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Magnetic Schrödinger operators with discrete
spectra on non-compact Kähler manifolds

Nicolae Anghel

Abstract

We identify a class of magnetic Schrödinger operators on Kähler
manifolds which exhibit pure point spectrum. To this end we embed the
Schrödinger problem into a Dirac-type problem via a parallel spinor and
use a Bochner-Weitzenböck argument to prove our spectral discreteness
criterion.

1. Introduction

Let (M, g) be a complete non-compact oriented Riemannian manifold of
dimension n ≥ 2, with Riemannian metric g, and let a be a real 1-form on M ,
of class C∞. Then a induces a metric connection ∇a on the trivial Hermitian
bundle M ×C, identifiable to the first order differential operator

C∞(M,C) 3 φ 7−→ daφ := dφ+ iφa ∈ C∞(M,T ∗M ⊗C),

where d represents ordinary exterior differentiation and i =
√
−1. As usual,

the Riemannian metric allows one to consider pointwise Hermitian products
〈·, ·〉x, x ∈ M , in the complexified cotangent bundle T ∗M ⊗ C and, via
the volume form, global (integrated) Hermitian products (·, ·), in the spaces
C∞cpt(M,C) and C∞cpt(M,C⊗T ∗M). With respect to these products the formal
adjoint (da)∗ of da can be defined as a first order differential operator,

(da)∗ : C∞(M,C⊗ T ∗M) −→ C∞(M,C),
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and then the magnetic Schrödinger operator (magnetic bottle) with magnetic
potential a is the second order differential operator Ha := (da)∗da, viewed
as an unbounded operator in L2(M,C). (see Section 2 for more details). It
is known that regardless of a, Ha with domain C∞cpt(M,C) is an essentially
self-adjoint operator in L2(M,C) [S1].

There is a great deal of work, especially on Euclidean spaces M = Rn,
dedicated to deciding which magnetic Schrödinger operators Ha have discrete
spectrum, that is a spectrum consisting only in isolated eigenvalues of finite
multiplicity [AHS, I, KS, A1]. Typically, these works provide sufficient condi-
tions for spectral discreteness, in terms of the magnetic field B associated to
a, B := da.

The purpose of this note is to provide one more result along these lines, in
the case M is a Kähler manifold with Kähler form ω and Riemannian metric
g naturally induced by ω. This result can easily be seen to generalize that of
[A1], when n is even.

Theorem. Let M be a non-compact Kähler manifold with Kähler form ω and
Riemannian metric induced by ω. Assume that Ha is a magnetic Schrödinger
operator on M associated to a real 1-form a of class C∞. Then Ha has discrete
spectrum if the real-valued function 〈B(x), ω(x)〉 on M , where 〈·, ·〉 denotes the
natural pointwise inner product on 2-forms, satisfies the condition

lim
x→∞

〈B(x), ω(x)〉 = −∞. (1)

2. Magnetic Schrödinger operators on manifolds

Let (M, g) be a complete non-compact oriented Riemannian (C∞) mani-
fold of dimension n, equipped with the metric g. On the usual real C∞-bundles
of p-forms on M , Λp(T ∗M), 0 ≤ p ≤ n, consider the standard inner products
〈·, ·〉x, x ∈ M . Specifically, if (e1, e2, . . . , en) is an oriented local orthonor-
mal frame in the tangent bundle TM , with local dual frame of 1-forms in
the cotangent bundle T ∗M , (e∗1, e

∗
2, . . . , e

∗
n), then a local orthonormal basis of

Λp(T ∗M) is {e∗J}J , e∗J := e∗j1 ∧ e
∗
j2
∧ · · · ∧ e∗jp , where J runs through the set of

all multi-indices 1 ≤ j1 < j2 < · · · < jp ≤ n.
There is a Levi-Cività metric connection ∇LC on Λp(T ∗M), extending nat-

urally the Levi-Cività connection on T ∗M , the exterior product connection;
For a local vector field e in TM and local forms v∗ in T ∗M and φ in Λp(T ∗M),

∇LC
e (v∗ ∧ φ) = ∇LC

e v∗ ∧ φ+ v∗ ∧∇LC
e φ. (2)

Denote now by Ωp(M,C) := C∞(M,Λp(T ∗M)⊗C) the Hermitian vector
space of C∞ complex global p-forms and by

d : Ωp(M,C) −→ Ωp+1(M,C)
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the usual exterior differential. In terms of the complexified Levi-Cività metric
connection ∇LC on Λp(T ∗M)⊗C, d can be written locally as

d =

n∑
j=1

e∗j ∧∇LC
ej .

