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Stability of a Class of Nonlinear Neutral

Stochastic Differential Equations with Variable

Time Delays

Meng Wu, Nanjing Huang and Changwen Zhao

Abstract

In this paper, we study the mean square asymptotic stability of a

class of generalized nonlinear neutral stochastic differential equations

with variable time delays by using fixed point theory. An asymptotic

mean square stability theorem with a necessary and sufficient condi-

tion is proved which improves and generalizes some well-known results.

Finally, two examples are given to illustrate our results.

1 Introduction

It is well know that stochastic differential equation plays a very important
role in formulation and analysis in mechanical, electrical, control engineering,
neural network, economic and social sciences. Stochastic delay differential
equation, also known as stochastic functional differential equation, is a natu-
ral generalization of stochastic ordinary differential equation by allowing the
coefficients to depend on the past values. Recently, the studies of stochastic
differential equations have attracted the considerable attentions of scholars.
Many interesting results concerned with stochastic differential equations have
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been obtained over the last few years (see, for example, [13, 19] and the refer-
ences therein).

Liapunov’s direct method has been successfully used to investigate stabil-
ity problems in deterministic/stochastic differential equations and functional
differential equations for more than one hundred years. However, there are
many difficulties encountered in the study of stability by means of Liapunov’s
direct method. Recently, Burton and other scholars studied the stability for
deterministic systems by using fixed point theory which overcame the diffi-
culties encountered in the study of stability by means of Liapunov’s direct
method (see, for example, [2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 20, 23, 24] and the
references therein).

Very recently, many scholars have began to deal with the stability of
stochastic delay differential equations by using fixed point theory (see, for
example, [1, 2, 14, 15, 16, 17, 18, 21, 22]). More precisely, Appleby in [1] (also
see [2], pp.315-328) considered the almost sure stability for some classical
equations by splitting the stochastic differential equation into two equations,
one is a fixed stochastic problem and the other is a deterministic stability
problem with forcing function. Luo [14] studied the mean square asymptotic
stability for a class of linear scalar neutral stochastic differential equations by
means of fixed point theory. Furthermore, Luo [15, 16], Luo and Taniguchi [18]
used fixed point theory to study the exponential stability of mild solutions of
stochastic partial differential equations with bounded delays and with infinite
delays. Wu et al. [21, 22] applied fixed point theory to study the stability of a
general linear neutral stochastic differential equation and a half-linear neutral
stochastic differential equation with variable delays respectively. Luo [17] in-
vestigated the exponential stability for the classical stochastic Volterra-Levin
equations by using fixed point theory.

Motivated by the previous works mentioned above, in this paper, we study
the mean square asymptotic stability of a nonlinear neutral stochastic dif-
ferential equation with variable delays by applying fixed point theory. An
asymptotic mean square stability theorem with a necessary and sufficient con-
dition is proved. Two examples are given to illustrate our results. The results
presented in this paper improve and generalize the main results in [3], [14],
[23] and [24].

2 Main Results

Let (Ω,F, {Ft}t≥0, P ) be a complete filtered probability space andW (t) de-
note a one-dimensional standard Brownian motion defined on (Ω,F, {Ft}t≥0, P )
such that {Ft}t≥0 is the natural filtration ofW (t). Let a(t), b(t), b̄(t), c(t), e(t),
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q(t) ∈ C(R+, R) and τ(t), δ(t) ∈ C(R+, R+) with t− τ(t) → ∞ and t− δ(t) →
∞ as t → ∞. Here C(S1, S2) denotes the set of all continuous function
φ : S1 → S2 with the supremum norm ‖ · ‖.

Burton [3] and Zhang [23] studied the equation

x′(t) = −b̄(t)x(t− τ(t)) (1)

and proved the following theorems.
Theorem A. (Burton [3]) Suppose that τ(t) = r and there exists a con-

stant α < 1 such that
∫ t

t−r

|b̄(s+ r)|ds+

∫ t

0

|b̄(s+ r)|e−
∫

t

s
b̄(u+r)du

∫ s

s−r

|b̄(u+ r)|duds ≤ α

for all t ≥ 0 and
∫∞

0
b̄(s)ds = ∞. Then, for every continuous initial function

φ : [−r, 0] → R, the solution x(t) = x(t, 0, φ) of (1) is bounded and tends to
zero as t→ ∞.

Theorem B. (Zhang [23]) Suppose that τ is differentiable, the inverse
function g(t) of t− τ(t) exists, and there exists a constant α ∈ (0, 1) such that

for t ≥ 0, lim inft→∞

∫ t

0
b̄(g(s))ds > −∞ and

∫ t

t−τ(t)

|b̄(g(s))|ds+

∫ t

0

e−
∫

t

s
b̄(g(u))du|b̄(s)||τ ′(s)|ds

+

∫ t

0

e−
∫

t

s
b̄(g(u))du|b̄(g(s))|

∫ s

s−τ(s)

|b̄(g(v))|dvds ≤ α < 1. (2)

