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An iteration process for common fixed points
of two nonself asymptotically nonexpansive

mappings

Sezgin Akbulut, Safeer Hussain Khan, Murat Özdemir

Abstract

In this paper, we introduce an iteration process for approximating
common fixed points of two nonself asymptotically nonexpansive map-
pings in Banach spaces. Our process contains Mann iteration process
and some other processes for nonself mappings but is independent of
Ishikawa iteration process. We prove some weak and strong conver-
gence theorems for this iteration process. Our results generalize and
improve some results in contemporary literature.

1 Introduction

Let E be a real Banach space with C its nonempty subset. Let T : C → C be a
mapping. A point x ∈ C is called a fixed point of T iff Tx = x. In this paper, N
stands for the set of natural numbers. T is called asymptotically nonexpansive
if for a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1, ∥Tnx−Tny∥ ≤ kn∥x−y∥
for all x, y ∈ C and all n ∈ N. T is called uniformly L-Lipschitzian if for some
L > 0, ∥Tnx − Tny∥ ≤ L∥x − y∥ for all n ∈ N and all x, y ∈ C. T is said
to be nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. Let P : E → C
be a nonexpansive retraction of E into C. A nonself mapping T : C → E is
called asymptotically nonexpansive (according to Chidume-Ofoedu-Zegeye [2])
if for a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1, we have ∥T (PT )n−1x−
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T (PT )n−1y∥ ≤ kn∥x − y∥ for all x, y ∈ C and n ∈ N. T is called uniformly
L-Lipschitzian if for some L > 0, ∥T (PT )n−1x− T (PT )n−1y∥ ≤ L∥x− y∥ for
all n ∈ N and all x, y ∈ C.

We will also denote by F (T ) the set of fixed points of T , that is, F (T ) =
{x ∈ C : Tx = x} and by F := F (T ) ∩ F (S), the set of common fixed points
of two mappings S and T . In what follows, we fix x1 ∈ C as a starting point
of the process under consideration, and take {αn} , {βn} , {γn} sequences in
(0, 1).

We know that Mann, and Ishikawa iteration processes are defined as:

xn+1 = (1− αn)xn + αnTxn, n ∈ N (1.1)

and {
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,
(1.2)

respectively.
Agarwal-O’Regan-Sahu [1] recently introduced the iteration process:{

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N.
(1.3)

They showed that their process is independent of Mann and Ishikawa and
converges faster than both of these. See Proposition 3.1 [1].

Obviously the above process deals with one self mapping only. The case
of two mappings in iteration processes has also remained under study since
Das and Debata [3] gave and studied a two mappings scheme. Also see, for
example, Takahashi and Tamura [12] and Khan and Takahashi [8]. Note that
two mappings case, that is, approximating the common fixed points, has its
own importance as it has a direct link with the minimization problem, see for
example Takahashi [11].

Being an important generalization of the class of nonexpansive self map-
pings, the class of asymptotically nonexpansive self mappings was introduced
by Goebel and Kirk [6] whereas the concept of asymptotically nonexpansive
nonself mappings was introduced by Chidume-Ofoedu-Zegeye [2] in 2003 as
the generalization of asymptotically nonexpansive self mappings. Actually
they studied the iteration process:

xn+1 = P ((1− αn)xn + αnT (PT )
n−1

xn), n ∈ N. (1.4)

Nonself asymptotically nonexpansive mappings have been studied by many
authors, for example, Wang [13] and the references cited therein. Wang studied
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the process: {
xn+1 = P ((1− αn)xn + αnS (PS)

n−1
yn),

yn = P ((1− βn)xn + βnT (PT )
n−1

xn), n ∈ N.
(1.5)

Very recently, Thianwan [14] considered a new class of iterative schemes
(called projection type Ishikawa iteration) as follows:{

xn+1 = P ((1− αn)yn + αnS (PS)
n−1

yn),

yn = P ((1− βn)xn + βnT (PT )
n−1

xn), n ∈ N.
(1.6)

Inspired and motivated by the above facts, a new class of two-step iterative
schemes, for two nonself asymptotically nonexpansive mappings, is introduced
and studied in this paper.xn+1 = P

(
(1− αn)T (PT )

n−1
yn + αnS (PS)

n−1
yn

)
,

yn = P
(
(1− βn)xn + βnT (PT )

n−1
xn

)
, n ∈ N.

