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The Gâteaux derivative and orthogonality in

C∞

Salah Mecheri and Hacene Mecheri

Abstract

The general problem in this paper is minimizing the C∞− norm of
suitable affine mappings from B(H) to C∞, using convex and differential
analysis (Gateaux derivative) as well as input from operator theory. The
mappings considered generalize the so-called elementary operators and
in particular the generalized derivations, which are of great interest by
themselves. The main results obtained characterize global minima in
terms of (Banach space) orthogonality.

1 Introduction

The general problem in this paper is minimizing the C∞− norm of suitable
affine mappings from B(H) to C∞, using convex and differential analysis
(Gateaux derivative) as well as input from operator theory. The mappings
considered generalize the so-called elementary operators and in particular the
generalized derivations, which are of great interest by themselves. The main
results obtained characterize global minima in terms of (Banach space) or-
thogonality, and constitute an interesting combination of infinite-dimensional
differential analysis, operator theory and duality. This leads us to characterize
the orthogonality in the sense of Birkhoof in C∞. Let E be a complex Banach
space. We first define orthogonality in E. We say that b ∈ E is orthogonal to
a ∈ E if for all complex λ there holds

‖a+ λb‖ ≥ ‖a‖ . (1.1)
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This definition has a natural geometric interpretation. Namely, b⊥a if and only
if the complex line {a+ λb | λ ∈ C} is orthogonal to the open ball K (0, ‖a‖) ,
i.e., if and only if this complex line is a tangent one. Note that if b is orthogonal
to a, then a need not be orthogonal to b. If E is a Hilbert space, then from
(1.1) follows 〈a, b〉 = 0, i.e., orthogonality in the usual sense. Recall [1] that
the norm ||.|| of the Banach space V is said to be Gateaux differentiable at a
non-zero element x ∈ V if

lim
t→0

||x+ ty|| − ||x||

t
= ReD(x, y)

for all y ∈ V and t ∈ R. Here R denotes the set of reals, Re denotes the real
part and D(x is the unique support functional (in the dual space V ∗) such
that ||D(x)|| = 1 and D(x, x) = ||x|| [4, 7]. It is well known (see [8] and the
references therein) that for 1 < p < ∞, the von Neumann-Schatten class Cp
is a uniformly convex Banach space. Therefore every non-zero T ∈ Cp is a
smooth point and in this case the support functional of T is given by

D(T,X) = tr

[

|T |
p−1

UX∗

‖T‖
p−1
p

]

, (1.2)

for all X ∈ Cp, where T = U |T | is the polar decomposition of T. The first re-
sult concerning the orthogonality in a Banach space was given by Anderson[2]
showing that if A is a normal operator on a Hilbert space H, then AS = SA

implies that for any bounded linear operator X there holds

‖S +AX −XA‖ ≥ ‖S‖ . (1.3)

This means that the range of the derivation δA : B(H) → B(H) defined by
δA(X) = AX−XA is orthogonal to its kernel. This result has been generalized
in two directions: by extending to the class of elementary mappings

E : B(H) → B(H); E(X) =

n
∑

i=1

AiXBi

and
∼

E: B(H) → B(H);
∼

E (X) =

n
∑

i=1

AiXBi −X,

where (A1, A2, ...An) and (B1, B2, ...Bn) are n− tuples of bounded operators
on H, and by extending the inequality (1.3) to Cp-classes with 1 < p < ∞
see [9], [12]. The Gâteaux derivative concept was used in [6, 9, 10, 15] and
[11]. In all of the above results A was not arbitrary; in fact, certain normality-
like assumptions have been imposed on A. A characterization of T ∈ Cp for
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1 < p < ∞, which are orthogonal to R(δA | Cp) (the range of δA | Cp) for a
general operator A has been carried out by F. Kittaneh [8], who showed that,
if T has the polar decomposition T = U |T |, then

‖T + δA(X)‖p ≥ ‖T‖p (1.4)

for all X ∈ Cp ( 1 < p <∞), if and only if, |T |
p−1

U∗ ∈ ker δA.
Let C∞ be the class of compact operators with ||T || = sup||f ||=1 ||Tf ||

denoting the usual operator norm. In order to characterize those operators
which are orthogonal to the range of a derivation in C∞. First we characterize
the global minimum of the map

X 7→ ‖S + φ(X)‖C∞
, φ is a linear map in B(H),

in C∞ by using the Gateaux derivative. These results are then applied to char-
acterize the operators S ∈ C∞ which are orthogonal to the range of elementary
operators.

