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A certain class of quadratures with even

Tchebychev weights

Zlatko Udovičić and Mirna Udovičić

Abstract

We are considering the quadrature formulas of “practical type” (with
five knots) for approximate computation of integral

∫
1

−1

w(x)f(x)dx, (1)

where w(·) denotes (even) Tchebychev weight function. We prove that
algebraic degree of exactness of those formulas can not be greater than
five. We also determined some admissible nodes and compared proposed
formula with some other quadrature formulas.

1 Introduction and preliminaries

Very important place in approximation theory stands for the Tchebychev
weight functions

w1(x) =
1√

1− x2
(the first Tchebychev weight)

and

w2(x) =
√

1− x2 (the second Tchebychev weight).
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Except those weight functions, one can find the third

w3(x) =
√

(1− x)
/

(1 + x) and the fourth w4(x) =
√

(1 + x)
/

(1− x) Tcheby-

chev weight, which are not under our consideration. Therein, the problem of
approximate computation of the integral (1) is very frequent. In this paper
we are investigating a certain class of quadratures (the so called quadratures
of “practical type”) for approximate computation of the previous integral.
The paper was motivated by results recently published in [1] and [2], where
the same class of quadratures was considered, but without weight function.
Similar problem (with linear and cubic B-spline as a weight function) was con-
sidered in [4] and [5]. We shall suppose that in integral (1) and in all following
integrals we have w(x) = w1(x) or w(x) = w2(x).

We say that quadrature formula

∫ 1

−1

w(x)f(x)dx =

5
∑

i=1

Aif(xi) +R[f ] (2)

is of “practical type” if the following conditions hold:

1. A1 = A5 and A2 = A4;

2. nodes xk, 1 ≤ k ≤ 5 are symmetric and rational numbers from the
interval [−1, 1], i.e. x1 = −r1, x2 = −r2, x3 = 0, x4 = r2 and x5 = r1, for
some r1, r2 ∈ (0, 1] ∩ Q, r2 < r1 (as usual, Q denotes the set of rational
numbers).

Hence, quadratures of “practical type” have the following form:

∫ 1

−1

w(x)f(x)dx = A(f(−r1) + f(r1)) +

B(f(−r2) + f(r2)) + Cf(0) +R[f ], (3)

for some r1, r2 ∈ (0, 1] ∩Q, r2 < r1.
Quadrature rule (2) has algebraic degree of exactness equal to m,m ∈ N, if

and only if R[p] = 0 whenever p(·) is a polynomial of degree not greater thanm
and there exists the polynomial q(·), of degree m+1, such that R[q] 6= 0. Our
aim is construction of the quadrature rules of “practical type” with maximal
algebraic degree of exactness.

We continue this section with some well known facts from the theory of
numerical integration. More details one can find in [3].

Lemma 1. Quadrature rule (2) (i.e. (3)) integrates exactly all polynomials
of degree m,m ∈ N, if and only if R[xk] = 0 for all k ∈ {0, 1, . . . ,m}.
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Lemma 2. Quadrature rule (3) integrates exactly every odd function f(·) (i.e.
R[f ] = 0 for every odd function f(·)).

From the previous lemmas follows that algebraic degree of exactness of the
formula (3) has to be odd.

Finally, with the choice

x1,2,4,5 = ±

√

5±
√
5

8
, x3 = 0

and
Ak = π/5, 1 ≤ k ≤ 5,

for the first Tchebychev weight, or with the choice

x1,5 = ±
√
3

2
, x2,4 = ±1

2
, x3 = 0

and
A1,5 =

π

24
, A2,4 =

π

8
, A3 =

π

6
for the second Tchebychev weight, formula (2) attains maximal algebraic de-
gree of exactness (which is equal to nine), but those formulas obviously are
not of “practical type”. Hence, algebraic degree of exactness of the formula
(3) can not be greater than seven.

Now, let us determine (by using standard procedure) the coefficients A,B
and C such that formula (3) has maximal algebraic degree of exactness.

Therein, we use notation mk =
∫ 1

−1
w(x)xkdx, k ∈ {0, 2, 4}.

From the condition that formula (3) is exact for f(x) = 1 (i.e. exact for
any polynomial of zero degree) simply follows

C = m0 − 2A− 2B. (4)

Furthermore, conditions that formula (3) is exact for f(x) = x2 and f(x) = x4

give the following system of linear equations

2r21A+ 2r22B = m2,
2r41A+ 2r42B = m4,

which has unique solution

A =
m2r

2
2 −m4

2r21(r
2
2 − r21)

and B =
m4 −m2r

2
1

2r22(r
2
2 − r21)

. (5)

Hence, with this choice of the coefficients A,B and C formula (3) has
algebraic degree of exactness equal to five. It is natural to ask is it possible to
choose rational nodes r1 and r2 such that formula (3) has algebraic degree of
exactness equal to six, i.e. seven. Negative answer to this question is given in
the following section.
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2 Main result

We are considering Tchebychev weights separately.