Fix now a ∈ Ω1(M,R) a real global 1-form. Then the twisted differential
da := d+ ia∧, defined on Ωp(M,C) by

Ωp(M,C) 3 φ 7−→ daφ = dφ+ ia ∧ φ ∈ Ωp+1(M,C),

has the local frame counterpart

da =
n∑
j=1

e∗j ∧∇LC,a
ej ,

where ∇LC,a is the twisted metric connection on Λp(T ∗M)⊗C defined by

∇LC,a
v φ = ∇LC

v φ+ ia(v)φ, v global vector field in TM, φ ∈ Ωp(M,C). (3)

For φ ∈ Ωp(M,C) and ψ ∈ Ωpcpt(M,C) the global Hermitian product (φ, ψ) :=∫
M
〈φ, ψ〉dvol induces the formal adjoint (da)∗ of da,

(da)∗ : Ωp+1(M,C) −→ Ωp(M,C),

subject to

((da)∗φ, ψ) = (φ, daψ), φ ∈ Ωp+1(M,C), ψ ∈ Ωpcpt(M,C).

It follows that locally

(da)∗ = −
n∑
j=1

ejy ∇LC,a
ej ,

where ejy denotes interior multiplication (contraction) by the local vector field
ej .

Making in the above discussion p = 0 we get a second order differential
operator

Ha := (da)∗da : C∞(M,C) −→ C∞(M,C).

Seen as an unbounded operator in L2(M,C), the completion of C∞cpt(M,C)
with respect to (·, ·), Ha is called the (scalar) magnetic Schrödinger operator
generated by the potential a. It is then a nice exercise to see that in a local
frame,

Ha = −
n∑
j=1

(ej + ia(ej))
2

+

n∑
j=1

(
∇LCej ej + ia(∇LCej ej)

)
.
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Ha with domain C∞cpt(M,C) can be closed in only one way in L2(M,C), i.e.,
Ha is an essentially self-adjoint operator [S1].

In this note we will be interested in reasonably simple conditions on M
and a which would ensure that Ha has pure point spectrum. We therefore
conclude this section with a general criterion for spectral discreteness.

Proposition 1. Ha being defined as above, if there is a function f ∈ C0(M,R),
limx→∞ f(x) =∞, such that

(Haφ, φ) ≥ (fφ, φ), φ ∈ C∞cpt(M,C), (4)

then Ha has discrete spectrum.

Proof. We will supply a somewhat less traditional proof to this proposition.
To this end, let W 2(M,a) be the domain of the unique closed extension of Ha

from C∞cpt(M,C) into L2(M,C). W 2(M,a) is the completion of C∞cpt(M,C)
with respect to the Sobolev inner product (·, ·)2 := (·, ·) + (Ha·, Ha·). Since
Ha : W 2(M,a) −→ L2(M,C) is self-adjoint, its spectrum is contained in the
real line.

To prove the proposition it suffices to show that for every λ ∈ R the
operator Ha − λ with domain W 2(M,a) is Fredholm, since for any Fredholm
operator 0 is an isolated point of its spectrum, and in fact an eigenvalue with
finite multiplicity.

Fix now a number λ ∈ R. The assumption on the function f provides a
compact subset K of M such that f(x) ≥ λ+ 1, if x ∈M \K. The hypothesis
(4) and the density of C∞cpt(M,C) in W 2(M,a) imply that

((Ha − λ)φ, φ)− ((f − λ)φ, φ)K ≥ (φ, φ)M\K , φ ∈W 2(M,a), (5)

where for a subset U of M , (·, ·)U indicates integration is carried out only over
U .

As in [A2], Ha − λ will be a Fredholm operator if we can show that any
sequence {φn}n from W 2(M,a), which is L2-bounded and for which {(Ha −
λ)φn}n is L2-convergent, admits a L2-convergent subsequence.

Since {φn}n is bounded in the Sobolev norm || · ||2, by Rellich’s lemma [S2]
the sequence {φn|K}n has a convergent subsequence in L2(K,C) (assumed to
be the sequence itself).