(1.7)

Observe the following.

• Our process (1.7) reduces to Chidume-Ofoedu-Zegeye process (1.4) when
T = I.

• Wang process (1.5), Thianwan process (1.6) and our process (1.7) are
independent: neither reduces to the other.

• Agarwal-O’Regan-Sahu process (1.3) does not reduce to Mann process
(1.1) but our process (1.7) does. It means that the results proved by using
(1.7) not only contain the corresponding results of Agarwal-O’Regan-
Sahu using (1.3) extended to nonself case but also cover the left over
ones using Chidume-Ofoedu-Zegeye process (1.4).

• Our process (1.7) is able to compute common fixed points like (1.5) and
(1.6) but at a better rate.

We recall the following. Let S = {x ∈ E : ∥x∥ = 1} and let E∗ be the dual
of E, that is, the space of all continuous linear functionals f on E. The space
E has:

(i) Gâteaux differentiable norm if limt→0
∥x+ty∥−∥x∥

t exists for each x and
y in S; (ii) Fréchet differentiable norm (see e.g. [11]) if for each x in S, the
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above limit exists and is attained uniformly for y in S and in this case, it is
also well-known that

⟨h, J(x)⟩+ 1

2
∥x∥2 ≤ 1

2
∥x+ h∥2 ≤ ⟨h, J(x)⟩

+
1

2
∥x∥2 + b(∥h∥) (1.8)

for all x, h in E, where J is the Fréchet derivative of the functional 1
2 ∥.∥

2
at x ∈

X, ⟨., .⟩ is the pairing between E and E∗, and b is an increasing function defined

on [0,∞) such that limt↓0
b(t)
t = 0; (iii) Opial condition [9] if for any sequence

{xn} in E, xn ⇀ x implies that lim supn→∞ ∥xn − x∥ < lim supn→∞ ∥xn − y∥
for all y ∈ E with y ̸= x (iv) Kadec-Klee property if for every sequence {xn}
in E, xn ⇀ x and ∥xn∥ → ∥x∥ together imply xn → x as n → ∞.

Examples of Banach spaces satisfying Opial condition are Hilbert spaces
and all spaces lp(1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p ̸= 2 fail
to satisfy Opial condition. Uniformly convex Banach spaces, Banach spaces
of finite dimension and reflexive locally uniform convex Banach spaces are
some of the examples of reflexive Banach spaces which satisfy the Kadec-Klee
property. Also note that there exist uniformly convex Banach spaces which
neither satisfy the Opial condition nor do they have Fréchet differentiable norm
but their duals do have the Kadec-Klee property. For example (Example 3.1,
Falset et al. [4]), let us take X1 = R2 with the norm denoted by |x| =√
∥x1∥2 + ∥x2∥2 and X2 = Lp[0, 1] with 1 < p < ∞ and p ̸= 2. The Cartesian

product of X1 and X2 furnished with the l2-norm is uniformly convex, it
neither satisfies the Opial condition [4, 9] nor it has a Fréchet differentiable
norm but its dual does have the Kadec-Klee property.

A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn}
in C and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.

Lemma 1. [10] Suppose that E is a uniformly convex Banach space and
0 < p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of E
such that lim supn→∞ ∥xn∥ ≤ r, lim supn→∞ ∥yn∥ ≤ r and
limn→∞ ∥tnxn + (1− tn)yn∥ = r hold for some r ≥ 0. Then
limn→∞ ∥xn − yn∥ = 0.

Lemma 2. [15] If {rn}, {tn} are two sequences of nonnegative real numbers
such that rn+1 ≤ (1 + tn) rn, n ≥ 1 and

∑∞
n=1 tn < ∞, then lim

n→∞
rn exists.

Lemma 3. [2] Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T be a nonself asymptotically non-
expansive mapping. Then I − T is demiclosed with respect to zero.
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Lemma 4. [7] Let E be a reflexive Banach space such that E∗ has the Kadec-
Klee property. Let {xn} be a bounded sequence in E and x∗, y∗ ∈ W =
ωw(xn)(weak limit set of {xn}). Suppose lim

n→∞
∥txn + (1− t)x∗ − y∗∥ exists

for all t ∈ [0, 1]. Then x∗ = y∗.

