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Strong convergence of a hybrid method for

pseudomonotone variational inequalities and

fixed point problems

Xin Yu, Yonghong Yao and Yeong-Cheng Liou

Abstract

In this paper, we suggest a hybrid method for finding a common

element of the set of solution of a pseudomonotone, Lipschitz-continuous

variational inequality problem and the set of common fixed points of

an infinite family of nonexpansive mappings. The proposed iterative

method combines two well-known methods: extragradient method and

CQ method. We derive a necessary and sufficient condition for the

strong convergence of the sequences generated by the proposed method.

1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let C be a nonempty closed convex subset of H. Let A : C → H be a
nonlinear operator. By definition, the variational inequality problem VI(C,A)
is to find u ∈ C such that

(VI(C,A)): 〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of the variational inequality is denoted by Ω.
Variational inequality theory has emerged as an important tool in studying

a wide class of obstacle, unilateral and equilibrium problems, which arise in
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several branches of pure and applied sciences in a unified and general frame-
work. Several numerical methods have been developed for solving variational
inequalities and related optimization problems, see [1], [8], [9],[11]-[14],[21]-
[24], [28]-[31] and the references therein. Let us start with Korpelevich’s ex-
tragradient method which was introduced by Korpelevich [13] in 1976 and
which generates a sequence {xn} via the recursion:

{

yn = PC [xn − λAxn],

xn+1 = PC [xn − λAyn], n ≥ 0,
(1)

where PC is the metric projection from Rn onto C, A : C → H is a monotone
operator and λ is a constant. Korpelevich [13] proved that the sequence {xn}
converges strongly to a solution of V I(C,A). Note that the setting of the
problem is the Euclidean space Rn.

Korpelevich’s extragradient method has extensively been studied in the lit-
erature for solving a more general problem that consists of finding a common
point that lies in the solution set of a variational inequality and the set of fixed
points of a nonexpansive mapping. This type of problem aries in various the-
oretical and modeling contexts, see e.g., [2],[4]-[7],[15],[25],[26] and references
therein. Especially, Nadezhkina and Takahashi [17] introduced the following
iterative method which combines Korpelevich’s extragradient method and a
CQ method:

x0 = x ∈ C,

yn = PC [xn − λnAxn],

zn = αnxn + (1− αn)SPC [xn − λnAyn],

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn∩Qn
x, n ≥ 0, n ≥ 0,

where PC is the metric projection from H onto C, A : C → H is a monotone
k-Lipschitz-continuous mapping, S : C → C is a nonexpansive mapping, {λn}
and {αn} are two real number sequences. They proved the strong convergence
of the sequences {xn}, {yn} and {zn} to the same element in Fix(S) ∩ Ω.
We note that Nadezhkina and Takahashi [17] employed the monotonicity and
Lipschitz-continuity of A to define a maximal monotone operator T as follows:

Tv =

{

Av +NCv, if v ∈ C,

∅, if v /∈ C.

where NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C} is the normal cone to C at
v ∈ C (see, [19]). However, if the mapping A is a pseudomonotone Lipschitz-



STRONG CONVERGENCE OF A HYBRID METHOD FOR PSEUDOMONOTONE

VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS 491

continuous, then T is not necessarily a maximal monotone operator. This fact
implies that the approach used in [17] cannot be applied. To overcome this
difficulty, Ceng, Teboulle and Yao [3] suggested a new iterative method as
follows:

yn = PC [xn − λnAxn],

zn = αnxn + (1− αn)SnPC [xn − λnAyn],

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},

find xn+1 ∈ Cn such that

〈xn − xn+1 + en − σnAxn+1, xn+1 − x〉 ≥ −ǫn, ∀x ∈ Cn,

where A : C → H is a pseudomonotone, k-lipschitz-continuous and (w, s)-
sequentially-continuous mapping, {Si}

N
i=1 : C → C are N nonexpansive map-

pings. Under some mild conditions, they proved that the sequences {xn}, {yn}

and {zn} converge weakly to the same element of
⋂N

i=1 Fix(Si)∩Ω if and only
if lim infn〈Axn, x − xn〉 ≥ 0, ∀x ∈ C. Note that Ceng, Teboulle and Yao’s
method has only weak convergence. So, we may ask of whether i) a strong
convergence property is available, ii) a denumerable family of maps (Si; i ≥ 1)
is allowed.