Then the zero solution of (1) is asymptotically stable if and only if
∫ t

0
b̄(g(s))ds

→ ∞, as t→ ∞.
Obviously, Theorem B improves Theorem A. Recently, Zhang [24] studied

the following half-linear equation

x′(t) = −a(t)x(t) + b(t)g(x(t− τ(t))) (3)

where g : R→ R is continuous and obtained Theorem C.
Theorem C. (Zhang [24]) Suppose that τ(t) ≥ 0 such that for t ≥ 0,

t − τ(t) → ∞ as t → ∞, and there exists a constant L > 0, for |x|, |y| ≤ L,

|g(x) − g(y)| ≤ |x − y| and q(0) = 0. For t > 0, lim inft→∞

∫ t

0
a(s)ds > −∞

and

sup
t≥0

∫ t

0

e−
∫

t

s
a(u)du|b(s)|ds < 1. (4)

Then the zero solution of (3) is asymptotically stable if and only if
∫ t

0
a(s)ds→

∞, as t→ ∞.
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Recently, Luo [14] considered a linear neutral stochastic differential equa-
tion

d[x(t)− q(t)x(t− τ(t))] = [a(t)x(t) + b(t)x(t− τ(t))]dt

+[c(t)x(t) + e(t)x(t− δ(t))]dW (t) (5)

and obtained Theorem D.
Theorem D. (Luo [14]) Let τ(t) be differentiable. Assume that there

exists a constant α ∈ (0, 1) and a continuous function h(t) : [0,∞) → R such

that for t ≥ 0, lim inft→∞

∫ t

0
h(s)ds > −∞ and

|q(t)|+

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|duds

+

∫ t

0

e−
∫

t

s
h(u)du|

(

a(s− τ(s)) + h(s− τ(s))
)

(1− τ ′(s))

+ b(s)− q(s)h(s)|ds+

∫ t

t−τ(t)

|a(s) + h(s)|ds

+

(∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|+ |e(s)|)2ds

)

1
2

≤ α < 1.

Then the zero solution of (5) is mean square asymptotically stable if and only

if
∫ t

0
h(s)ds→ ∞, as t→ ∞.

Very recently, Wu et al. [21, 22] generalized Theorems B, C, and D to
a general linear neutral stochastic differential equation and to a half-linear
neutral stochastic differential equation, respectively. In general, time delay
and system uncertainty are commonly encountered and are often sources of
instability (see [12]). Thus, it should be interesting to consider the nonlinear
stochastic differential equation and study the stability of nonlinear stochastic
differential equation with variable time delays.

In this paper, we consider a class of nonlinear neutral stochastic differential
equations,

d[x(t)− k
(

t, x(t− τ(t)
)

] = [a(t)x(t) + f
(

t, x(t), x(t− τ(t))
)

]dt

+[c(t)x(t) + g
(

t, x(t), x(t− δ(t))
)

]dW (t) (6)

with the initial condition

x(s) = φ(s) for s ∈ [m(0), 0],

where f, g : [0,∞) × R × R → R and k : [0,∞) × R → R are continuous,
φ ∈ C([m(0), 0], R), x : [m(0),∞)× Ω → R and

m(0) = min
{

inf{s− τ(s), s ≥ 0}, inf{s− δ(s), s ≥ 0}
}

≤ 0.
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If f
(

t, x(t), x(t− τ(t))
)

= b(t)x(t− τ(t)), g
(

t, x(t), x(t− δ(t))
)

= e(t)x(t−

δ(t)), k
(

t, x(t− τ(t)
)

= q(t)x(t− τ(t)), then it is easy to see that (6) reduces
to (5). Thus, (6) includes (1), (3)and (5) as special cases. And so, the main
aim of this paper is to generalize Theorems B, C and D to apply to (6).

For any φ ∈ C([m(0), 0], R), we define ‖φ‖ = sups∈[m(0),0] |φ(s)|. For each
λ > 0, we define C(λ) := {φ ∈ C([m(0), 0], R) : ‖φ‖ ≤ λ}. Denote by F the
Banach space of all F-adapted processes ψ(t, ω) : [m(0),∞) × Ω → R which
are almost surely continuous in t with norm

‖ψ‖F =

{

E
(

sup
s≥m(0)

∣

∣ψ(s, ω)
∣

∣

2)
}

1
2

.

Further, we define F (λ) = {ψ ∈ F : ‖ψ‖F ≤ λ} for each λ > 0. Let ‖ψ‖
[r,t]
F =

{

E(sups∈[r,t]

∣

∣ψ(s, ω)
∣

∣

2
)
}

1
2 for r < t. Then ‖ψ‖

[0,∞)
F =

{

E(sups≥0

∣

∣ψ(s, ω)
∣

∣

2
)
}

1
2 .

Theorem 2.1. Suppose that τ is differentiable, and there exist continuous
functions h(t) : [0,∞) → R, l(t),m(t), n(t) : [0,∞) → R+ and constants
L > 0, α ∈ (0, 1) such that

(i) lim inft→∞

∫ t

0
h(s)ds > −∞;

(ii) for any t ≥ 0,

n(t) +

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|duds

+

∫ t

0

e−
∫

t

s
h(u)du

(

|(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))|

+ l(s) +m(s) + |h(s)|n(s)

)

ds+

∫ t

t−τ(t)

|a(s) + h(s)|ds

+ 2

(∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|+ l(s) +m(s))2ds

)

1
2

≤ α < 1;

(iii) for any t ≥ 0,

|f(t, x, y)− f(t, x̄, ȳ)|
∨

|g(t, x, y)− g(t, x̄, ȳ)| ≤ l(t)|x− x̄|+m(t)|y − ȳ|

and

|k(t, x)− k(t, x̄)| ≤ n(t)|x− x̄|

for all x, x̄, y, ȳ ∈ F (L) with f(t, 0, 0) = g(t, 0, 0) = k(t, 0) = 0.



