Warped product pseudo-slant submanifolds of nearly Kaehler manifolds

Siraj Uddin, A.Y.M. Chi

Abstract

In this paper, we study warped product pseudo-slant submanifolds of nearly Kaehler manifolds. We prove the non-existence results on warped product submanifolds of a nearly Kaehler manifold.

1 Introduction

Slant submanifolds of an almost Hermitian manifold were defined by B.Y. Chen [3] as a natural generalization of both holomorphic and totally real submanifolds. Since then many researchers have studied these submanifolds in complex as well as contact setting [2, 8]. The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by N. Papaghiuc [9], and is in fact a generalization of CR-submanifolds. Pseudo-slant submanifolds were introduced by A. Carriazo [2] as a special case of bi-slant submanifolds.

Recently, B. Sahin [10] introduced the notion of warped product hemislant (pseudo-slant) submanifolds of Kaehler manifolds. He showed that there does not exist any warped product hemi-slant submanifolds in the form $M_{\perp} \times {}_{f}M_{\theta}$. He considered warped product hemi-slant submanifolds in the form $M_{\theta} \times {}_{f}M_{\perp}$ where M_{\perp} is a totally real submanifold and M_{θ} is a proper slant submanifold of a Kaehler manifold, and gave some examples for their existence. In this paper we prove that there do not exist warped product submanifolds of the types $N_{\perp} \times {}_{f}N_{\theta}$ and $N_{\theta} \times {}_{f}N_{\perp}$ in a nearly Kaehler manifold \bar{M} , where N_{\perp} is a totally real submanifold and N_{θ} is a proper slant submanifold of \bar{M} .

Key Words: Warped product, slant submanifold, pseudo-slant submanifold, nearly Kaehler manifold Mathematics Subject Classification: 53C40, 53C42, 53C15

¹⁹⁵

2 Preliminaries

Let \overline{M} be an almost Hermitian manifold with almost complex structure J and a Riemannian metric g such that

(a)
$$J^2 = -I$$
, (b) $g(JX, JY) = g(X, Y)$ (2.1)

for all vector fields X, Y on \overline{M} .

Further let $T\overline{M}$ denote the tangent bundle of \overline{M} and $\overline{\nabla}$, the covariant differential operator on \overline{M} with respect to g. If the almost complex structure J satisfies

$$(\bar{\nabla}_X J)X = 0 \tag{2.2}$$

for any $X \in T\overline{M}$, then the manifold \overline{M} is called a *nearly Kaehler manifold*. Equation (2.2) is equivalent to $(\overline{\nabla}_X J)Y + (\overline{\nabla}_Y J)X = 0$. Obviously, every Kaehler manifold is nearly Kaehler manifold.

For a submanifold M of a Riemannian manifold \overline{M} , the Gauss and Weingarten formulae are respectively given by

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{2.3}$$

and

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N \tag{2.4}$$

for all $X, Y \in TM$, where ∇ is the induced Riemannian connection on M, Nis a vector field normal to \overline{M} , h is the second fundamental form of M, ∇^{\perp} is the normal connection in the normal bundle $T^{\perp}M$ and A_N is the shape operator of the second fundamental form. They are related as in [11] by

$$g(A_N X, Y) = g(h(X, Y), N)$$
(2.5)

where g denotes the Riemannian metric on \overline{M} as well as the metric induced on M. The mean curvature vector H of M is given by

$$H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$$
(2.6)

where n is the dimension of M and $\{e_1, e_2, \dots, e_n\}$ is a local orthonormal frame of vector fields on M.

A submanifold M of an almost Hermitian manifold \overline{M} is said to be a *totally umbilical submanifold* if the second fundamental form satisfies

$$h(X,Y) = g(X,Y)H \tag{2.7}$$

for all $X, Y \in TM$. The submanifold M is *totally geodesic* if h(X, Y) = 0, for all $X, Y \in TM$ and minimal if H = 0.

For any $X \in TM$ and $N \in T^{\perp}M$, the transformations JX and JN are decomposed into tangential and normal parts respectively as

$$JX = TX + FX \tag{2.8}$$

$$JN = BN + CN. \tag{2.9}$$

Now, denote by $\mathcal{P}_X Y$ and $\mathcal{Q}_X Y$ the tangential and normal parts of $(\bar{\nabla}_X J)Y$, respectively. That is,

$$(\bar{\nabla}_X J)Y = \mathcal{P}_X Y + \mathcal{Q}_X Y \tag{2.10}$$

for all $X, Y \in TM$. Making use of equations (2.8), (2.9) and the Gauss and Weingarten formulae, the following equations may be obtained easily.