Lemma 5. [4] Let C be a convex subset of a uniformly convex Banach space.
Then there is a strictly increasing and continuous convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that for every Lipschitzian map U : C → C with
Lipschitz constant L ≥ 1, the following inequality holds:

∥U(tx+ (1− t)y)− (tUx+ (1− t)Uy)∥ ≤ Lg−1(∥x− y∥ − L−1 ∥Ux− Uy∥)

for all x, y ∈ C and t ∈ [0, 1].

2 Convergence Theorems

Let T and S be two asymptotically nonexpansive nonself mappings of C with
{k1n} ⊂ [1,∞), limn→∞ k1n = 1 and {k2n} ⊂ [1,∞), limn→∞ k2n = 1 respec-
tively. In the sequel, we take {kn} ⊂ [1,∞) where kn = max{k1n, k2n}. We
start with proving some key lemmas for later use.

Lemma 6. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T and S be two asymptotically nonexpansive nonself

mappings of C with
∞∑

n=1
(kn − 1) < ∞. Let P : E → C be a nonexpansive

retraction of E into C. Let {αn}, {βn} be in [ε, 1 − ε] for all n ∈ N and
for some ε in (0, 1), and let {xn} be defined by the iteration process (1.7). If
F ̸= ∅, then lim

n→∞
∥xn − Txn∥ = lim

n→∞
∥xn − Sxn∥ = 0.

Proof. Let q ∈ F. Then

∥xn+1 − q∥ =
∥∥∥P (

(1− αn)T (PT )
n−1

yn + αnS (PS)
n−1

yn

)
− Pq

∥∥∥
≤ (1− αn)

∥∥∥T (PT )
n−1

yn − q
∥∥∥+ αn

∥∥∥S (PS)
n−1

yn − q
∥∥∥

≤ (1− αn)kn ∥yn − q∥+ αnkn ∥yn − q∥
= kn ∥yn − q∥ . (2.1)
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But

∥yn − q∥ =
∥∥∥P (

(1− βn)xn + βnT (PT )
n−1

xn

)
− q

∥∥∥
≤ βn

∥∥∥T (PT )
n−1

xn − q
∥∥∥+ (1− βn) ∥xn − q∥

≤ βnkn ∥xn − q∥+ (1− βn) ∥xn − q∥
= (1 + βn(kn − 1)) ∥xn − q∥
≤ kn ∥xn − q∥ (2.2)

implies that

∥xn+1 − q∥ ≤ k2n ∥xn − q∥
=

[
1 +

(
k2n − 1

)]
∥xn − q∥

Thus by Lemma 2, lim
n→∞

∥xn − q∥ exists. Call it c.
Now (2.2) implies that

lim sup
n→∞

∥yn − q∥ ≤ c. (2.3)

Also
∥T (PT )

n−1
yn − q∥ ≤ kn∥yn − q∥

for all n = 1, 2,. . . , so

lim sup
n→∞

∥T (PT )
n−1

yn − q∥ ≤ c. (2.4)

Next,
∥S (PS)

n−1
yn − q∥ ≤ kn∥yn − q∥

gives by (2.3) that

lim sup
n→∞

∥S (PS)
n−1

yn − q∥ ≤ c.

Further,

c = lim
n→∞

∥xn+1 − q∥ = lim
n→∞

∥∥P (
(1− αn)T (PT )n−1yn + αnS(PS)n−1yn

)
− Pq

∥∥
≤ lim

n→∞
∥ (1− αn)

(
T (PT )n−1yn − q

)
+ αn

(
S(PS)n−1yn − q

)
∥

≤ lim
n→∞

[
(1− αn) lim sup

n→∞

∥∥(T (PT )n−1yn − q
)∥∥+ αn lim sup

n→∞

∥∥(S(PS)n−1yn − q
)∥∥]

≤ lim
n→∞

[(1− αn) c+ αnc]

= c
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gives that

lim
n→∞

∥ (1− αn)
(
T (PT )n−1yn − q

)
+ αn

(
S(PS)n−1yn − q

)
∥ = c. (2.5)

Applying Lemma 1, we obtain

lim
n→∞

∥∥S(PS)n−1yn − T (PT )n−1yn
∥∥ = 0. (2.6)