2.1 The first Tchebychev weight

For the first Tchebychev weight we have m0 = π,m2 = π
/

2 and m4 = 3π
/

8.
Putting those values in (5) and (4) we obtain the corresponding values for the
coefficients A,B and C in (3). Therein, in formula (3) we have

R[x6] =
π

8

[

5

2
−
(

3r21 − 4r21r
2
2 + 3r22

)

]

.

Lemma 3. There are no numbers r1, r2 ∈ (0, 1] ∩Q such that

3r21 − 4r21r
2
2 + 3r22 =

5

2
. (6)

Proof: Let us assume contrary, i.e. that r1 = a
/

b and r2 = c
/

d, for some
a, b, c, d ∈ N, such that (a, b) = 1 and (c, d) = 1. Putting this in equality (6),
after simplification, gives

6a2d2 − 3a2c2 + 6b2c2 = 5
(

a2c2 + b2d2
)

, (7)

from which follows that a2c2 + b2d2 ≡ 0(mod 3). Having in mind that the
square of number divided by three gives reminder equal to zero or one, from
the last relation follows that it has to be a ≡ 0(mod 3) and d ≡ 0(mod 3) or
b ≡ 0(mod 3) and c ≡ 0(mod 3).

Let a = 3α and d = 3δ, for some α, δ ∈ N. Putting this in (7), after
simplification, we obtain that

6α2
(

27δ2 − 4c2
)

= b2(15δ2 − 2c2),

from which simply follows that it has to be b ≡ 0(mod 3) or c ≡ 0(mod 3),
which is impossible since a ≡ 0(mod 3) and d ≡ 0(mod 3).

The case b = 3β and c = 3γ, for some β, γ ∈ N, because of symmetry of
the relation (7) can be proved analogue. This completes the proof. ◮

Let us estimate the error of the formula (3) in the case of the first Tcheby-
chev weight. Let H5(·) be Hermite’s interpolating polynomial which interpo-
lates the function f(·) through the points ±r1,±r2 and 0, where the node 0
has multiplicity two. Then (see for example [3], p. 55),

f(x)−H5(x) =
f (vi)(ξ(x))

6!
x2(x2 − r21)(x

2 − r22),
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and the error of the formula (3) in this case is given by

R[f ] =

∫ 1

−1

f (vi)(ξ(x))√
1− x2

· x
2(x2 − r21)(x

2 − r22)

6!
dx

=
π

2 · 6!f
(vi)(η)(η2 − r21)(η

2 − r22),

for some η ∈ [−1, 1], assuming f(·) ∈ C6[−1, 1]. Let

Φ(η) = (η2 − r21)(η
2 − r22).

It is easy to check that

max
η∈[−1,1]

|Φ(η)| = max

{

|Φ(0)| ,
∣

∣

∣

∣

∣

Φ(

√

r21 + r22
2

)

∣

∣

∣

∣

∣

, |Φ(1)|
}

= max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

,

so the error of the formula (3) can be estimated in the following way

∣

∣R[f ]
∣

∣ ≤ M6 · π
2 · 6! max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

, (8)

where M6 = maxx∈[−1,1]

∣

∣f (vi)(x)
∣

∣ .

2.2 The second Tchebychev weight

In this case we have m0 = π
/

2,m2 = π
/

8 and m4 = π
/

16, and after determin-
ing the coefficients A,B and C (by using (5) and (4)), elementary calculation
gives

R[x6] =
π

16

[

5

8
−
(

r21 − 2r21r
2
2 + r22

)

]

in formula (3).

Lemma 4. There are no numbers r1, r2 ∈ (0, 1] ∩Q such that

r21 − 2r21r
2
2 + r22 =

5

8
. (9)

Proof: Let us assume contrary again, i.e. that r1 = a
/

b and r2 = c
/

d, for
some a, b, c, d ∈ N, such that (a, b) = 1 and (c, d) = 1. Putting this in equality
(9), after simplification, we have

8
(

a2d2 − 2a2c2 + b2c2
)

= 5b2d2, (10)
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from which follows that b2d2 ≡ 0(mod 8), i.e. that b ≡ 0(mod 2) or d ≡
0(mod 2).