$$\mathcal{P}_X Y = (\bar{\nabla}_X T) Y - A_{FY} X - Bh(X, Y)$$
(2.11)

$$\mathcal{Q}_X Y = (\bar{\nabla}_X F)Y + h(X, TY) - Ch(X, Y)$$
(2.12)

Similarly, for any $N \in T^{\perp}M$, denoting tangential and normal parts of $(\bar{\nabla}_X J)N$ by $\mathcal{P}_X N$ and $\mathcal{Q}_X N$ respectively, we obtain

$$\mathcal{P}_X N = (\bar{\nabla}_X B) N + T A_N X - A_{CN} X \tag{2.13}$$

$$Q_X N = (\bar{\nabla}_X C)N + h(BN, X) + FA_N X \qquad (2.14)$$

where the covariant derivatives of T, F, B and C are defined by

$$(\bar{\nabla}_X T)Y = \nabla_X TY - T\nabla_X Y \tag{2.15}$$

$$(\bar{\nabla}_X F)Y = \nabla_X^{\perp} FY - F\nabla_X Y \tag{2.16}$$

$$(\bar{\nabla}_X B)N = \nabla_X BN - B\nabla_X^{\perp} N \tag{2.17}$$

$$(\bar{\nabla}_X C)N = \nabla_X^{\perp} CN - C\nabla_X^{\perp} N \tag{2.18}$$

for all $X, Y \in TM$ and $N \in T^{\perp}M$.

It is straightforward to verify the following properties of $\mathcal P$ and $\mathcal Q,$ which we enlist here for later use:

$$(p_1) (i) \quad \mathcal{P}_{X+Y}W = \mathcal{P}_XW + \mathcal{P}_YW, \qquad (ii) \quad \mathcal{Q}_{X+Y}W = \mathcal{Q}_XW + \mathcal{Q}_YW,$$

$$(p_2) \quad (i) \quad \mathcal{P}_X(Y+W) = \mathcal{P}_XY + \mathcal{P}_XW, \quad (ii) \quad \mathcal{Q}_X(Y+W) = \mathcal{Q}_XY + \mathcal{Q}_XW,$$

$$(p_3) (i) \quad g(\mathcal{P}_X Y, W) = -g(Y, \mathcal{P}_X W), \quad (ii) \quad g(\mathcal{Q}_X Y, N) = -g(Y, \mathcal{P}_X N),$$

 $(p_4) \quad \mathfrak{P}_X JY + \mathfrak{Q}_X JY = -J(\mathfrak{P}_X Y + \mathfrak{Q}_X Y)$

for all $X, Y, W \in TM$ and $N \in T^{\perp}M$.

On a submanifold M of a nearly Kaehler manifold, by equations (2.2) and (2.10), we have

(a)
$$\mathfrak{P}_X Y + \mathfrak{P}_Y X = 0$$
, (b) $\mathfrak{Q}_X Y + \mathfrak{Q}_Y X = 0$ (2.19)

for any $X, Y \in TM$.

The submanifold M is said to be *holomorphic* if F is identically zero, that is, $\phi X \in TM$ for any $X \in TM$. On the other hand, M is said to be *totally real* if T is identically zero, that is $\phi X \in T^{\perp}M$, for any $X \in TM$.

A distribution D on a submanifold M of an almost Hermitian manifold \overline{M} is said to be a *slant distribution* if for each $X \in D_x$, the angle θ between JX and D_x is constant i.e., independent of $x \in M$ and $X \in D_x$. In this case, a submanifold M of \overline{M} is said to be a *slant submanifold* if the tangent bundle TM of M is slant.

Moreover, for a slant distribution D, we have

$$T^2 X = -\cos^2 \theta X \tag{2.20}$$

for any $X \in D$. The following relations are straightforward consequences of equation (2.20):

$$g(TX, TY) = \cos^2 \theta g(X, Y) \tag{2.21}$$

$$g(FX, FY) = \sin^2 \theta g(X, Y) \tag{2.22}$$

for all $X, Y \in D$.

A submanifold M of an almost Hermitian manifold \overline{M} is said to be a *pseudo-slant submanifold* if there exist two orthogonal complementary distributions D_1 and D_2 satisfying:

- (i) $TM = D_1 \oplus D_2$
- (ii) D_1 is a slant distribution with slant angle $\theta \neq \pi/2$
- (iii) D_2 is totally real i.e., $JD_2 \subseteq T^{\perp}M$.

A pseudo-slant submanifold M of an almost Hermitian manifold \bar{M} is mixed geodesic if

$$h(X,Z) = 0 (2.23)$$

for any $X \in D_1$ and $Z \in D_2$.