472 Meng Wu, Nanjing Huang and Changwen Zhao

Then the zero solution of (6) is mean square asymptotically stable if and only
if

∫ t

0

h(s)ds→ ∞ as t→ ∞. (7)

Proof. At first, we suppose that (7) holds. Choose δ > 0, δ < L such that

2δK + αL ≤ L, where K = supt≥0{e
−

∫
t

0
h(s)ds}. Let φ ∈ C(δ) and set

S =
{

x : [m(0),∞)× Ω → R
∣

∣x(t, ω) = φ(t) for t ∈ [m(0), 0],

x(t, ω) ∈ F (L) for t ≥ 0, E|x(t, ω)|2 → 0 as t→ ∞
}

.

Then it is easy to check that S is a closed subset of F . From the definitions
of ‖ · ‖ and ‖ · ‖F , for any x ∈ S and t > 0,

‖x‖F = max{‖φ‖, ‖x‖
[0,∞)
F } ≤ L. (8)

Define an operator P : S → S by (Px)(t) = φ(t) for t ∈ [m(0), 0] and for
t ≥ 0,

(Px)(t)

=

(

φ(0)− k
(

0, φ(−τ(0))
)

−

∫ 0

−τ(0)

(a(s) + h(s))φ(s)ds

)

e−
∫

t

0
h(s)ds

+ k
(

t, x(t− τ(t))
)

+

∫ t

t−τ(t)

(a(s) + h(s))x(s)ds

+

∫ t

0

e−
∫

t

s
h(u)du

(

(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))x(s− τ(s))

+ f
(

s, x(s), x(s− τ(s))
)

− h(s)k
(

s, x(s− τ(s))
)

)

ds

−

∫ t

0

e−
∫

t

s
h(u)duh(s)

(∫ s

s−τ(s)

(

a(u) + h(u)
)

x(u)du

)

ds

+

∫ t

0

e−
∫

t

s
h(u)du

(

c(s)x(s) + g
(

s, x(s), x(s− δ(s))
)

)

dW (s)

:=

5
∑

i=1

Ii(t). (9)

Now, we show the mean square continuity of P on [0,∞). Let x ∈ S, T1 > 0
and |r| be sufficiently small. Then

E|(Px)(T1 + r)− (Px)(T1)|
2 ≤ 5

5
∑

i=1

E|Ii(T1 + r)− Ii(T1)|
2.



STABILITY OF A CLASS OF NONLINEAR NEUTRAL STOCHASTIC

DIFFERENTIAL EQUATIONS WITH VARIABLE TIME DELAYS 473

It is easy to verify that

E|Ii(T1 + r)− Ii(T1)|
2 → 0, as r → 0, i = 1, 2, 3, 4.

From the last term I5 in (9), we have

E|I5(T1 + r)− I5(T1)|
2

= E

∣

∣

∣

∣

∫ T1

0

e−
∫

T1
s

h(u)du
(

e−
∫

T1+r

T1
h(u)du − 1

)

·
(

c(s)x(s) + g
(

s, x(s), x(s− δ(s))
)

)

dW (s)

+

∫ T1+r

T1

e−
∫

T1+r

s
h(u)du

(

c(s)x(s) + g
(

s, x(s), x(s− δ(s))
)

)

dW (s)

∣

∣

∣

∣

2

≤ 2E

∫ T1

0

e−2
∫

T1
s

h(u)du
∣

∣e−
∫

T1+r

T1
h(u)du − 1

∣

∣

2

·
∣

∣

∣c(s)x(s) + g
(

s, x(s), x(s− δ(s))
)

∣

∣

∣

2

ds

+ 2E

∫ T1+r

T1

e−2
∫

T1+r

s
h(u)du

∣

∣

∣
c(s)x(s) + g

(

s, x(s), x(s− δ(s))
)

∣

∣

∣

2

ds

→ 0, as r → 0.

Therefore, P is mean square continuous on [0,∞).

Next, we verify that ‖Px‖F ≤ L. As φ ∈ C(δ) and x ∈ S,

‖Px‖
[0,∞)
F =

{

E
(

sup
s≥0

∣

∣Px(s)
∣

∣

2)
}

1
2

=

{

E
(

sup
s≥0

∣

∣

5
∑

i=1

Ii(s)
∣

∣

2)
}

1
2

≤
5
∑

i=1

{

E
(

sup
s≥0

∣

∣Ii(s)
∣

∣

2)
}

1
2

. (10)

By condition (iii), we have

|f(t, x, y)|
∨

|g(t, x, y)| ≤ l(t)|x|+m(t)|y| and |k(t, x)| ≤ n(t)|x| (11)

for all x, y ∈ F (L). It follows from (9), (10), (11), condition (ii) and Doob’s
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Lp-inequality (see [11]) that