Noting that

∥xn+1 − q∥ =
∥∥P (

(1− αn)T (PT )n−1yn + αnS(PS)n−1yn
)
− Pq

∥∥
≤

∥∥(1− αn)T (PT )n−1yn + αnS(PS)n−1yn − q
∥∥

≤
∥∥T (PT )n−1yn − q

∥∥+ αn

∥∥S(PS)n−1yn − T (PT )n−1yn
∥∥

yields that
c ≤ lim inf

n→∞

∥∥T (PT )n−1yn − q
∥∥

so that (2.4) gives limn→∞
∥∥T (PT )n−1yn − q

∥∥ = c.
In turn, ∥∥T (PT )n−1yn − q

∥∥ ≤ kn∥yn − q∥

implies
c ≤ lim inf

n→∞
∥yn − q∥. (2.7)

By (2.3) and (2.7), we obtain

lim
n→∞

∥yn − q∥ = c.

Further, ∥∥T (PT )n−1xn − q
∥∥ ≤ kn ∥xn − q∥

implies that
lim sup
n→∞

∥T (PT )
n−1

xn − q∥ ≤ c.

Moreover,

c = lim
n→∞

∥yn − q∥ = lim
n→∞

∥∥∥P (
(1− βn)xn + βnT (PT )

n−1
xn

)
− Pq

∥∥∥
≤ lim

n→∞
∥ (1− βn) (xn − q) + βn

(
T (PT )n−1xn − q

)
∥

≤ lim
n→∞

[
(1− βn) lim sup

n→∞
∥(xn − q)∥+ βn lim sup

n→∞

∥∥(T (PT )n−1xn − q
)∥∥]

≤ lim
n→∞

[(1− βn) c+ βnc]

= c
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gives by Lemma 1 that

lim
n→∞

∥∥T (PT )n−1xn − xn

∥∥ = 0. (2.8)

Now xn ∈ C, the range of P, therefore Pxn = xn for all n ∈ N and so

∥yn − xn∥ =
∥∥P (

βn(T (PT )n−1xn + (1− βn)xn

)
− Pxn

∥∥
≤

∥∥βnT (PT )n−1xn + (1− βn)xn − xn

∥∥
= βn

∥∥T (PT )n−1xn − xn

∥∥ .
Hence by (2.8),

lim
n→∞

∥yn − xn∥ = 0. (2.9)

From (2.8) and(2.9),∥∥T (PT )n−1yn − xn

∥∥ ≤
∥∥T (PT )n−1yn − T (PT )n−1xn

∥∥
+
∥∥T (PT )n−1xn − xn

∥∥
≤ kn ∥yn − xn∥+

∥∥xn − T (PT )n−1xn

∥∥
→ 0 as n → ∞,

that is,
lim

n→∞

∥∥T (PT )n−1yn − xn

∥∥ = 0. (2.10)

Also note that

∥xn+1 − xn∥ =
∥∥P (

(1− αn)T (PT )n−1yn + αnS(PS)n−1yn
)
− Pxn

∥∥
≤

∥∥(1− αn)T (PT )n−1yn + αnS(PS)n−1yn − xn

∥∥
≤

∥∥T (PT )n−1yn − xn

∥∥+ αn

∥∥S(PS)n−1yn − T (PT )n−1yn
∥∥

→ 0 as n → ∞, (2.11)

so that

∥xn+1 − yn∥ ≤ ∥xn+1 − xn∥+ ∥yn − xn∥ (2.12)

→ 0 as n → ∞.

Furthermore, from∥∥xn+1 − T (PT )n−1yn
∥∥ ≤ ∥xn+1 − xn∥+

∥∥xn − T (PT )n−1xn

∥∥
+
∥∥T (PT )n−1xn − T (PT )n−1yn

∥∥
≤ ∥xn+1 − xn∥+

∥∥xn − T (PT )n−1xn

∥∥+ kn ∥xn − yn∥
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we find that
lim

n→∞

∥∥xn+1 − T (PT )n−1yn
∥∥ = 0. (2.13)

Now we shall make use of the fact that every asymptotically nonexpansive
mapping is uniformly L-Lipschitzian combined with (2.8) , (2.12) and (2.13)
to reach at