Motivated and inspired by the works of Nadezhkina and Takahashi [17]
and Ceng, Teboulle and Yao [3], in this paper we suggest a hybrid method
for finding a common element of the set of solution of a pseudomonotone,
Lipschitz-continuous variational inequality problem and the set of common
fixed points of an infinite family of nonexpansive mappings. The proposed
iterative method combines two well-known methods: extragradient method
and CQ method. We derive a necessary and sufficient condition for the strong
convergence of the sequences generated by the proposed method.

2 Preliminaries

In this section, we will recall some basic notations and collect some conclusions
that will be used in the next section.

Let C be a nonempty closed convex subset of a real Hilbert space H. A
mapping A : C → H is called monotone if

〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ C.

A mapping A : C → H is called pseudomonotone if, for all u, v ∈ C,

〈Au, v − u ≥ 0 ⇒ 〈Av, v − u〉 ≥ 0.

It is clear that if a mapping A is monotone, then it is pseudomonotone.
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Recall that a mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Denote by Fix(S) the set of fixed points of S; that is, Fix(S) = {x ∈ C :
Sx = x}.

It is well known that, for any u ∈ H, there exists a unique u0 ∈ C such
that

‖u− u0‖ = inf{‖u− x‖ : x ∈ C}.

We denote u0 by PC [u], where PC is called the metric projection of H onto
C. The metric projection PC of H onto C has the following basic properties:

(i) ‖PC [x]− PC [y]‖ ≤ ‖x− y‖ for all x, y ∈ H.

(ii) 〈x− PC [x], y − PC [x]〉 ≤ 0 for all x ∈ H, y ∈ C.

(iii) The property (ii) is equivalent to

‖x− PC [x]‖
2 + ‖y − PC [x]‖

2 ≤ ‖x− y‖, ∀x ∈ H, y ∈ C.

(iv) In the context of the variational inequality problem, the characterization
of the projection implies that

u ∈ Ω ⇔ u = PC [u− λAu], ∀λ > 0.

Recall that H satisfies the Opial condition [27]; i.e., for any sequence {xn}
with xn converges weakly to x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Si}

∞

i=1 be infinite family of nonexpansive mappings of C into itself and let
{ξi}

∞

i=1 be real number sequences such that 0 ≤ ξi ≤ 1 for every i ∈N. For
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any n ∈N, define a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = ξnSnUn,n+1 + (1− ξn)I,

Un,n−1 = ξn−1Sn−1Un,n + (1− ξn−1)I,

...

Un,k = ξkSkUn,k+1 + (1− ξk)I,

Un,k−1 = ξk−1Sk−1Un,k + (1− ξk−1)I,

...

Un,2 = ξ2S2Un,3 + (1− ξ2)I,

Wn = Un,1 = ξ1S1Un,2 + (1− ξ1)I. (2)

Such Wn is called the W -mapping generated by {Si}
∞

i=1 and {ξi}
∞

i=1.
We have the following crucial Lemmas 3.1 and 3.2 concerning Wn which

can be found in [20]. Now we only need the following similar version in Hilbert
spaces.

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S1, S2, · · · be nonexpansive mappings of C into itself such that
⋂

∞

n=1 Fix(Sn) is nonempty, and let ξ1, ξ2, · · · be real numbers such that 0 <
ξi ≤ b < 1 for any i ∈N. Then, for every x ∈ C and k ∈N, the limit
limn→∞ Un,kx exists.

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S1, S2, · · · be nonexpansive mappings of C into itself such that
⋂

∞

n=1 Fix(Sn) is nonempty, and let ξ1, ξ2, · · · be real numbers such that 0 <
ξi ≤ b < 1 for any i ∈ N . Then, Fix(W ) =

⋂

∞

n=1 Fix(Sn).

Lemma 2.3. (see [27]) Using Lemmas 2.1 and 2.2, one can define a mapping
W of C into itself as: Wx = limn→∞ Wnx = limn→∞ Un,1x, for every x ∈ C.
If {xn} is a bounded sequence in C, then we have

lim
n→∞

‖Wxn −Wnxn‖ = 0.

We also need the following well-known lemmas for proving our main results.

Lemma 2.4. ([10]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let S : C → C be a nonexpansive mapping with Fix(S) 6= ∅. Then
S is demiclosed on C, i.e., if yn → z ∈ C weakly and yn − Syn → y strongly,
then (I − S)z = y.
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Lemma 2.5. ([16]) Let C be a closed convex subset of H. Let {xn} be a
sequence in H and u ∈ H. Let q = PC [u]. If {xn} is such that ωw(xn) ⊂ C
and satisfies the condition

‖xn − u‖ ≤ ‖u− q‖ for all n.