‖Px‖
[0,∞)
F

≤ sup
s≥0

{e−
∫

s

0
h(v)dv} ·

(

|φ(0)|+ n(0) · |φ(−τ(0))|

+

∫ 0

−τ(0)

|a(v) + h(v)| · |φ(v)|dv
)

+



E sup
s≥0

(

n(s) · |x(s− τ(s))|+

∫ s

s−τ(s)

|a(v) + h(v)| · |x(v)|dv

)2




1
2

+
(

E sup
s≥0

(

∫ s

0

e−
∫

s

v
h(u)du

(

|(a(v − τ(v)) + h(v − τ(v)))(1− τ ′(v))|

·|x(v − τ(v))|+ |f(v, x(v), x(v − δ(v)))|+ |h(v)||k(v, x(v − τ(v)))|
)

dv
)2) 1

2

+

(

E sup
s≥0

(

∫ s

0

e−
∫

s

v
h(u)du|h(v)|

(

∫ v

v−τ(v)

|a(u) + h(u)| · |x(u)|du
)

dv
)2
)

1
2

+2 sup
s≥0

(

E

∫ s

0

e−2
∫

s

v
h(u)du

(

|c(v)| · |x(v)|+ |g(v, x(v), x(v − δ(v)))|
)2
dv
)

1
2

≤ δK
(

1 + n(0) +

∫ 0

−τ(0)

|a(v) + h(v)|dv
)

+‖x‖F · sup
s≥0

{

n(s) +

∫ s

s−τ(s)

|a(v) + h(v)|dv +

∫ s

0

e−
∫

s

v
h(u)du

·
(

|(a(v − τ(v)) + h(v − τ(v)))(1− τ ′(v))|+ l(v) +m(v) + |h(v)|n(v)
)

dv

+

∫ s

0

e−
∫

s

v
h(u)du|h(v)|

(∫ v

v−τ(v)

|a(u) + h(u)|du

)

dv

+ 2

(∫ s

0

e−2
∫

s

v
h(u)du

(

|c(v)|+ l(v) +m(v)
)2
dv

)
1
2

}

≤ 2δK + αL ≤ L.

Further, from (8), we have

‖Px‖F = max{‖φ‖, ‖Px‖
[0,∞)
F } ≤ L.

Thirdly, we verify that E|(Px)(t)|2 → 0 as t → ∞. Since E|x(t)|2 → 0,
t− δ(t) → ∞ as t→ ∞, for each ǫ > 0, there exists a T1 > 0 such that s ≥ T1
implies E|x(s)|2 < ǫ and E|x(s − δ(s))|2 < ǫ. By condition (ii), for t ≥ T1,
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the last term I5 in (9) satisfies

E
∣

∣I5(t)
∣

∣

2

≤ E

∫ T1

0

e−2
∫

t

s
h(u)du

(

|c(s)| · |x(s)|+ l(s)|x(s)|+m(s)|x(s− δ(s))|
)2

ds

+ E

∫ t

T1

e−2
∫

t

s
h(u)du

(

|c(s)| · |x(s)|+ l(s)|x(s)|+m(s)|x(s− δ(s))|
)2

ds

≤
(

‖x‖
[m(0),T1]
F

)2
∫ T1

0

e−2
∫

t

s
h(u)du

(

|c(s)|+ l(s) +m(s)
)2

ds+ αǫ

≤ ‖x‖2F · e
−2

∫
t

T1
h(u)du

∫ T1

0

e−2
∫

T1
s

h(u)du
(

|c(s)|+ l(s) +m(s)
)2

ds+ αǫ

≤ L2α2e
−2

∫
t

T1
h(u)du

+ αǫ.

From (7), there exists T2 > T1 such that L2α2e
−2

∫
t

T1
h(u)du

< ǫ for t ≥ T2.

Thus, for t ≥ T2, E
∣

∣I5(t)
∣

∣

2
< ǫ + αǫ. This proves that E

∣

∣I5(t)
∣

∣

2
→ 0, as

t → ∞. Similarly, we can show that E
∣

∣Ii(t)
∣

∣

2
→ 0, i = 1, 2, 3, 4, as t → ∞.

Thus, E|(Px)(t)|2 → 0 as t→ ∞. Hence Px ∈ S.
Now we show that P : S → S is a contraction mapping. For any x, y ∈ S,

we have

‖Px− Py‖F

=
(

E sup
s≥m(0)

∣

∣(Px)(s)− (Py)(s)
∣

∣

2) 1
2

=

(

E sup
s≥0

∣

∣

∣

∣

k
(

s, x(s− τ(s))
)

− k
(

s, y(s− τ(s))
)

+

∫ s

s−τ(s)

(a(v) + h(v))(x(v)− y(v))dv +

∫ s

0

e−
∫

s

v
h(u)du

(

(a(v − τ(v))

+ h(v − τ(v)))(1− τ ′(v))(x(v − τ(v))− y(v − τ(v)))

+ f(v, x(v), x(v − τ(v)))− f(v, y(v), y(v − τ(v)))

− h(v)
(

k
(

v, x(v − τ(v))
)

− k
(

v, y(v − τ(v))
)

)

)

dv

−

∫ s

0

e−
∫

s

v
h(u)duh(v)

(∫ v

v−τ(v)