2 Preliminaries

Let B(H) denote the algebra of all bounded linear operators on a complex
separable and infinite dimensional Hilbert space H and let T ∈ B(H) be
compact, and let s1(T ) ≥ s2(T ) ≥ ... ≥ 0 denote the singular values of T ,

i.e., the eigenvalues of |T | = (T ∗T )
1
2 arranged in their decreasing order. The

operator T is said to be belong to the Schatten p-classes Cp if

‖T‖p =

[

∞
∑

i=1

si(T )
p

]
1
p

= [tr(T )p]
1
p <∞, 1 ≤ p <∞,

where tr denotes the trace functional. Hence C1 is the trace class, C2 is the
Hilbert-Schmidt class, and C∞ corresponds to the class of compact operators
with

‖T‖∞ = s1(T ) = sup
‖f‖=1

‖Tf‖

denoting the usual operator norm. For the general theory of the Schatten
p-classes the reader is referred to [16]. We state the following theorem which
we will use in proving our main result Theorem 3.2. Recall that the polar
decomposition of A ∈ B(H) is A = U |A|, where U is a partial isometry,
kerU = ker(A∗A) and A∗A = |A|. This decomposition is unique.

Theorem 2.1 ([7]). Let X,Y ∈ C∞. Then, there holds

D(X;Y ) = max
f∈Γ

‖f‖=1

{Re
〈

U∗Y f, f
〉

},
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where X = U |X| is the polar decomposition of X and Γ is the subspace in
which X ∈ C∞ attains its norm.

Theorem 2.2. [7] Let (V, ‖·‖) be an arbitrary Banach space and F : V → R.
If F has a global minimum at v ∈ V , then

DF (v; y) ≥ 0,

for all y ∈ V.

3 Main Results

Let X be a Banach space, φ a linear map X → X, and ψ(x) = φ(x) + s for
some element s ∈ X. Use the notation

D(x; y) = lim
t→0+

1

t
(‖x+ ty‖ − ‖x‖).

Recall that the rank one operator f ⊗ g is defined by f ⊗ g : x 7→ 〈x, f〉g
and tr[T (f ⊗ g)] = 〈Tg, f〉. The following theorem is a simple consequence of
the known result in convex analysis (the necessary and sufficient condition for
optimality)

Theorem 3.1. The map (Fψ)(x) = ‖ψ(x)‖ has a global minimum at x ∈ X

if and only if
D(ψ(x);φ(y)) ≥ 0, ∀ y ∈ X. (3.1)

Now we are ready to prove our first result in C∞-classes. It gives a neces-
sary and sufficient optimality condition for minimizing Fψ.

Let φ : B(H) → B(H) be a linear map, that is, φ(αX + βY ) = αφ(X) +
βφ(Y ), for all α, β,X, Y, and let S ∈ C∞. Put

U = {X ∈ B(H) : φ(X) ∈ C∞} .

Let ψ : U → C∞ defined by

ψ(X) = S + φ(X).

Define the function Fψ : U → R
+ by Fψ(X) = ‖ψ(X)‖C∞

.
In the following theorem we characterize the global minimum of Fψ on C∞,

when φ is a linear map satisfying

tr(Xφ(Y )) = tr(φ∗(X)Y ), for allX,Y ∈ C∞, (3.2)

where φ∗ is an appropriate conjugate of the linear map φ. Recall that (3.2) is
the definition of the adjoint mapping φ∗ of φ.
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An example of φ and φ∗ which satisfy condition (3.2) is given by:
The elementary operator E : I → I defined by

E(X) =

n
∑

i=1

AiXBi,

where (A1, A2, . . . , An) and (B1, B2, . . . , Bn) are n−tuples of bounded Hilbert
space operators and I is a separable ideal of compact operators associated
with some unitarily invariant norm. In [7], Keckic showed that the conjugate
operator E∗ : I∗ → I

∗ of E has the form

E∗(X) =

n
∑

i=1

BiXAi,

and that E and E∗ satisfy condition (3.2).

Theorem 3.2. Let V ∈ C∞ be a smooth point and let ψ(V ) have the polar
decomposition ψ(V ) = U |ψ(V )| and let f ∈ Γ. Then Fψ has a global minimum
on C∞ at V if and only if (f ⊗ Uf) ∈ kerφ∗.

Proof. Let V ∈ C∞ be a smooth point and let ψ(V ) have the polar decompo-
sition ψ(V ) = U |ψ(V )|.

Assume that Fψ has a global minimum on C∞ at V . Then

D(ψ(V );φ(Y )) ≥ 0, (3.3)

for all Y ∈ C∞. Then ∀Y ∈ C∞ we get

max
f∈Γ

‖f‖=1

{Re[
〈

U∗φ(Y )f, f
〉

]} ≥ 0.

or
Re(tr(f ⊗ Uf)φ(Y )) ≥ 0, for allY ∈ C∞. (3.4)

Since the map φ satisfies (3.2), one has

tr((f ⊗ Uf)φ(Y )) = tr(φ∗(f ⊗ Uf)Y ).

