define the
family Tℓ,Σ = {T s

ℓ,Σ}s∈R to be the special flow constructed over the base space

Σ and height function ℓ. Geodesic flow on M c2 is conjugate to this family of
special flow and the same can be formulated for any subsystem.

For k ∈ N \ {1}, let Ak = {n : |n| ≥ k} and A+
k = {n : n ≥ k}. Denote

by h(Tℓ,ΣAk
) (respectively h(Tℓ,Σ

A
+
k

)) the topological entropy of Tℓ,ΣAk
(

respectively Tℓ,Σ
A

+
k

).

Theorem 2.2. For k ∈ N \ {1}, let ΣAk
, ΣA+

k
, Tℓ,ΣAk

and Tℓ,Σ
A

+
k

be as

before and let ζ(·) be the Riemann zeta function. Then xl < h(Tℓ,ΣAk
) < xu

where for α ∈ {l, u}, xα is the unique solution of

2c−2x
α

(
ζ(2x)−

k−1∑
n=1

1

n2x
+

1

k2x

)
= 1. (4)

Here cu = 2− 1
k[2k]

= 2− 1
k(k+

√
k2−1)

and cl = 2 + 1
k[2k]

.
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Also, xl < h(Tℓ,Σ
A

+
k

) < xu where for α ∈ {l, u}, xα is the unique solution

of

c−2x
α

(
ζ(2x)−

k−1∑
n=1

1

n2x
+

2

k2x

)
= 1. (5)

Here again cu = 2− 1
k[2k]

, but cl = 2.

Example 2.3. If k = 2 or 3, then the bounds for the entropy of geodesic
flow on M c2 are 0.7491 < h(Tℓ,ΣA2

) < 0.9330 and 0.7218 < h(Tℓ,ΣA3
) <

0.7994 respectively. Also, for positive geodesic flow on M c2, we have 0.7137 <
h(Tℓ,Σ

A
+
2

) < 0.8041 and 0.6736 < h(Tℓ,Σ
A

+
3

) < 0.7077. We used the computer

algebra software Maple to perform our computations.

In fact our bounds for entropy stems out from the bounds for cα.
The reported bounds for entropies for M c1 are those satisfying Katok’s

criterion. If this criterion is satisfied, the entropy is greater than 0.8417 when
codes are in Z\{0, ±1, ±2} [8]; it is between 0.7771 and 0.8161 when codes
are in N\{1, 2} [5] and it is greater than 0.8665 when codes are in Z\{0, ±1}
[1].

Remark 2.4. Formulas similar to (4) and (5) can be derived for other subsys-
tems; in particular, for the subsystems whose codes are in Z \A where A ⊂ Z
is finite and contains zero. Note that in practice the main task is to be able to
evaluate cα and this can be done, as we will do later, when the height function
depends only on its zero coordinate.

To prove Theorem 2.2, we need to determine explicitly the height function
of the special flow, that is ℓ(x).

Theorem 2.5. Let x = [γ] be the geometric code of γ with repelling and at-
tracting points w = w(x) and u = u(x) respectively. Then ℓ(x) = 2 ln(w(x))+

ln(g(x))− ln(g(σx)) where g(x) =
(w(x)−u(x))

√
w(x)2−1

w(x)2
√

1−u(x)2
.

Proof. With almost no change, the lines of proof is similar to the proof of
[5, Theorem 4]. Just let z1 and z′1 be the intersection of γ = (w, u) with
|z| = 1 and |z − 2n1| = 1 respectively and z2 = ST−n1z′1. Then the same
computations in [5] imply that the distance between z1 and z′1 is equal to

2 ln(w(x)) + ln(g(x))− ln(g(σx)) where g(x) =
(w(x)−u(x))

√
w(x)2−1

w(x)2
√

1−u(x)2
.