(a(u) + h(u))(x(u)− y(u))du

)

dv

+

∫ s

0

e−
∫

s

v
h(u)du

(

c(v)(x(v)− y(v)) + g(v, x(v), x(v − τ(v)))

− g(v, y(v), y(v − τ(v)))
)

dW (v)

∣

∣

∣

∣

2) 1
2
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≤ ‖x− y‖F · sup
s≥0

{

n(s) +

∫ s

s−τ(s)

|a(v) + h(v)|dv

+

∫ s

0

e−
∫

s

v
h(u)du|h(v)|

∫ v

v−τ(v)

|a(u) + h(u)|dudv +

∫ s

0

e−
∫

s

v
h(u)du

·
(

|(a(v − τ(v)) + h(v − τ(v)))(1− τ ′(v))|+ l(v) +m(v) + |h(v)|n(v)
)

dv

+ 2

(∫ s

0

e−2
∫

s

v
h(u)du(|c(v)|+ l(v) +m(v))2dv

)
1
2

}

≤ α‖x− y‖F .

Therefore, P : S → S is contraction mapping and so P has a fixed point x ∈ S,
which is a solution of (6) with x(s) = φ(s) on [m(0), 0] and E|x(t)|2 → 0 as
t→ ∞.

To obtain the mean square asymptotic stability, we need to show that the
zero solution of (6) is mean square stable. From (ii), we can choose ∆ > 0
such that α2 +∆ < 1. Thus, we can find a constant N > 0 such that

(1 +
1

N
)

(

n(t) +

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|duds

+

∫ t

t−τ(t)

|a(s) + h(s)|ds+

∫ t

0

e−
∫

t

s
h(u)du

·
(

|(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))|+ l(s) +m(s) + |h(s)|n(s)
)

ds

)2

+ 4(1 +N)

∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|+ l(s) +m(s))2ds ≤ α2 +∆ < 1. (12)

Let ǫ > 0 and ǫ < L be given and choose δ0 > 0 and δ0 < ǫ satisfying the
following condition

4(1 +N)δ20K
2 + (α2 +∆)ǫ < ǫ,

whereN is defined in (12). If x(t) = x(t, 0, φ) is a solution of (6) with ‖φ‖ < δ0,
then x(t) = (Px)(t) which is defined in (9). We claim that E|x(t)|2 < ǫ for
all t ≥ 0. Notice that x(t) = φ(t) for t ∈ [m(0), 0], so E|x(t)|2, ‖φ(t)‖2 < ǫ for
t ∈ [m(0), 0]. If there exists t∗ > 0 such that E|x(t∗)|2 = ǫ and E|x(t)|2 < ǫ
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for t ∈ [m(0), t∗), then (9) and (12) imply that

E|x(t∗)|2

≤ (1 +N)‖φ‖2
(

1 + n(0) +

∫ 0

−τ(0)

|a(s) + h(s)|ds

)2

e−2
∫

t
∗

0
h(u)du

+ǫ(1 +
1

N
)
(

|q(t∗)|+

∫ t∗

0

e−
∫

t
∗

s
h(u)du

(

∫ s

s−τ(s)

|a(u) + h(u)|du
)

|h(s)|ds

+

∫ t∗

t∗−τ(t∗)

|a(s) + h(s)|ds+

∫ t∗

0

e−
∫

t
∗

s
h(u)du

·
(

|(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))|+ l(s) +m(s) + |h(s)|n(s)
)

ds
)2

+ǫ

∫ t∗

0

e−2
∫

t
∗

s
h(u)du(|c(s)|+ l(s) +m(s))2ds

≤ (1 +N)δ20
(

1 + n(0) +

∫ 0

−τ(0)

|a(s) + h(s)|ds
)2
e−2

∫
t
∗

0
h(u)du + (α2 +∆)ǫ

< ǫ, (13)

which contradicts the definition of t∗. Thus, the zero solution of (6) is mean
square asymptotically stable if (7) holds.

Conversely, we suppose that (7) fails. From condition (i), there exists a

sequence {tn} with tn → ∞ as n→ ∞ such that lim
n→∞

∫ tn

0
h(u)du = ζ for some

ζ ∈ R. Then, we can choose a constant J > 0 satisfying
∫ tn

0
h(u)du ∈ [−J, J ]

for all n ≥ 1. Denote

ω(s) := |(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))|

+ l(s) +m(s) + |h(s)|n(s) + |h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|du,

for all s ≥ 0. From condition (ii), we have

∫ tn

0

e−
∫

tn

s
h(u)duω(s)ds ≤ α,

which implies

∫ tn

0

e
∫

s

0
h(u)duω(s)ds ≤ αe

∫
tn

0
h(u)du ≤ eJ .

Therefore, the sequence {
∫ tn

0
e
∫

s

0
h(u)duω(s)ds} has a convergent subsequence.
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Without loss of generality, we can assume that lim
n→∞

∫ tn

0
e
∫

s

0
h(u)duω(s)ds =

γ for some γ > 0. Let m be an integer such that

∫ tn

tm

e
∫

s

0
h(u)duω(s)ds <

δ1
8K

(14)

for all n ≥ m, where 0 < δ1 < 1 satisfies 8δ21K
2e2J + (α2 +∆) < 1.