Then (3.4) is equivalent to

tr(φ∗(f ⊗ Uf)Y ) ≥ 0, for allY ∈ C∞.

Equivalently, on taking Y = h⊗ g we get,

Re〈φ∗(f ⊗ Uf)g, h〉 ≥ 0, for all g, h ∈ H.
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As h, g are arbitrary we can easily check that

Re〈φ∗(f ⊗ Uf)g, h〉 = 0, for all g, h ∈ H.

Thus φ∗(f ⊗ Uf) = 0, i.e., f ⊗ Uf ∈ kerφ∗. Conversely, let f ⊗ Uf ∈ kerφ∗,
then tr((f ⊗ Uf)φ(Y )) = 0, for all Y ∈ C∞. Or tr(φ∗(f ⊗ Uf)Y ) = 0, for all
Y ∈ C∞. By taking Y = h⊗g we get, Retr〈φ∗(f ⊗Uf)g, h〉 = 0, for all h, g ∈
H. As h, g are arbitrary we can easily check that Retr〈φ∗(f ⊗ Uf)g, h〉 ≥ 0,
for all h, g ∈ H. Equivalently Retr(φ∗(f ⊗ Uf)Y = Retr((f ⊗ Uf)φ(Y )) ≥ 0
for all Y ∈ C∞. Now as Y is taken arbitrary, we get (3.3), which completes
the proof of the second part of the theorem.

We state our first corollary of Theorem 3.2. Let φ = δA,B , where δA,B
: B(H) → B(H) is the generalized derivation defined by δA,B(X) = AX−XB.

Corollary 3.1. Let V ∈ C∞, ψ(V ) has the polar decomposition ψ(V ) =
U |ψ(V )| and let f ∈ Γ. Then Fψ has a global minimum on C∞ at V , if and
only if (f ⊗ Uf) ∈ ker δB∗,A∗ .

Proof. It is easily seen that f⊗Uf ∈ kerφ∗ is equivalent to tr((f⊗Uf)φ(Y )) =
0

This result may be reformulated in the following form where the global
minimum V does not appear. It characterizes the operators V in C∞ which
are orthogonal to the range of the derivation δA,B . Let Γ be the subspace in
which the operator S ∈ C∞ attains its norm

Theorem 3.3. Let S ∈ C∞, ψ(S) has the polar decomposition ψ(S) =
U |ψ(S)| and let f ∈ Γ. Then

‖S + (AX −XB)‖C∞
≥ ‖ψ(S)‖C∞

,

(f ⊗ Uf) ∈ ker δB∗,A∗ , for all X ∈ C∞ .

As a corollary of this theorem we have

Corollary 3.2. Let S ∈ C∞ ∩ ker δA,B, ψ(S) has the polar decomposition
ψ(S) = U |ψ(S)| and let f ∈ Γ. Then the two following assertions are equiva-
lent:

1.

‖S + (AX −XB)‖C∞
≥ ‖S‖C∞

, for all X ∈ C∞.

2. (f ⊗ Uf) ∈ ker δB∗,A∗.
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Remark 3.1. We point out that, thanks to our general results given previ-
ously with more general linear maps φ, Theorem 3.3 and its Corollary 3.2 are
still true for more general classes of operators than δA,B such as the elemen-

tary operators E(X) and
∼

E (X). Note that Theorem 3.2 and Corollary 3.1
generalize the results given in [8]

Remark 3.2. Since C∞ contains Cp (0 < p < ∞) and if I 6= {0}, then
C∞ ⊃ I ⊃ F (H), where F (H) is the set of all finite rank operators and I is
a bilateral ideal of B(H). These show that our results in C∞ generalize some
results in the literature concerning the orthogonality in the sense of Birkhoff
(see [8], [9]).

Now we will present an other characterization of the orthogonality in the
sense of Birkhoof.

Theorem 3.4. Let S, Y ∈ C∞ and f ∈ Γ, where S = U |S| is a smooth point
in C∞. The following conditions are mutually equivalent.

(i) The map Fψ has a global minimum on C∞ at S;
(ii) maxf∈Γ, ||f ||=1Re 〈φ(Y )f, Uf〉 ≥ 0;
(iii) tr((f ⊗ Uf)φ(Y )) = 0 for all Y ∈ C∞;
(iv) φ(Y )f⊥Sf.