Let Σ′ ⊆ Σ and let f1, f2 : Σ′ → Σ′. Then f1 and f2 are called cohomolo-
gous, if there exists a function h : Σ′ → R such that f1(x) = f2(x) + h(x) −
h(σ(x)). When f1 and f2 are height functions, then the special flows Tf1,Σ′
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and Tf2,Σ′ are conjugate and therefore have the same topological entropy [10].
By Theorem 2.5, ℓ(x) is cohomologous to f(x) = 2 ln(w(x)).

When the height function depends only on its zero coordinate, an esti-
mate for entropy of special flow can be obtained which we will briefly ex-
plain here. For any subsystem ΣB of Σ denote the positive continued func-
tions like f(x) depending on the zero coordinate and satisfying the condition∑∞

k=1 f(σ
k(x)) =

∑∞
k=1 f(σ

−k(x)) = ∞ by F0(ΣB).
Let H be a directed graph with vertex set V = A and the edge set E =

{(v, w) : v, w ∈ A}. A path τ with length n in H from v0 to vn is a sequence
τ = (v0, ..., vn) of vertices in V (H). The path τ = (v0, ..., vn) is called a
simple v-cycle if v0 = vn = v and vi ̸= v for 1 ≤ i ≤ n − 1. Let C(H; v) be
the set of all simple v-cycles in the graph H. Let f ∈ F0(ΣB) and Ff,V (x) =∑

v∈V xf(v) be a series for x ≥ 0 and set

ϕH,f,w(x) =
∑

τ∈C(H;w)

xf∗(τ), x ≥ 0 (6)

be the generating function with respect to the special flow Tf,Σ where f∗(τ) =∑n
i=0 f(vi), τ = (v0, ..., vn).

Remark 2.6. Let (ΣB, σ) be a 1-step topological Markov chain and f ∈
F0(ΣB). Then by [1, Remark 1], h(Tf,Σ) = − ln(x̂f ) where x̂f is either the
unique solution of ϕH,f,v(x) = 1 or x̂f = r(ϕH,f,v). Here H is the graph
associated to ΣB and v ∈ V (H).

Lemma 2.7. Let c > 1 and f(x) = 2 ln(cn0), |n0| ≥ k ≥ 2. Let α ∈ {Ak,A
+
k }.

Then h(Tf,Σα) = −x̂α
f where x̂α

f is the unique solution of ϕHα,f,vk
(x) = 1.

Proof. Let α = Ak. Since f(x) = 2 ln(cn0) and |n0| ≥ k so f ∈ F0(ΣAk
). Let

Hk := HAk
be a complete graph with vertex set V (Hk) = Ak and edge set

E(Hk). Set V0 = {vk} and V1 = Ak − {vk}. Define a new complete graph
Pk with vertex set {V0, V1} and edge set E(Pk). Set αi(x) =

∑
v∈Vi

xf(v) and
αij(x) = αi(x) if (Vi, Vj) ∈ E(Pk) and zero otherwise for i = 1, 2. Then we
may apply [1, Lemma 1] for m = 1 to have a series

A1(x) = α10(x) + α11(x)A1(x)

and a matrix M(x) =

(
α11(x)− 1 α12(x)
α21(x) α22(x)− 1

)
. Now the generating func-

tion for the flow Tf,ΣAk
is ϕHk,f,vk(x) = α00(x) + α10(x)A1(x). This im-

plies r(ϕHk,f,vk
), the radius of convergent of ϕHk,f,vk

(x), is equal to r(A1) ≤
r(Ff,V (Hk)). Since f ∈ F0(ΣAk

) then by Remark 2.6, h(Tf,ΣAk
) = − ln(x̂f )

where x̂f (= x̂α
f )) is either the unique solution of ϕHk,f,vk

(x) = 1 or x̂f =
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r(ϕHk,f,vk
) = r(A1). We want to show that for our case x̂f is the unique

solution of ϕHk,f,vk
(x) = 1.

For 0 ≤ x < r(Ff,V (Hk)) set

x̃0 =

{
r(Ff,V (Hk)), if M(x) is invertible
inf{x : 0 ≤ x < r(Ff,V (Hk)), detM(x) = 0}, otherwise.