Then xn → q.

We adopt the following notation:

• For a given sequence {xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of
{xn}; that is,

ωw(xn) := {x ∈ H : {xnj
} converges weakly to x for some subsequence {nj} of {n}}.

• xn ⇀ x stands for the weak convergence of (xn) to x;

• xn → x stands for the strong convergence of (xn) to x.

3 Main results

In this section we will state and prove our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a pseudomonotone, k-Lipschitz-continuous and
(w, s)-sequentially-continuous mapping and let {Sn}

∞

n=1 be an infinite family
of nonexpansive mappings of C into itself such that

⋂

∞

n=1 Fix(Sn) ∩ Ω 6= ∅.
Let x1 = x0 ∈ C. For x1 ∈ C, C1 = C, let {xn}, {yn}, {zn} and {Cn} be
sequences generated as:

yn = PCn
[xn − λnAxn],

zn = αnxn + (1− αn)WnPCn
[xn − λnAyn],

Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖}, (3)

xn+1 = PCn+1
[x0], n ≥ 1,

where {Wn;n ≥ 1} are W -mappings of (2). Assume that

(i) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);

(ii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} generated by (3) converge strongly to
the same point P⋂

∞

n=1
Fix(Sn)∩Ω[x0] if and only if lim infn〈Axn, x − xn〉 ≥ 0,

∀x ∈ C.
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The proof will be divided into several conclusions. Assume in the sequel
that all assumptions of Theorem 3.1 are satisfied.

Conclusion 3.2. (1) Every Cn is closed and convex, n ≥ 1;

(2)
⋂

∞

n=1 Fix(Sn) ∩ Ω ⊂ Cn+1, ∀n ≥ 1;

(3) {xn+1} is well-defined.

Proof. First we note that C1 = C is closed and convex. Assume that Ck is
closed and convex. From (3), we can rewrite Ck+1 as

Ck+1 = {z ∈ Ck : 〈z −
xk + zk

2
, zk − xk〉 ≥ 0}.

It is clear that Ck+1 is a half space. Hence, Ck+1 is closed and convex. By
induction, we deduce that Cn is closed and convex for all n ≥ 1. Next we
show that

⋂

∞

n=1 Fix(Sn) ∩ Ω ⊂ Cn+1, ∀n ≥ 1.
Set tn = PCn

[xn − λAyn] for all n ≥ 1. Pick up u ∈
⋂

∞

n=1 Fix(Sn) ∩ Ω.
From property (iii) of PC , we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖
2

= ‖xn − u‖2 − ‖xn − tn‖
2 + 2λn〈Ayn, u− tn〉

= ‖xn − u‖2 − ‖xn − tn‖
2 + 2λn〈Ayn, u− yn〉+ 2λn〈Ayn, yn − tn〉.(4)

Since u ∈ Ω and yn ∈ Cn ⊂ C, we get

〈Au, yn − u〉 ≥ 0.

This together with the pseudomonotonicity of A imply that

〈Ayn, yn − u〉 ≥ 0. (5)

Combine (4) with (5) to deduce

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − tn‖
2 + 2λn〈Ayn, yn − tn〉

= ‖xn − u‖2 − ‖xn − yn‖ − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖
2

+2λn〈Ayn, yn − tn〉

= ‖xn − u‖2 − ‖xn − yn‖
2 − ‖yn − tn‖

2

+2〈xn − λnAyn − yn, tn − yn〉. (6)

Note that yn = PCn
[xn − λnAxn] and tn ∈ Cn. Then, by using the property

(ii) of PC , we have

〈xn − λnAxn − yn, tn − yn〉 ≤ 0.
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Hence,

〈xn − λnAyn − yn, tn − yn〉 = 〈xn − λnAxn − yn, tn − yn〉+ 〈λnAxn − λnAyn, tn − yn〉

≤ 〈λnAxn − λnAyn, tn − yn〉

≤ λnk‖xn − yn‖‖tn − yn‖. (7)

From (6) and (7), we get

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖
2 − ‖yn − tn‖

2 + 2λnk‖xn − yn‖‖tn − yn‖

≤ ‖xn − u‖2 − ‖xn − yn‖
2 − ‖yn − tn‖

2 + λ2
nk

2‖xn − yn‖
2 + ‖yn − tn‖

2

= ‖xn − u‖2 + (λ2
nk

2 − 1)‖xn − yn‖
2 (8)

≤ ‖xn − u‖2.