The property (5) applied now to the differences {φm − φn}m,n shows that
{φn|M\K}n is a Cauchy sequence in L2(M \K,C). We conclude that {φn}n
converges in the L2-norm, since its restrictions to K and M \K do so.
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3. Generalized Dirac operators

As mentioned in the introduction, our spectral discreteness analysis will
come about by embedding the magnetic Schrödinger operator formalism into
a Dirac-type framework. It is then desirable to briefly review here the concept
of generalized Dirac bundle with its associated Dirac operator [GL].

If (M, g) is, as before, a complete non-compact oriented Riemannian man-
ifold of dimension n, let Cl(M) be the real Clifford bundle of algebras induced
by the tangent bundle TM and the Riemannian metric g. There is a canonical
embedding TM ⊂ Cl(M), and then the Riemannian metric and Levi-Cività
connection extend from TM to Cl(M) in such a way that the connection ∇LC
of Cl(M) preserves the metric and acts as a derivation.

A complex bundle of left modules over the bundle of algebras Cl(M), say
S −→ M , will be called a (generalized) Dirac bundle if S is furnished with a
Hermitian metric 〈·, ·〉 and a metric connection ∇S such that

i) The action on S by unit vectors in TM ⊂ Cl(M) is a pointwise isometry.
ii) The connection ∇S is compatible with the Clifford multiplication, in

the sense that for local sections e in TM , φ in Cl(M), and s in S, we have

∇Se (φ · s) =
(
∇LCe φ

)
· s+ φ ·

(
∇Se s

)
.

Above, the “·” indicates the action of Cl(M) on S, while the multiplication
in Cl(M) will be simply represented by juxtaposition. Since TM generates
Cl(M), the action · of Cl(M) on S is completely determined by its restriction
to TM .

There are several fundamental examples and constructs of Dirac bundles
associated to M , which are relevant to us:

a) S = Cl(M)⊗C. In this case Cl(M) acts on S by left algebra multipli-
cation and ∇S is the complexification of ∇LC .

b) S = Λ(T ∗M)⊗C. This case, where Λ(T ∗M) represents the real bundle
of exterior forms on M , is relevant to our concept of magnetic Schrödinger
operator, in the sense that the scalar concept we work with admits an extension
to a concept of exterior form magnetic Schrödinger operator.

If (e1, e2, . . . , en) is a local frame in TM then the action · of ej on S is
given by ej· = e∗j ∧ −ej y. ∇S is the exterior form extension of the Levi-

Cività connection ∇LC on T ∗M , cf. (2). In fact case b) coincides with case a)
under the canonical vector bundle linear isometry Λ(T ∗M) ' Cl(M), e∗J 7−→
ej1ej2 . . . ejp . This is a vector bundle isomorphism which also preserves the
Levi-Cività connections, but of course not an algebra bundle isomorphism.

c) For a Kähler manifold M of complex dimension m [GH] let ω be the
Kähler 2-form and let g be the Riemannian metric naturally induced on TM by
ω. Then the integrable complex structure J in the tangent bundle TM makes
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(TM, g) a Hermitian bundle, and there is a complex linear isometry between
(TM, J) and the Hermitian bundle of (0, 1)-forms T ∗0,1M ⊂ T ∗M ⊗C. Since
M is Kähler this isometry takes the Levi-Cività connection of TM to the
unique anti-holomorphic Hermitian connection ∇z on T ∗0,1M . Then S :=
Λ(T ∗0,1M) is a Dirac bundle, when endowed with a Clifford multiplication
similar to that of case b), via the above-said complex isometry, and with the
exterior product connection induced by, and extending, ∇z [B].

d) If M is a spin manifold [LM] then S can be taken to be the spinor bundle
Σ(M) of M . To be more specific, for a spin manifold the principal SO(n)-
bundle PSO(M) of oriented frames in TM lifts to a principal Spin-bundle
PSpin(M), equivariantly with respect to the 2-cover map Spin(n) −→ SO(n).
The spinor bundle Σ(M) is then the fiber product Σ(M) := PSpin(M) ×µ ∆,
where ∆ is an irreducible representation of the Euclidean Clifford algebra on n
generators Cln ⊗C and µ is the unitary representation µ : Spin(n) −→ U(∆)
induced by the left multiplication with elements of Spin(n) ⊂ Cln ⊗ C. We
get then the compatible connection ∇Spin of Σ(M) by lifting the Riemannian
connection on PSO(M) to PSpin(M), via the Lie algebra isomorphism so(n) '
spin(n).

e) If S is a Dirac bundle and F is any Hermitian bundle over M , equipped
with a metric connection ∇F , then the twisted bundle S ⊗ F is naturally a
Dirac bundle, with Clifford multiplication induced by that of S and connection
∇S⊗F := ∇S ⊗ Id+ Id⊗∇E .