Now, we consider the solution x(t) = x(t, tm, φ) of (6) with ‖φ(tm)‖ = δ1
and ‖φ(t)‖ < δ1 for t < tm. By the similar method in (13), we have E|x(t)|2 <
1 for t ≥ tm. We may choose φ so that

G(tm) := φ(tm)− k
(

tm, φ(tm − τ(tm))
)

−

∫ tm

tm−τ(tm)

(a(s) + h(s))φ(s)ds ≥
δ1
2
. (15)

It follows from (9), (14) and (15) with x(t) = (Px)(t) that for n ≥ m,

E

∣

∣

∣

∣

x(tn)− k
(

tn, x(tn − τ(tn))
)

−

∫ tn

tn−τ(tn)

(a(s) + h(s))x(s)ds

∣

∣

∣

∣

2

≥ G2(tm)e−2
∫

tn

tm
h(u)du − 2G(tm)e−

∫
tn

tm
h(u)du

∫ tn

tm

e−
∫

tn

s
h(u)duω(s)ds

≥ G(tm)e−2
∫

tn

tm
h(u)du

(

G(tm)− 2e−
∫

tm

0
h(u)du

∫ tn

tm

e
∫

s

0
h(u)duω(s)ds

)

≥
δ1
2
e−2

∫
tn

tm
h(u)du

(

δ1
2

− 2K

∫ tn

tm

e
∫

s

0
h(u)duω(s)ds

)

≥
δ21
8
e−2J > 0. (16)

If the zero solution of (6) is mean square asymptotic stable, then E|x(t)|2 =
E|x(t, tm, φ)|

2 → 0 as t → ∞. Since tn − τ(tn) → ∞, tn − δ(tn) → ∞ as
n→ ∞ and conditions (ii) and (iii) hold, then

E
∣

∣x(tn)− k
(

tn, x(tn − τ(tn))
)

−

∫ tn

tn−τ(tn)

(a(s) + h(s))x(s)ds
∣

∣

2
→ 0,

as n → ∞ which contradicts (16). Thus, (7) is necessary for Theorem 2.1.
This completes the proof.

Remark 2.1. Theorem 2.1 is still true if condition (ii) is satisfied for t ≥ ta
with some ta ∈ R+.
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Remark 2.2. The method in this paper can be extended to the following non-
linear neutral stochastic differential equation with several variable delays:

d
(

x(t)−

n
∑

i=1

ki
(

t, x(t− τi(t)
)

)

=
(

a(t)x(t) +
n
∑

i=1

fi
(

t, x(t), x(t− τi(t))
)

)

dt

+
(

c(t)x(t) +

m
∑

j=1

gj
(

t, x(t), x(t− δj(t))
)

)

dW (t).

Choosing h(t) ≡ −a(t) in Theorem 2.1, we have the following result.

Corollary 2.1. Suppose that τ is differential, and there exist continuous func-
tions l(t),m(t), n(t) : [0,∞) → R+ and constants L > 0, α ∈ (0, 1) such that

(i′) lim inft→∞

∫ t

0
−a(s)ds > −∞;

(ii′) for any t ≥ 0,

n(t) +

∫ t

0

e
∫

t

s
a(u)du

(

l(s) +m(s) + |a(s)|n(s)
)

ds

+ 2

(∫ t

0

e2
∫

t

s
a(u)du(|c(s)|+ l(s) +m(s))2ds

)

1
2

≤ α < 1;

(iii′) for any t ≥ 0,

|f(t, x, y)− f(t, x̄, ȳ)|
∨

|g(t, x, y)− g(t, x̄, ȳ)| ≤ l(t)|x− x̄|+m(t)|y − ȳ|

and
|k(t, x)− k(t, x̄)| ≤ n(t)|x− x̄|

for all x, x̄, y, ȳ ∈ F (L) with f(t, 0, 0) = g(t, 0, 0) = k(t, 0) = 0.

Then the zero solution of (6) is mean square asymptotically stable if and only

if
∫ t

0
a(s)ds→ ∞ as t→ ∞.

Now, we consider a special case of nonlinear neutral stochastic differential
equation (6) that

d[x(t)− k
(

t, x(t− τ(t)
)

]

= [a(t)x(t) + b(t)x(t− τ(t)) + f
(

t, x(t), x(t− τ(t))
)

]dt

+ [c(t)x(t) + e(t)x(t− δ(t)) + g
(

t, x(t), x(t− δ(t))
)

]dW (t), (17)



480 Meng Wu, Nanjing Huang and Changwen Zhao

Note that (17) reduces to (5) when f
(

t, x(t), x(t − τ(t))
)

≡ g
(

t, x(t), x(t −

δ(t))
)

≡ 0 and k
(

t, x(t− τ(t)
)

= q(t)x(t− τ(t)). Then, we have the following
results.