Let b = 2k, for some k ∈ N, and put this in (10). After simplification, we
obtain

2
(

a2d2 − 2a2c2 + 4k2c2
)

= 5k2d2, (11)

and conclude that k2d2 ≡ 0(mod 2), i.e. k2d2 ≡ 0(mod 22). Hence, it has to
be a2d2−2a2c2+4k2c2 ≡ 0(mod 2), from which follows that a2d2 ≡ 0(mod 2),
i.e. d ≡ 0(mod 2). Let d = 2l, for some l ∈ N. Now, equation (11) becomes

2a2l2 − a2c2 + 2k2c2 = 5k2l2.

From the last equality we obtain (since the numbers a and c are odd) that k
and l have to be odd too. Finally, since the square of odd number divided by
four gives reminder equal to one, we conclude that the left hand side of the
last equation, divided by four gives reminder equal to three, while the right
hand side of the same equation, divided by four gives reminder equal to one.
Contradiction!

Because of symmetry, the case d = 2m, for some m ∈ N, can be proved
analogue. The proof is complete. ◮

By using the same technics as in the case of the first Tchebychev weight,
we obtain that the error of the formula (3) can be estimated in the following
way

∣

∣R[f ]
∣

∣ ≤ M6 · π
8 · 6! max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

. (12)

3 Determination of some admissible nodes

Estimations (8) and (12) naturally impose the following problem

F (r1, r2) = max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

→ min .,

where r1, r2 ∈ (0, 1]∩Q, r2 < r1. It is obvious that, for fixed r1 ∈ (0, 1]∩Q, the
function F (·, ·) attains its minimum in one of the intersection points among

three curves r21r
2
2,
(

r21 − r22
)2 /

4 and (1− r21)(1− r22).

1. Curves r21r
2
2 and

(

r21 − r22
)2 /

4 (r1 is fixed) intersect each other at r2 =

±(1±
√
2)r1, and since r2 /∈ Q we will not consider this case.

2. Similarly, curves
(

r21 − r22
)2 /

4 and (1− r21)(1− r22) (r1 is fixed) intersect

each other at r2 = ±
√

3r21 − 2± 2
√
2(r21 − 1), and again because of r2 /∈

Q we will not consider this case.



A CERTAIN CLASS OF QUADRATURES WITH EVEN TCHEBYCHEV

WEIGHTS 453

3. Finally, curves r21r
2
2 and (1− r21)(1− r22) (r1 is still fixed) intersect each

other at r2 =
√

1− r21, and we will look for the nodes r1 and r2 among
“rational points” from the unit circle.

In the Table 1 we give some admissible values of the nodes r1 and r2
for which the function F (·, ·) attains its local minimums. The corresponding
rational numbers are round off to the six decimal places.

r1 r2 F (r1, r2)

4

5
= 0.8

3

5
= 0.6 0.230400

21

29
= 0.724138

20

29
= 0.689655 0.249406

55

73
= 0.753425

48

73
= 0.657534 0.245424

72

97
= 0.742268

65

97
= 0.670103 0.247403

377

505
= 0.746535

336

505
= 0.665347 0.246715

987

1325
= 0.744906

884

1325
= 0.667170 0.246988

1292

1733
= 0.745528

1155

1733
= 0.666474 0.246885

Table 1: Some admissible nodes

Let us also say that, by using any of the given choices for the nodes r1 and
r2, the errors (8) and (12) can be roughly estimated by

∣

∣R[f ]
∣

∣ ≤ 0.6 · 10−3 ·M6,

i.e. by
∣

∣R[f ]
∣

∣ ≤ 0.2 · 10−3 ·M6

respectively.
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4 Comparation with some other formulas and conclu-

sions

In the last section we shall compare formula (3), with rational nodes (r1, r2) =
(4/5, 3/5), with a several quadrature formulas of algebraic degree of exactness
equal to five. Therein, we shall bound the error of each formulas by

M6 · π
2 · 6! · C1

in the case of the first Tchebychev weight, i.e. by

M6 · π
8 · 6! · C2

in the case of the second Tchebychev weight. Of course, by the choice (r1, r2) =
(4/5, 3/5) we have

C1 = C2 = max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

=
144

625
= 0.2304.

The first two formulas we are going to compare with the proposed one are
obtained from (3) by the choice (r1, r2) = (2/3, 1/3), i.e. (r1, r2) = (1, 1/2).
Obviously, in this case we have open and closed formula with equidistant
nodes, respectively. In the case of open formula we have

C1 = C2

= max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

=
40

81
= 0.4938 . . . ,

while the constants C1 and C2, in the case of closed formula, we calculated by
using standard procedure and obtained

C1 =
3

16
= 0.1875

and

C2 =
3

8
= 0.3750.