If μ is the invariant subspace of the normal bundle $T^{\perp}M$, then in the case of pseudo-slant submanifold, the normal bundle $T^{\perp}M$ can be decomposed as follows:

$$T^{\perp}M = \mu \oplus FD_1 \oplus FD_2. \tag{2.24}$$

3 Warped product pseudo-slant submanifolds

In 1969 Bishop and O'Neill [1] introduced the notion of warped product manifolds. These manifolds are natural generalizations of Riemannian product manifolds. They defined these manifolds as: Let (N_1, g_1) and (N_2, g_2) be two Riemannian manifolds and f, a positive differentiable function on N_1 . The warped product of N_1 and N_2 is the Riemannian manifold $N_1 \times {}_f N_2 = (N_1 \times N_2, g)$, where

$$g = g_1 + f^2 g_2. ag{3.1}$$

A warped product manifold $N_1 \times {}_f N_2$ is said to be *trivial* if the warping function f is constant. We recall the following general formula on a warped product [1].

$$\nabla_X Z = \nabla_Z X = (X \ln f) Z, \tag{3.2}$$

where X is tangent to N_1 and Z is tangent to N_2 .

Let $M = N_1 \times {}_f N_2$ be a warped product manifold. This means that N_1 is totally geodesic and N_2 is a totally umbilical submanifold of M [1].

Throughout this section, we consider warped product pseudo-slant submanifolds which are either in the form $N_{\perp} \times {}_{f}N_{\theta}$ or $N_{\theta} \times {}_{f}N_{\perp}$ in a nearly Kaehler manifold \bar{M} , where N_{θ} and N_{\perp} are proper slant and totally real submanifolds of \bar{M} , respectively. In the following theorem we consider the warped product pseudo-slant submanifolds in the form $M = N_{\perp} \times {}_{f}N_{\theta}$ of a nearly Kaehler manifold \bar{M} .

Theorem 3.1. Let \overline{M} be a nearly Kaehler manifold. Then the warped product submanifold $M = N_{\perp} \times {}_{f}N_{\theta}$ is a Riemannian product of N_{\perp} and N_{θ} if and only if $\mathcal{P}_{X}TX$ lies in TN_{θ} , for any $X \in TN_{\theta}$, where N_{\perp} and N_{θ} are totally real and proper slant submanifolds of \overline{M} , respectively.

Proof. Let $M = N_{\perp} \times {}_{f}N_{\theta}$ be a warped product pseudo-slant submanifold of a nearly Kaehler manifold \overline{M} . For any $X \in TN_{\theta}$ and $W \in TN_{\perp}$, we have

$$g(h(TX,W),FX) = g(\bar{\nabla}_W TX,FX) = -g(TX,\bar{\nabla}_W FX).$$

Using (2.8), we derive

$$g(h(TX,W),FX) = g(TX,\bar{\nabla}_W TX) - g(TX,\bar{\nabla}_W JX).$$

Then from (2.3) and the covariant derivative property of J, we obtain

$$g(h(TX,W),FX) = g(TX,\nabla_W TX) - g(TX,(\nabla_W J)X) - g(TX,J\nabla_W X)$$

Thus, using (2.1), (2.10) and (3.2) we get

 $g(h(TX,W),FX) = (W\ln f)g(TX,TX) - g(TX,\mathcal{P}_WX) + g(JTX,\bar{\nabla}_WX).$

Using (2.3), (2.8), (2.19) (a) and (2.21), we obtain

$$g(h(TX,W),FX) = (W \ln f) \cos^2 \theta ||X||^2 + g(TX, \mathcal{P}_X W)$$
$$+ g(T^2 X, \nabla_W X) + g(h(X,W),FTX).$$

Thus by property p_3 (i), (2.20) and (3.2), we derive

$$g(h(TX, W), FX) = (W \ln f) \cos^2 \theta ||X||^2 - g(\mathcal{P}_X TX, W) - (W \ln f) \cos^2 \theta ||X||^2 + g(h(X, W), FTX).$$

Hence the above equation takes the form

$$g(\mathcal{P}_X TX, W) = g(h(X, W), FTX) - g(h(TX, W), FX).$$
(3.3)