Therefore, from (8), together with zn = αnxn + (1− αn)Wntn and u = Wnu,
we get

‖zn − u‖2 = ‖αn(xn − u) + (1− αn)(Wntn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Wntn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ ‖xn − u‖2 + (1− αn)(λ
2
nk

2 − 1)‖xn − yn‖
2 (9)

≤ ‖xn − u‖2,

which implies that

u ∈ Cn+1.

Therefore,

∞
⋂

n=1

Fix(Sn) ∩ Ω ⊂ Cn+1, ∀n ≥ 1.

This implies that {xn+1} is well-defined.

Conclusion 3.3. The sequences {xn}, {zn} and {tn} are all bounded and
limn→∞ ‖xn − x0‖ exists.

Proof. From xn+1 = PCn+1
[x0], we have

〈x0 − xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Cn+1.

Since
⋂

∞

n=1 Fix(Sn) ∩ Ω ⊂ Cn+1, we also have

〈x0 − xn+1, xn+1 − u〉 ≥ 0, ∀u ∈
∞
⋂

n=1

Fix(Sn) ∩ Ω.
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So, for u ∈
⋂

∞

n=1 Fix(Sn) ∩ Ω, we have

0 ≤ 〈x0 − xn+1, xn+1 − u〉

= 〈x0 − xn+1, xn+1 − x0 + x0 − u〉

= −‖x0 − xn+1‖
2 + 〈x0 − xn+1, x0 − u〉

≤ −‖x0 − xn+1‖
2 + ‖x0 − xn+1‖‖x0 − u‖.

Hence,

‖x0 − xn+1‖ ≤ ‖x0 − u‖, ∀u ∈
∞
⋂

n=1

Fix(Sn) ∩ Ω, (10)

which implies that {xn} is bounded. From (8) and (9), we can deduce that
{zn} and {tn} are also bounded.

From xn = PCn
[x0] and xn+1 = PCn+1

[x0] ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (11)

Hence,

0 ≤ 〈x0 − xn, xn − xn+1〉

= 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −‖x0 − xn‖
2 + 〈x0 − xn, x0 − xn+1〉

≤ −‖x0 − xn‖
2 + ‖x0 − xn‖‖x0 − xn+1‖,

and therefore

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.

This together with the boundedness of the sequence {xn} imply that limn→∞ ‖xn−
x0‖ exists.

Conclusion 3.4. limn→∞ ‖xn+1−xn‖ = limn→∞ ‖xn−yn‖ = limn→∞ ‖xn−
zn‖ = limn→∞ ‖xn − tn‖ = 0 and limn→∞ ‖xn − Wnxn‖ = limn→∞ ‖xn −
Wxn‖ = 0.

Proof. It is well-known that in Hilbert spaces H, the following identity holds:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H.

Therefore,

‖xn+1 − xn‖
2 = ‖(xn+1 − x0)− (xn − x0)‖

2

= ‖xn+1 − x0‖
2 − ‖xn − x0‖

2 − 2〈xn+1 − xn, xn − x0〉.
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It follows from (11) that

‖xn+1 − xn‖
2 ≤ ‖xn+1 − x0‖

2 − ‖xn − x0‖
2.

Since limn→∞ ‖xn−x0‖ exists, we get ‖xn+1−x0‖
2−‖xn−x0‖

2 → 0. There-
fore,

lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have

‖zn − xn+1‖ ≤ ‖xn − xn+1‖,

and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖

≤ 2‖xn+1 − xn‖

→ 0.

For each u ∈
⋂

∞

n=1 Fix(Sn) ∩ Ω, from (9), we have

‖xn − yn‖
2 ≤

1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

≤
1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖xn−zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖xn − yn‖ → 0.

We note that

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖
2 − ‖yn − tn‖

2 + 2λnk‖xn − yn‖‖tn − yn‖

≤ ‖xn − u‖2 − ‖xn − yn‖
2 − ‖yn − tn‖

2 + ‖xn − yn‖
2 + λ2

nk
2‖yn − tn‖

2

= ‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖
2.

Hence,

‖zn − u‖2 ≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)(‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖
2)

= ‖xn − u‖2 + (1− αn)(λ
2
nk

2 − 1)‖yn − tn‖
2.

It follows that

‖tn − yn‖
2 ≤

1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖2 − ‖zn − u‖2)

≤
1

(1− αn)(1− λ2
nk

2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖

→ 0.
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Since A is k-Lipschitz-continuous, we have ‖Ayn −Atn‖ → 0. From

‖xn − tn‖ ≤ ‖xn − yn‖+ ‖yn − tn‖,

we also have
‖xn − tn‖ → 0.