Theorem 2.2. Suppose that τ is differentiable, and there exist continuous
functions h(t) : [0,∞) → R, l(t),m(t), n(t) : [0,∞) → R+ and constants
L > 0, α ∈ (0, 1) such that

(i◦) lim inft→∞

∫ t

0
h(s)ds > −∞;

(ii◦) for any t ≥ 0,

n(t) +

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|duds

+

∫ t

t−τ(t)

|a(s) + h(s)|ds+

∫ t

0

e−
∫

t

s
h(u)du

(

l(s) +m(s) + |h(s)|n(s)

+ |(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s)) + b(s)|
)

ds

+ 2

(∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|+ |e(s)|+ l(s) +m(s))2ds

)

1
2

≤ α < 1;

(iii◦) for any t ≥ 0,

|f(t, x, y)− f(t, x̄, ȳ)|
∨

|g(t, x, y)− g(t, x̄, ȳ)| ≤ l(t)|x− x̄|+m(t)|y − ȳ|

and
|k(t, x)− k(t, x̄)| ≤ n(t)|x− x̄|

for all x, x̄, y, ȳ ∈ F (L) with f(t, 0, 0) = g(t, 0, 0) = k(t, 0) = 0.

Then the zero solution of (17) is mean square asymptotically stable if and only

if
∫ t

0
h(s)ds→ ∞ as t→ ∞.

The proof is analogous to that of Theorem 2.1 and so we omit it here.

Remark 2.3. Theorem 2.2 improves Theorem D under different conditions.

Let h(t) ≡ −b(p(t)) in Theorem 2.2. Then we have the following corollary.

Corollary 2.2. Suppose that τ is differential, the inverse function p(t) of
t− τ(t) exists, and there exist continuous functions l(t),m(t), n(t) : [0,∞) →
R+ and constants L > 0, α ∈ (0, 1) such that

(i∗) lim inft→∞

∫ t

0
−b(p(s))ds > −∞;
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(ii∗) for any t ≥ 0,

n(t) +

∫ t

0

e
∫

t

s
b(p(u))du|b(p(s))|

∫ s

s−τ(s)

|a(u)− b(p(u))|duds

+

∫ t

t−τ(t)

|a(s)− b(p(s))|ds+

∫ t

0

e
∫

t

s
b(p(u))du ·

(

l(s) +m(s)

+ |b(p(s))|n(s) + |(a(s− τ(s))− b(s))(1− τ ′(s)) + b(s)|
)

ds

+ 2

(∫ t

0

e2
∫

t

s
b(p(u))du(|c(s)|+ |e(s)|+ l(s) +m(s))2ds

)

1
2

≤ α < 1;

(iii∗) for any t ≥ 0,

|f(t, x, y)− f(t, x̄, ȳ)|
∨

|g(t, x, y)− g(t, x̄, ȳ)| ≤ l(t)|x− x̄|+m(t)|y − ȳ|

and

|k(t, x)− k(t, x̄)| ≤ n(t)|x− x̄|

for all x, x̄, y, ȳ ∈ F (L) with f(t, 0, 0) = g(t, 0, 0) = k(t, 0) = 0.

Then the zero solution of (17) is mean square asymptotically stable if and only

if
∫ t

0
b(p(s))ds→ ∞ as t→ ∞.

Remark 2.4. When k(t, x(t− τ(t))) ≡ f(t, x(t), x(t− τ(t))) ≡ g(t, x(t), x(t−
δ(t))) ≡ a(t) ≡ c(t) ≡ e(t) ≡ 0 and b(t) ≡ −b̄(t), we know that Corollary 2.2
still holds if the condition (ii∗) is replaced by (2). Therefore, Corollary 2.2 is
a generalization of Theorem B.

Now, we consider another special case of nonlinear neutral stochastic dif-
ferential equation (6) that

dx(t) = −a(t)x(t) + f
(

t, x(t), x(t− τ(t))
)

dt, (18)

Note that (18) reduces to (3) when f
(

t, x(t), x(t− τ(t))
)

≡ b(t)g
(

x(t− τ(t))
)

.
Then, we have the following result.

Theorem 2.3. Suppose that τ is differential, and there exist continuous func-
tions h(t) : [0,∞) → R, l(t),m(t) : [0,∞) → R+ and constants L > 0,
α ∈ (0, 1) such that

(i⋆) lim inft→∞

∫ t

0
h(s)ds > −∞;
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(ii⋆) for any t ≥ 0,

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|h(u)− a(u)|duds

+

∫ t

t−τ(t)

|h(s)− a(s)|ds+

∫ t

0

e−
∫

t

s
h(u)du

(

l(s) +m(s)

+ |(h(s− τ(s))− a(s− τ(s)))(1− τ ′(s))|
)

ds ≤ α < 1;

(iii⋆) for any t ≥ 0,

|f(t, x, y)− f(t, x̄, ȳ)| ≤ l(t)|x− x̄|+m(t)|y − ȳ|

for all x, x̄, y, ȳ ∈ F (L) with f(t, 0, 0) = 0.

Then the zero solution of (18) is asymptotically stable if and only if
∫ t

0
h(s)ds→

∞ as t→ ∞.

The proof is analogous to that of Theorem 2.1 and so we omit it here.

Remark 2.5. When f
(

t, x(t), x(t−τ(t))
)

≡ b(t)g
(

x(t−τ(t))
)

, choosing h(t) ≡
a(t), l(t) ≡ 0 and m(t) ≡ |b(t)|, Corollary 2.3 reduces to Theorem C.

3 Two Examples

In this section, we give two examples to illustrate the applications of our
main results.