∥xn − Txn∥ ≤
∥∥xn − T (PT )n−1xn

∥∥+
∥∥T (PT )n−1xn − T (PT )n−1yn−1

∥∥
+
∥∥T (PT )n−1yn−1 − Txn

∥∥
≤

∥∥xn − T (PT )n−1xn

∥∥+ kn ∥xn − yn−1∥
+L

(∥∥T (PT )n−2yn−1 − xn

∥∥)
→ 0 as n → ∞,

so that
lim

n→∞
∥xn − Txn∥ = 0. (2.14)

To prove that limn→∞ ∥xn − Sxn∥ = 0, first note that

∥S(PS)n−1yn−xn∥ ≤
∥∥S(PS)n−1yn − T (PT )n−1yn

∥∥+∥∥T (PT )n−1yn − xn

∥∥ ,
so that by (2.6) and (2.10) ,

lim
n→∞

∥S(PS)n−1yn − xn∥ = 0. (2.15)

From (2.9) and (2.15),

∥S(PS)n−1xn − xn∥ ≤
∥∥S(PS)n−1xn − S(PS)n−1yn

∥∥+
∥∥S(PS)n−1yn − xn

∥∥
≤ kn ∥yn − xn∥+

∥∥S(PS)n−1yn − xn

∥∥ ,
we have

lim
n→∞

∥S(PS)n−1xn − xn∥ = 0. (2.16)

Next note that

∥xn+1 − S(PS)n−1xn∥ ≤ ∥xn+1 − xn∥+ ∥xn − S(PS)n−1xn∥

gives by (2.11) and (2.16)

lim
n→∞

∥xn+1 − S(PS)n−1xn∥ = 0. (2.17)

Again making use of the fact that every asymptotically nonexpansive mapping
is L-Lipschitzian, we have

∥xn+1 − Sxn+1∥ ≤ ∥xn+1 − S(PS)nxn+1∥+ ∥S(PS)nxn+1 − S(PS)nxn∥
+∥S(PS)nxn − Sxn+1∥

≤ ∥xn+1 − S(PS)nxn+1∥+ kn+1∥xn+1 − xn∥
+L∥S(PS)n−1xn − xn+1∥.
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Thus by (2.11),(2.16) and (2.17) , we get

lim
n→∞

∥xn − Sxn∥ = 0. (2.18)

This completes the proof of the lemma.

Lemma 7. For any p1, p2 ∈ F, lim
n→∞

∥txn + (1− t)p1 − p2∥ exists for all

t ∈ [0, 1] under the conditions of Lemma 6.

Proof. By Lemma 6, lim
n→∞

∥xn − p∥ exists for all p ∈ F and therefore {xn}
is bounded. Thus there exists a real number r > 0 such that {xn} ⊆ D ≡
Br(0) ∩ C, so that D is a closed convex nonempty subset of C. Put

gn(t) = ∥txn + (1− t)p1 − p2∥

for all t ∈ [0, 1]. Then lim
n→∞

gn(0) = ∥p1 − p2∥ and lim
n→∞

gn(1) = lim
n→∞

∥xn − p2∥
exist. Let t ∈ (0, 1).

Define Bn : D → D by:

Bnx = P
(
(1− αn)T (PT )n−1Anx+ αnS(PS)n−1Anx

)
Anx = P

(
(1− βn)x+ βnT (PT )n−1x

)
Then Bnxn = xn+1, Bnp = p for all p ∈ F. Also

∥Anx−Any∥ =
∥∥P ((1− βn)x+ βnT (PT )n−1x)− P

(
(1− βn) y + βnT (PT )n−1y

)∥∥
≤

∥∥(1− βn) (x− y) + βn(T (PT )n−1x− T (PT )n−1y)
∥∥

= (1− βn) ∥x− y∥+ βnkn∥x− y∥
≤ (1− βn)kn ∥x− y∥+ βnkn∥x− y∥
= kn ∥x− y∥

and

∥Bnx−Bny∥ =

∥∥∥∥ P [(1− αn)T (PT )n−1Anx+ αnS(PS)n−1Anx]
−P [(1− αn)T (PT )n−1Any + αnS(PS)n−1Any)]

∥∥∥∥
≤

∥∥∥∥ (1− αn)
(
T (PT )n−1Anx− T (PT )n−1Any

)
+αn(S(PS)n−1Anx− S(PS)n−1Any)

∥∥∥∥
≤ (1− αn)kn∥Anx−Any∥+ αnkn ∥Anx−Any∥
= kn∥Anx−Any∥
≤ k2n∥x− y∥.