Since zn = αnxn + (1− αn)Wntn, we have

(1− αn)(Wntn − tn) = αn(tn − xn) + (zn − tn).

Then,

(1− c)‖Wntn − tn‖ ≤ (1− αn)‖Wntn − tn‖

≤ αn‖tn − xn‖+ ‖zn − tn‖

≤ (1 + αn)‖tn − xn‖+ ‖zn − xn‖

and hence ‖tn −Wntn‖ → 0. Observe also that

‖xn −Wnxn‖ ≤ ‖xn − tn‖+ ‖tn −Wntn‖+ ‖Wntn −Wnxn‖

≤ ‖xn − tn‖+ ‖tn −Wntn‖+ ‖tn − xn‖

≤ 2‖xn − tn‖+ ‖tn −Wntn‖.

So, we have ‖xn − Wnxn‖ → 0. On the other hand, since {xn} is bounded,
from Lemma 2.3, we have limn→∞ ‖Wnxn −Wxn‖ = 0. Therefore, we have

lim
n→∞

‖xn −Wxn‖ = 0.

Proof. Proof of Theorem 3.1, continued. First, we prove the necessity. Sup-
pose that {xn}, {yn} and {zn} converge strongly to the same element ũ ∈
⋂

∞

n=1 Fix(Sn)∩Ω. From the (w, s)-sequential continuity of A, we have Axn →
Aũ. Observe that, for every x ∈ C,

|〈Axn, x− xn〉 − 〈Aũ, x− ũ〉| ≤ |〈Axn, x− xn〉 − 〈Aũ, x− xn〉|

+|〈Aũ, x− xn〉 − 〈Aũ, x− ũ〉|

= |〈Axn −Aũ, x− xn〉|+ |〈Aũ, ũ− xn〉|

≤ ‖Axn −Aũ‖‖x− xn‖+ |〈Aũ, ũ− xn〉|.

This implies that

lim inf
n→∞

〈Axn, x− xn〉 = lim
n→∞

〈Axn, x− xn〉 = 〈Aũ, x− ũ〉, ∀x ∈ C.
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Consequently, the necessity holds.
Next, we prove the sufficiency. By Conclusions 3.3-3.5, we have

lim
n→∞

‖xn −Wxn‖ = 0.

Furthermore, since {xn} is bounded, it has a subsequence {xnj
} which con-

verges weakly to some ũ ∈ C; hence, we have limj→∞ ‖xnj
− Wxnj

‖ = 0.
Note that, from Lemma 2.4, it follows that I −W is demiclosed at zero. Thus
ũ ∈ Fix(W ). Observe that, for every x ∈ C,

|〈Axnj
, x− xnj

〉 − 〈Aũ, x− ũ〉|

≤ |〈Axnj
, x− xnj

〉 − 〈Aũ, x− xnj
〉|+ |〈Aũ, x− xnj

〉 − 〈Aũ, x− ũ〉|

= |〈Axnj
−Aũ, x− xnj

〉|+ |〈Aũ, ũ− xnj
〉|

≤ ‖Axnj
−Aũ‖‖x− xnj

‖+ |〈Aũ, ũ− xnj
〉|.

From the (w, s)-sequential continuity of A, it follows that limj→∞ ‖Axnj
−

Aũ‖ = 0. Hence, we have

〈Aũ, x− ũ〉 = lim
j→∞

〈Axnj
, x− xnj

〉 ≥ lim inf
n→∞

〈Axn, x− xn〉 ≥ 0, ∀x ∈ C.

This implies that ũ ∈ Ω. Consequently, ũ ∈
⋂

∞

n=1 Fix(Sn) ∩ Ω. That is,
ωw(xn) ⊂

⋂

∞

n=1 Fix(Sn) ∩ Ω.
In (10), if we take u = P⋂

∞

n=1
Fix(Sn)∩Ω[x0], we get

‖x0 − xn+1‖ ≤ ‖x0 − P⋂
∞

n=1
Fix(Sn)∩Ω[x0]‖. (12)

Notice that ωw(xn) ⊂
⋂

∞

n=1 Fix(Sn) ∩ Ω. Then, (12) and Lemma 2.5 ensure
the strong convergence of {xn+1} to P⋂

∞

n=1
Fix(Sn)∩Ω[x0]. Consequently, {yn}

and {zn} also converge strongly to P⋂
∞

n=1
Fix(Sn)∩Ω[x0]. This completes the

proof.
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