The following two formulas require a more detailed explanation. Namely,
it is well known that

min
r1,r2∈[−1,1]

(

max
η∈[−1,1]

∣

∣(η2 − r21)(η
2 − r22)

∣

∣

)

=
1

8



A CERTAIN CLASS OF QUADRATURES WITH EVEN TCHEBYCHEV

WEIGHTS 455

and that this value will be obtained in the case when (η2−r21)(η
2−r22) is a monic

Tchebychev polynomial of the first kind and fourth degree, i.e. in the case
(η2−r21)(η

2−r22) = η4−η2+1/8. In this case, nodes of the quadrature formula

(3) are given by r1,2 =
√

2±
√
2
/

2 (those nodes also lie on the unit circle). Of

course, with those nodes formula (3) is not of “practical type”, but the previous
nodes can be approximated by the rational with an arbitrary precision. Hence,
we shall compare proposed formula with the formulas obtained from (3) by

the choice (r1, r2) = (
√

2 +
√
2
/

2,
√

2−
√
2
/

2), i.e. by the choice (r1, r2) =
(924/1000, 383/1000). Therein we have

C1 = C2 =
1

8
= 0.1250

for the formula which is not “practical type” and

C1 = C2

= max

{

r21r
2
2,

(r21 − r22)
2

4
, (1− r21)(1− r22)

}

= 0.1252 . . .

in the case of rational approximation of the corresponding nodes.
Finally, we shall also compare proposed formula with the Gaussian quadra-

ture formulas of algebraic degree of exactness equal to five, i.e. by the formulas

∫ 1

−1

f(x)√
1− x2

dx ≈ π

3

(

f

(

−
√
3

2

)

+ f (0) + f

(√
3

2

))

and
∫ 1

−1

√

1− x2f(x)dx ≈ π

8

(

f

(

−
√
2

2

)

+ 2f (0) + f

(√
2

2

))

.

For these formulas (see for example [3], p. 168) we have

C1 = C2 =
1

16
= 0.0625.

Hence, error estimation of the proposed formula is weaker than error esti-
mations of the other formulas, except in the case of open formula with equidis-
tant nodes and in the case of closed formula with the second Tchebychev
weight. So, it is natural to expect weaker results of the proposed formula.
The following numerical examples justify expected results just in the case of
the first Tchebychev weight. On the other hand, in the case of the second
Tchebychev weight, numerical examples indicate quite reasonable application
of the proposed formula.
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r1 r2
∣

∣R
[√

x2 − 4x+ 13
] ∣

∣

∣

∣R
[

cosx2
] ∣

∣

4

5

3

5
0.1498[−4] 0.1244[−1]

2

3

1

3
0.3694[−4] 0.2397[−1]

1
1

2
0.8862[−5] 0.7721[−2]

√

2 +
√
2

2

√

2−
√
2

2
0.4627[−7] 0.8863[−3]

924

1000

383

1000
0.6175[−7] 0.8727[−3]

- - 0.8862[−5] 0.7725[−2]

Table 2: The first Tchebychev weight

Example 1. In the first example we approximately calculated

∫ 1

−1

f(x)√
1− x2

dx,

where we put f(x) =
√
x2 − 4x+ 13, i.e. f(x) = cosx2. Results of compu-

tation are given in the Table 2. Knots of the quadrature formulas are given
in the first and in the second column, while the absolute errors are given in
the last two columns. The last row of the table corresponds to the Gaussian
quadrature rule. As usually, the numbers in parentheses indicate the decimal
exponent.

Hence, in the case of the first Tchebychev weight, results obtained by using
the proposed formula are better only than the results obtained by using the
open formula with equidistant knots.

Example 2. In this example we approximately compute

∫ 1

−1

√

1− x2f(x)dx,

with the same choices of the function f(·) as in the previous one. Results of
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r1 r2
∣

∣R
[√

x2 − 4x+ 13
] ∣

∣

∣

∣R
[

cosx2
] ∣

∣

4

5

3

5
0.1536[−5] 0.1014[−2]

2

3

1

3
0.3019[−5] 0.1849[−2]

1
1

2
0.2216[−5] 0.1936[−2]

√

2 +
√
2

2

√

2−
√
2

2
0.2238[−5] 0.1481[−2]

924

1000

383

1000
0.2238[−5] 0.1482[−2]

- - 0.2238[−5] 0.1481[−2]

Table 3: The second Tchebychev weight

computation are given in the Table 3 which hase the same form as the Table
2.

So, in this case, the best results are obtained just by using proposed for-
mula.
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