Any Dirac bundle S generates a distinguished differential operator DS :
C∞(M,S) −→ C∞(M,S), the generalized Dirac operator, defined as follows:
If m : T ∗M ⊗ S −→ S denotes the restriction to T ∗M (metrically identified
with TM) of the Clifford action · of Cl(M) on S, then DS = m◦∇S . Locally,
DS admits the representation

DS =

n∑
j=1

ej ·∇Sej ,

where as usual (e1, e2, . . . , en) is a local orthonormal frame in TM .
Since M is complete, DS with domain C∞cpt(M,S) is an essentially self-

adjoint first order elliptic differential operator in L2(M,S) [GL].
Clearly, the Dirac operator associated to S = Λ(T ∗M)⊗C (case b) above)

is d + d∗, where d is the exterior differential and d∗ its formal adjoint, as in
section 2.

In case c), when M is a Kähler manifold and S = Λ(T ∗0,1M) the Dirac

operator becomes
√

2(∂ + ∂
∗
), where ∂ is the Dolbeault operator and ∂

∗
its

formal adjoint [B].
On a spin manifold M the Dirac operator associated to the spinor bundle

Σ(M) of case d) is called the classical Dirac operator.
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For the square of a generalized Dirac operator DS the following Bochner-
Witzenböck formula holds true [GL],

D2
S =

(
∇S
)∗∇S + RS ,

where RS is the Hermitian curvature bundle morphism acting on S according
to the formula

RS =
∑
j<k

ej · ek ·RSej ,ek , RSej ,ek = [∇Sej ,∇
S
ek

]−∇S[ej ,ek].

In case b), RΛ(T∗M)⊗C preserves Λp(T ∗M)⊗C and evidently,
RΛ(T∗M)⊗C|Λ0(T∗M)⊗C = 0.

In case d), RΣ(M) = k/4, where k is the scalar curvature of the spin
manifold M (Lichnerowicz’s theorem [LM]).

In case e), RS⊗F can be written as

RS⊗F = RS ⊗ Id+
∑
j<k

ej · ek ·⊗RFej ,ek . (6)

If F = Ca, the trivial bundle M × C equipped with the metric connection
∇a associated to some real 1-form a ∈ Ω1(M,R), as in the introduction, then
S ⊗Ca = S, and so (6) becomes RS⊗Ca = RS + iρa·, where ρa is the global
section of Cl(M) given by

ρa =
∑
j<k

Raej ,ekejek, Raej ,ek = ej(a(ek))− ek(a(ej))− a([ej , ek]). (7)

It is elementary to see that under the linear isometry Λ(T ∗M) ' Cl(M)
explained at case b) above, ρa ∈ C∞(M,Cl(M)) is the image of the real 2-form
B = da ∈ Ω2(M,R).

Finally, if S = Λ(T ∗M)⊗C and F = Ca, then ∇(Λ(T∗M)⊗C)⊗Ca = ∇LC,a,
in the notation of section 2, cf. (3). The connection Laplacian (∇LC,a)∗∇LC,a

can then be called an exterior form magnetic Schrödinger operator, since it
restricts to Ha on Ω0(M,C).

4. Our results

We are now ready to state and prove an abstract discreteness criterion for
certain Ha’s and, as an application, supply a proof to the theorem given in
the introduction.

Proposition 2. Suppose that are given a non-compact Riemannian manifold
(M, g), a real 1-form a ∈ Ω1(M,R) with associated scalar Schrödinger opera-
tor Ha, and a generalized Dirac bundle S over M with Clifford multiplication
·, compatible connection ∇S, and Dirac operator DS.
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In addition, suppose that there exists a ∇S-parallel global section σ ∈
C∞(M,S) such that

lim
x→∞

〈iρa · σ, σ〉 = −∞, (8)

where ρa is the global section of Cl(M) given by (7). Then the magnetic
Schrödinger operator Ha has discrete spectrum.