Set
Rn,m = Bn+m−1Bn+m−2...Bn, m ≥ 1
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and
vn,m = ∥Rn,m (txn + (1− t)p1)− (tRn,mxn + (1− t)p1)∥ .

Then Rn,mxn = xn+m and Rn,mp = p for all p ∈ F. Also

∥Rn,mx−Rn,my∥ ≤ ∥Bn+m−1Bn+m−2...Bnx−Bn+m−1Bn+m−2...Bny∥
≤ k2n+m−1 ∥Bn+m−2...Bnx−Bn+m−2...Bny∥
≤ k2n+m−1k

2
n+m−2 ∥Bn+m−3...Bnx−Bn+m−3...Bny∥

...

≤
(∏n+m−1

j=n k2j

)
∥x− y∥

Applying Lemma 5 with x = xn, y = p1, U = Rn,m and using the facts
that limn→∞ kn = 1 and limn→∞ ∥xn − w∥ exists for all w ∈ F, we obtain
vn,m → 0 as n → ∞ and for all m ≥ 1.

Finally, from the inequality

gn+m(t) = ∥tRn,mxn + (1− t)p1 − p2∥
≤ vn,m + ∥Rn,m(txn + (1− t)p1)− p2∥

≤ vn,m +
n+m−1∏
j=n

k2j gn(t),

it follows that

lim sup
n→∞

gn(t) ≤ lim sup
n,m→∞

vn,m + lim inf
n→∞

gn(t)

= lim inf
n→∞

gn(t)

That is,
lim sup
n→∞

gn(t) ≤ lim inf
n→∞

gn(t).

So that lim
n→∞

∥txn + (1− t)p1 − p2∥ exists for all t ∈ [0, 1].

Lemma 8. Assume that the conditions of Lemma 6 are satisfied. Then, for
any p1, p2 ∈ F, lim

n→∞
⟨xn, J(p1 − p2)⟩ exists; in particular, ⟨p− q, J(p1 − p2)⟩ =

0 for all p, q ∈ ωw(xn).

Proof. Take x = p1 − p2 with p1 ̸= p2 and h = t(xn − p1) in the inequality
(1.8) to get:

1

2
∥p1 − p2∥2 + t ⟨xn − p1, J(p1 − p2)⟩ ≤ 1

2
∥txn + (1− t)p1 − p2∥2

≤ 1

2
∥p1 − p2∥2 + t ⟨xn − p1, J(p1 − p2)⟩

+b(t ∥xn − p1∥).
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As supn≥1 ∥xn − p1∥ ≤ M ′ for some M ′ > 0, it follows that

1

2
∥p1 − p2∥2 + t lim sup

n→∞
⟨xn − p1, J(p1 − p2)⟩ ≤ 1

2
lim

n→∞
∥txn + (1− t)p1 − p2∥2

≤ 1

2
∥p1 − p2∥2 + b(tM ′)

+t lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩ .

That is,

lim sup
n→∞

⟨xn − p1, J(p1 − p2)⟩ ≤ lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩+
b(tM ′)

tM ′ M ′.

If t → 0, then lim
n→∞

⟨xn − p1, J(p1 − p2)⟩ exists for all p1, p2 ∈ F ; in particular,

we have ⟨p− q, J(p1 − p2)⟩ = 0 for all p, q ∈ ωw(xn).

2.1 Weak Convergence

We now give our weak convergence theorem.

Theorem 1. Let E be a uniformly convex Banach space and let C, T, S and
{xn} be taken as in Lemma 6. Assume that (a) E satisfies Opial’s condition
or (b)E has a Fréchet differentiable norm or (c) dual E∗ of E satisfies Kadec-
Klee property. If F ̸= ∅ then {xn} converges weakly to a point of F.