Example 3.1. Consider the following nonlinear neutral stochastic delay dif-
ferential equation

d
(

x(t)−
1

8
x2
(3t

4

))

=
(

− 2x(t) +
e−2t

8
sin
(

x(t) + x(
3t

4
)
)

· cos
(

x(t)− x(
3t

4
)
))

dt

+
(1

9
x(t) +

e−t

7
cos
(

x(t) + x(
t

2
)
)

· sin
(

x(t)− x(
t

2
)
))

dW (t). (19)

Then the zero solution of (19) is mean square asymptotically stable.
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Proof. Let

f(t, x(t), x(t− τ(t)) :=
e−2t

8
sin
(

x(t) + x(t−
t

4
)
)

· cos
(

x(t)− x(t−
t

4
)
)

,

g(t, x(t), x(t− δ(t)) :=
e−t

7
cos
(

x(t) + x(t−
t

2
)
)

· sin
(

x(t)− x(t−
t

2
)
)

.

Since | sinx| ≤ |x| for x ∈ R, the we get

|f(t, x(t), x(t− τ(t))− f(t, y(t), y(t− τ(t))|

≤
e−2t

8
|x(t)− y(t)|+

e−2t

8

∣

∣

∣x(t−
t

4
)− y(t−

t

4
)
∣

∣

∣,

|g(t, x(t), x(t− δ(t))− g(t, y(t), y(t− δ(t))|

≤
e−t

7
|x(t)− y(t)|+

e−t

7

∣

∣

∣x(t−
t

2
)− y(t−

t

2
)
∣

∣

∣.

As |x2| ≤ |x| when |x| ≤ 1, we can choose L = 1/2, l(t) = m(t) = e−t/7 and
n(t) = 1/8 such that the condition (iii) of Theorem 2.1 holds. Moreover, it
is easy to verify that t − τ(t) = t − t/4 → ∞ and t − δ(t) = t − t/2 → ∞ as
t→ ∞.

Choosing h(t) = 2 in Theorem 2.1, we have
∫ t

0

e−
∫

t

s
h(u)du

(

|(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))|+ l(s) +m(s)

+|h(s)|n(s)
)

ds =

∫ t

0

e−2(t−s)
(2e−s

7
+

1

4

)

ds ≤ 0.18,

2

(∫ t

0

e−2
∫

t

s
h(u)du(|c(s)|+ l(s) +m(s))2ds

)

1
2

= 2
(

∫ t

0

e−2(t−s)
(2e−s

7
+

1

9

)

ds
)

1
2

≤ 0.68,

and
∫ t

t−τ(t)

|a(s) + h(s)|ds =

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|a(u) + h(u)|duds = 0.

It easy to check that
∫ t

0
h(s)ds→ ∞ as t→ ∞. Let α = 1/8+0.18+0.68. Then

α = 0.985 < 1 and so the zero solution of (19) is mean square asymptotically
stable.

Example 3.2. Consider the following delay differential equation

x′(t) = −
1

5
x(t) + 2e−t sin

(

1

10
x
(

t− e−t
)

)

. (20)
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Then the zero solution of (20) is asymptotically stable.

Proof. Let

f(t, x(t), x(t− τ(t)) := 2e−t sin

(

1

10
x
(

t− e−t
)

)

.

Since | sin x
10 | ≤

1
10 |x| for x ∈ R, we have

|f(t, x(t), x(t− τ(t))− f(t, y(t), y(t− τ(t))| ≤
e−t

5
|x(t− e−t)− y(t− e−t)|.

Therefore, we can choose l(t) ≡ 0, m(t) = e−t/5 and L for any positive
constant such that the condition (iii⋆) of Theorem 2.3 holds. Moreover, it is
easy to verify that t− τ(t) = t− e−t → ∞ as t→ ∞. Choosing h(t) ≡ 0.3 in
Theorem 2.3, we have

∫ t

t−τ(t)

|h(s)− a(s)|ds =

∫ t

t−e−t

(0.3− 0.2)ds→ 0.1e−t ≤ 0.1,

∫ t

0

e−
∫

t

s
h(u)du|h(s)|

∫ s

s−τ(s)

|h(u)− a(u)|duds ≤

∫ t

0

0.03

e0.3(t−s)
ds ≤ 0.1,

and

∫ t

0

e−
∫

t

s
h(u)du

(

|(h(s− τ(s))− a(s− τ(s)))(1− τ ′(s))|+ l(s) +m(s)
)

ds

=

∫ t

0

e−0.3(t−s)[(0.3− 0.2)(1 + e−s) +
e−s

5
]ds ≤ 0.36.

It is easy to see that all conditions of Theorem 2.3 hold for α = 0.1 + 0.1 +
0.36 = 0.56 < 1. Thus, Theorem 2.3 implies that the zero solution of (20) is
asymptotically stable.

However, Theorem C can not be used to verify that the zero solution of
(20) is asymptotically stable. In fact, noticing that | sin x

10 − sin y

10 | ≤ |x− y|
for all x, y ∈ R, b(t) ≡ 2e−t, a(t) ≡ 1/5 and

∫ t

0

e−
∫

t

s
a(u)du|b(s)|ds =

∫ t

0

e−0.2(t−s) · 2e−sds < 1.33.

Obviously, the condition (4) of Theorem C does not hold with α = 1.33 >
1.
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