Proof. Consider the twisted Dirac bundle S ⊗ Ca and its Dirac operator
DS⊗Ca

. We have the Bochner-Weitzenböck formula

D2
S⊗Ca

=
(
∇S⊗Ca

)∗∇S⊗Ca + RS + iρa·,

which will be applied to sections of type φσ = σ ⊗ φ ∈ C∞cpt(M,S ⊗Ca), for
arbitrary φ ∈ C∞cpt(M,C).

Therefore,(
D2
S⊗Ca

(φσ), φσ
)

=
(
∇S⊗Caσ ⊗ φ,∇S⊗Caσ ⊗ φ

)
+
(
φRSσ, ρσ

)
+(iφρa · σ, φσ) .

(9)
However, ∇S⊗Caσ⊗φ = ∇Sσ⊗φ+σ⊗daφ = σ⊗daφ, since σ is∇S-parallel.

For the same reason, RSσ = 0. By the hypothesis (8), σ is non-trivial, and
since ∇S is a metric connection, 〈σ, σ〉 is a (positive) constant function on M .
By scaling σ appropriately we can assume that 〈σ, σ〉 = 1.

Consequently,
(
∇S⊗Caσ ⊗ φ,∇S⊗Caσ ⊗ φ

)
= (σ ⊗ daφ, σ ⊗ daφ) =∫

M
〈σ, σ〉〈daφ, daφ〉dvol =

∫
M
〈daφ, daφ〉dvol = (Haφ, φ).

Equation (9) now becomes

||DS⊗Ca(φσ)||2 = (Haφ, φ) + (〈iρa · σ, σ〉φ, φ) ,

which implies
(Haφ, φ) ≥ (−〈iρa · σ, σ〉φ, φ) .

The result follows by applying Proposition 1 to the function f = −i〈ρa ·
σ, σ〉, in the presence of the hypothesis (8).

A successful application of the above proposition rests obviously on the
ability of finding Dirac bundles with non-trivial parallel sections σ for which
〈ρa·σ, σ〉 can be effectively computed. This is indeed the case with the theorem
stated in the introduction.

Proof of the Theorem. For a Kähler manifold of complex dimension m, n =
2m. If ω is the Kähler form inducing the Riemannian metric g and if J is the
integrable complex structure on TM then there is a local orthonormal frame
(e1, Je1, e2, Je2, . . . , em, Jem) in TM such that ω = e∗1 ∧ (Je1)∗ + e∗2 ∧ (Je2)∗ +
· · ·+e∗m∧(Jem)∗. Expanding on the discussion on Kähler manifolds initiated in
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section 3, case c), T ∗0,1M is the space dual to T 0,1M := {v ∈ T ∗M⊗C | Jv =
−iv}. Since a local orthonormal basis of T 0,1M is {ε1, ε2, . . . , εm}, εj :=
1√
2
(ej + iJej), a local orthonormal basis of T ∗0,1M will be {ε1∗, ε2∗, . . . , εm∗},

with εj
∗ := 1√

2

(
e∗j − i(Jej)∗

)
. So, for the Dirac bundle Λ(T ∗0,1M) a local

orthonormal basis for Λp(T ∗0,1M) is {εJ∗}J , εJ
∗ = εj1

∗ ∧ εj2∗ ∧ . . . εjp∗, J =
(j1, j2, . . . , jp) p-multi-index.

The Clifford multiplication in Λ(T ∗0,1M) is then implemented by setting

ej· = εj
∗ ∧ − εjy , (Jej) · = i (εj

∗ ∧+ εjy) , j = 1, 2, . . . ,m. (10)

In preparation for applying proposition 2 notice that σ := 1 ∈
C∞(M,Λ0(T ∗0,1M)) is a parallel section of Λ(T ∗0,1M)). An elementary cal-
culation based on (10) and (7) shows now that

〈iρa · σ, σ〉 =

m∑
j=1

Raej ,Jej .

The theorem follows from proposition 2 and the hypothesis (1), since a =∑m
j=1 a(ej)e

∗
j+
∑m
j=1 a(Jej)(Jej)

∗ implies 〈da, ω〉 =
∑m
j=1R

a
ej ,Jej

= 〈iρa·σ, σ〉.
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