Proof. Let p ∈ F. Then lim
n→∞

∥xn− p∥ exists as proved in Lemma 6. We prove

that {xn} has a unique weak subsequential limit in F. Let u and v be weak
limits of the subsequences {xni} and {xnj} of {xn}, respectively. By Lemma
6, lim

n→∞
∥xn−Txn∥ = 0 and I−T is demiclosed with respect to zero by Lemma

3, therefore we obtain Tu = u. Similarly, Su = u. Again in the same fashion,
we can prove that v ∈ F. Next, we prove the uniqueness. To this end, first
assume (a) is true. If u and v are distinct, then by Opial condition,

lim
n→∞

∥xn − u∥ = lim
ni→∞

∥xni − u∥

< lim
ni→∞

∥xni
− v∥

= lim
n→∞

∥xn − v∥

= lim
nj→∞

∥xnj − v∥

< lim
nj→∞

∥xnj − u∥

= lim
n→∞

∥xn − u∥.
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This is a contradiction so u = v.Next assume (b). By Lemma 8, ⟨p− q, J(p1 − p2)⟩ =
0 for all p, q ∈ ωw(xn). Therefore ∥u − v∥2 = ⟨u− v, J(u− v)⟩ = 0 implies
u = v. Finally, say (c) is true. Since lim

n→∞
∥txn + (1− t)u− v∥ exists for all

t ∈ [0, 1] by Lemma 7, therefore u = v by Lemma 4. Consequently, {xn}
converges weakly to a point of F and this completes the proof.

Although the following can be obtained as a corollary from our above
theorem by putting T = I, yet it is new in itself.

Corollary 1. Let E be a uniformly convex Banach space and let C, S be taken
as in Lemma 6 and and {xn} as

xn+1 = P ((1− αn)xn + αnS (PS)
n−1

xn), n ∈ N.

Assume that (a) E satisfies Opial condition or (b) E has a Fréchet differen-
tiable norm or (c) dual E∗ of E satisfies Kadec-Klee property. If F (S) ̸= ∅
then {xn} converges weakly to a point of F (S).

2.2 Strong Convergence

Following [5], we say that two mappings S, T : C → E, where C is a subset
of a normed space E, are said to satisfy the Condition (A′) if there exists a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for all
r ∈ (0,∞) such that either ∥x− Sx∥ ≥ f(d(x, F )) or ∥x− Tx∥ ≥ f(d(x, F ))
for all x ∈ C where d(x, F ) = inf{∥x− p∥ : p ∈ F}.

Theorem 2. Let E be a real Banach space and let C, T, S, F, {xn} be taken
as in Lemma 6. Then {xn} converges to a point of F if and only if
lim infn→∞ d(xn, F ) = 0 where d(x, F ) = inf{∥x− p∥ : p ∈ F}.

Proof. Necessity is obvious. Suppose that lim infn→∞ d(xn, F ) = 0. As proved
in Lemma 6, lim

n→∞
∥xn − w∥ exists for all w ∈ F, therefore lim

n→∞
d(xn, F ) exists.

But by hypothesis, lim infn→∞ d(xn, F ) = 0, therefore we have lim
n→∞

d(xn, F ) =

0. On the lines similar to [5], it can be proved that lim
n→∞

d(xn, F ) = 0. This

gives that d(p, F ) = 0 and so p ∈ F.
Applying Theorem 2, we obtain a strong convergence of the scheme (1.7)

under the Condition (A′) as follows.

Theorem 3. Let E be a real Banach space and let C, T, S, F, {xn} be taken as
in Lemma 6. If T, S satisfy the Condition (A′) then {xn} converges strongly
to a common fixed point of T and S .
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Proof. We proved in Lemma 6 that

lim
n→∞

∥xn − Txn∥ = lim
n→∞

∥xn − Sxn∥ = 0. (2.19)

From the Condition (A′) and (2.19), we get

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Txn∥ = 0,

or
lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Sxn∥ = 0,

In both the cases,
lim

n→∞
f(d(xn, F )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) =
0, f(r) > 0 for all r ∈ (0,∞), therefore we have

lim
n→∞

d(xn, F ) = 0.

Now all the conditions of Theorem 2 are satisfied, therefore by its conclusion
{xn} converges strongly to a point of F.

Remark 1. Corollaries like Corollary 1 can now be obtained in this case as
well.

Remark 2. The case of nonexapnsive mappings now follows as a corollary
from our above results.

Remark 3. Theorems of this paper can also be proved with error terms.
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