(7)
From [1, Theorem 2] we have r(ϕHk,f,vk

) = x̃0 and if x̃0 < r(Ff,V (Hk)), then
limx→x̃−

0
ϕHk,f,vk

(x) = ∞ which means ϕHk,f,vk
(x) = 1 has a solution in

0 < x < r(Ff,V (Hk)). We will show that this is indeed the case. We achieve
this if detM(x) = 0 in 0 < x < r(Ff,V (Hk)). But for Tf,ΣAk

,

detM(x) = 1− Ff,V (Hk)(x) = 1−
∑
v∈Ak

xf(v) = 1− 2
∞∑

n=k

x2 ln cn.

So 1 = 2c2 ln x
∑∞

n=k n
2 ln x. By setting ln 1

x = s, we have

c2s

2
=

∞∑
n=k

1

n2s
. (8)

But the series is convergent for s > 1
2 and decreases strictly on 1

2 < s < ∞
from ∞ to zero. Since c > 1, c2s

2 is greater than 1
2 on s = 1

2 and increases to
infinity on 1

2 < s < ∞. So (8) has a unique solution on 1
2 < s < ∞ or M(x)

has a unique solution on 0 < x < 1√
e
.

Now let α = A+
k and let Hk be the associated complete graph. Then

detM(x) = 1−Ff,V (Hk)(x) = 1−
∑

v∈Ak
xf(v) = 1−

∑∞
n=k x

2 ln cn. Therefore

in this situation, (8) turns to c2s =
∑∞

n=k
1

n2s and by a similar discussion has
a unique solution on 0 < x < 1√

e
.

Proof of Theorem 2.2. Recall that if two height functions f1 and f2 on Σ′ ⊆ Σ
are cohomologus, then they have the same topological entropy. So applying
Theorem 2.5, it suffices to let the height function to be f(x) = 2 ln(w(x)) for
x = (..., n0, n1, ...). But

cu|n0| = |2n0|−
1

[2k]
≤ |w(x)| = |2n0−

1

2n1 − 1
2n2− 1

...

| ≤ |2n0|+
1

[2k]
= cl|n0|,

(9)
where cl = 2+ 1

k[2k]
and cu = 2− 1

k[2k]
. Let fα(x) = 2 ln cα|n0| where α ∈ {l, u}.

Then by Abramov formula, h(Tfl,ΣAk
) ≤ h(Tf,ΣAk

) ≤ h(Tfu,ΣAk
). We give

the proof for the lower bound and for the upper bound, it follows similarly.
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Since (ΣAk
, σ) is a TBS,

ϕHk,f,vk
(x) =

xf(v)

1− xf(v) − Ff,V (Hk)(x)
,

when 1−xf(v)−Ff,V (Hk)(x) > 0 [11] and Hk is the complete graph introduced
in the proof of Lemma 2.7. See also [1, Remark 2].

By the above lemma, x̂l is the unique solution of ϕHk,fl,vk(x) = 1 or
equivalently it is the unique solution of∑

n∈Ak

x2 ln(cln) + 2x2 ln(clk) = 1, 0 < x < 1. (10)

But

∑
n∈Ak

x2 ln(cln) = 2
∞∑

n=k

x2 ln(cln) = 2c2 ln x
l

(
ζ(−2 lnx)−

k−1∑
n=1

n2 ln x

)
.

Where ζ(.) is the Riemann zeta function. Since by Remark 2.6, the entropy
equals −2 ln x̂l where x̂l is the solution of (10), so by letting xl = − ln x̂l, we
have xl is the solution of

2c−2x
l

(
ζ(2x)−

k−1∑
n=1

1

n2x
+

1

k2x

)
= 1.

The proof for the h(Tℓ,Σ
A

+
k

) is similar with a minor change. We only need to

use the relation

cu|n0| = |2n0| −
1

[2k]
≤ |w(x)| = |2n0 −

1

2n1 − 1
2n2− 1

...

| = 2|n0| = cl|n0|,

instead of (9).
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