Proof. (i) ⇔ (ii). Applying Theorem 3.2 by taking into account Theorem 3.1.
(ii) ⇔ (iii). (See the proof of Theorem 3.2)
(ii) ⇔ (iv) Let Γ be the subspace where S attains its norm. Note that the

set
{
〈

X∗φ(Y )f, f
〉

| f ∈ Γ : ‖f‖ = 1},

is the numerical range of X∗φ(Y ) on the subspace Γ, which has in the complex
plane, such a position that it contains at least one value with positive real part,
under all rotation around the origin. By Toeplitz -Haussdorf Theorem the
numerical range is a closed convex set. Hence the condition (ii) is equivalent
to the condition that the numerical range of the operator X∗φ(Y ) contains
the origin. Since the vectors Uf and Sf always have the same direction. Thus
(iv) is equivalent to (ii). Notice that for ϕ ∈ Γ there holds Sf = ||S||Uf.

As consequences of the above theorem we obtain.

Corollary 3.3. Let φ(Y ) = AY − Y B, S, Y ∈ C∞ and let f ∈ Γ, where S =
U |S| is a smooth point in C∞. Then the following conditions are equivalent.

(i) The map ||S +AY − Y B|| has a global minimum on C∞ at S;
(ii) maxf∈Γ, ||f ||=1Re 〈(AY − Y B)f, Uf〉 ≥ 0, ∀Y ∈ C∞;
(iii) tr((f ⊗ Uf)AY − Y B) = 0, ∀Y ∈ C∞;
(iv) (AY − Y B)f⊥Sf, ∀Y ∈ C∞.
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If we assume that S ∈ kerδA,B we obtain.

Corollary 3.4. Let φ(Y ) = AY − Y B, where S, Y ∈ C∞, S = U |S| is
a smooth point in C∞ and let f ∈ Γ. Then the following conditions are
equivalent.

(i) ||S +AY − Y B|| ≥ ||S||, ∀S ∈ ker δA,B;
(ii) maxf∈Γ, ||f ||=1Re 〈(AY − Y B)f, Uf〉 ≥ 0, ∀Y ∈ C∞;
(iii) tr((f ⊗ Uf)AY − Y B) = 0, ∀Y ∈ C∞;
(iv) (AY − Y B)f⊥Sf, ∀Y ∈ C∞

If we take φ(Y ) = Y , we obtain the following theorem which characterize
the orthogonality in the sense of Birkhoof of two operators in C∞.

Corollary 3.5. Let S, Y ∈ C∞, where S is a smooth point in C∞ and let
ϕ ∈ Γ. Then the following conditions are mutually equivalent.

(i) Y⊥S in the sense of Birkhoof;
(ii) maxf∈Γ, ||f ||=1Re 〈Y f, Uf〉 ≥ 0, ∀Y ∈ C∞;
(iii) tr((f ⊗ Uf)Y ) = 0, ∀Y ∈ C∞;
(iv)Y f⊥Sf, ∀Y ∈ C∞.

Remark 3.3. Note that a related result to Corollary 3.5 has been given by L.
Gajek et al [5, Theorem 2.1].
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THE GÂTEAUX DERIVATIVE AND ORTHOGONALITY IN C∞ 283

[8] F. Kittaneh, Operators that are orthogonal to the range of a derivation,
J. Math. Anal. Appl 203(1996), 863-873.

[9] F.Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc
123(1995)1779-1785.

[10] P.J. Maher, Commutator Approximants, Proc. Amer. Math. Soc
115(1992), 995-1000.

[11] S. Mecheri, On minimizing ‖S − (AX −XB)‖p , Serdica Math. J
26(2000), no. 2, 119-126.

[12] S. Mecheri and A.Bachir, Generalized derivation modulo the ideal of all
compact operators, Int.J. Math. Math. Science. 32(2002), 504-506.

[13] S. Mecheri, Non normal derivations and orthogonality, Proc. Amer. Math.
Soc 133(2005), 759-762.

[14] S. Mecheri, On the range and the kernel of the elementary operator
∑n

i=1AiXBi −X, Acta. Math. Univ. Comenianae. 2(2003), 191-196.

[15] S. Mecheri, Another version of Maher’s inequality, J. Anal. Appl. Z. Anal.
Anw, 23(2004), 303-311.

[16] B. Simon, Trace ideals and their applications, London Mathematical So-
ciety Lecture Notes Series 35, Cambridge University Press, 1979.

[17] A. Turnsek, Elementary operators and orthogonality, Linear Algebra
Appl. 317(2000), 207- 216.

[18] A. Turnsek, Orthogonality in Cp classes, Monatsh. Math 132(2001), 349-
354.

Salah Mecheri,
Department of Mathematics,
Taibah University, College of Science,
Department of Mathematics, P.O.Box 30002,
Al Madinah Almunawwarah, Saudi Arabia.
Email: mecherisalah@hotmail.com

Hacene Mecheri
Department of Mathematics,
Tebessa University, College of Science,
Department of Mathematics, 12002 Tebessa, Algeria (Algérie).



284 Salah Mecheri and Hacene Mecheri