On the other hand for any $X \in TN_{\theta}$ and $W \in TN_{\perp}$, we have

$$g(h(X,TX),JW) = g(\bar{\nabla}_{TX}X,JW) = -g(J\bar{\nabla}_{TX}X,W).$$

Using the covariant differentiation formula of J, we get

$$g(h(X,TX),JW) = g((\bar{\nabla}_{TX}J)X,W) - g(\bar{\nabla}_{TX}JX,W).$$

Then by (2.10) and property of $\overline{\nabla}$, we derive

$$g(h(X,TX),JW) = g(\mathcal{P}_{TX}X,W) + g(JX,\bar{\nabla}_{TX}W).$$

Thus from (2.3), (2.8) and (2.19) (a), we obtain

$$g(h(X,TX),JW) = -g(\mathcal{P}_XTX,W) + g(TX,\nabla_{TX}W) + g(h(TX,W),FX).$$

By (3.2), the above equation reduces to

$$g(h(X,TX),JW) = -g(\mathcal{P}_XTX,W)$$

$$+ (W \ln f)g(TX, TX) + g(h(TX, W), FX).$$

Hence, using (2.21), we get

$$g(h(X, TX), JW) = -g(\mathcal{P}_X TX, W) + (W \ln f) \cos^2 \theta ||X||^2 + g(h(TX, W), FX).$$
(3.4)

By property (p_3) (i), the above equation reduces to

$$g(h(X,TX),JW) = g(TX,\mathcal{P}_XW) + (W\ln f)\cos^2\theta ||X||^2$$

$$+g(h(TX,W),FX).$$

Interchanging X with TX and then using (2.20) and (2.21), we obtain

$$-\cos^2\theta g(h(X,TX),JW) = -\cos^2\theta g(X,\mathcal{P}_{TX}W) + (W\ln f)\cos^4\theta g(X,X)$$
$$-\cos^2\theta g(h(X,W),FTX).$$

Again, by first using property (p_3) (i) followed by (2.19) (a) we arrive at

$$-g(h(X,TX),JW) = -g(\mathcal{P}_X TX,W) + (W\ln f)\cos^2\theta ||X||^2 -g(h(X,W),FTX).$$
(3.5)

Then from (3.4) and (3.5), we obtain

$$2(W \ln f) \cos^2 \theta \|X\|^2 = 2g(\mathcal{P}_X TX, W) + g(h(X, W), FTX) - g(h(TX, W), FX).$$
(3.6)

Thus, by (3.3) and (3.6), we conclude that

$$(W\ln f)\cos^2\theta \|X\|^2 = \frac{3}{2}g(\mathcal{P}_X TX, W).$$
(3.7)

Since N_{θ} is proper slant, thus we get $(W \ln f) = 0$, if and only if $\mathcal{P}_X T X$ lies in TN_{θ} for all $X \in TN_{\theta}$ and $W \in TN_{\perp}$. This shows that f is constant on N_{\perp} . The proof is thus compelete.

Theorem 3.2. The warped product submanifold $M = N_{\theta} \times {}_{f}N_{\perp}$ of a nearly Kaehler manifold \overline{M} is simply a Riemannian product of N_{θ} and N_{\perp} if and only if

$$g(h(X,Z), FZ) = g(h(Z,Z), FX),$$
 (3.7)

for any $X \in TN_{\theta}$ and $Z \in TN_{\perp}$, where N_{θ} and N_{\perp} are proper slant and totally real submanifolds of \overline{M} , respectively.

Proof. Let $M = N_{\theta} \times {}_{f}N_{\perp}$ be a warped product submanifold of a nearly Kaehler manifold \overline{M} . Then for any $X \in TN_{\theta}$ and $Z \in TN_{\perp}$, we have

$$g(h(TX,Z),FZ) = g(\nabla_Z TX,JZ).$$

Using (2.1), we get

$$g(h(TX,Z),FZ) = -g(J\bar{\nabla}_Z TX,Z)$$

Thus, on using the covariant differentiation property of J, we obtain

$$g(h(TX,Z),FZ) = g((\overline{\nabla}_Z J)TX,Z) - g(\overline{\nabla}_Z JTX,Z).$$

Then from (2.8) and (2.10), we derive

$$g(h(TX,Z),FZ) = g(\mathcal{P}_Z TX,Z) - g(\bar{\nabla}_Z T^2 X,Z) - g(\bar{\nabla}_Z FTX,Z).$$

Now, using (2.4), (p_3) (i) and (2.20) we obtain that

$$g(h(TX,Z),FZ) = -g(\mathcal{P}_Z Z,TX) + \cos^2 \theta g(\nabla_Z X,Z) + g(A_{FTX} Z,Z).$$

Since on using (2.2) and (2.10) we have $\mathcal{P}_Z Z = 0$, then from (2.5) and (3.2), we get

$$g(h(TX, Z), FZ) = (X \ln f) \cos^2 \theta ||Z||^2 + g(h(Z, Z), FTX).$$
(3.8)

Interchanging X with TX in (3.8), we obtain

$$\cos^2\theta g(h(X,Z),FZ) = -(TX\ln f)\cos^2\theta ||Z||^2 + \cos^2\theta g(h(Z,Z),FX).$$

The above equation can be written as

$$(TX\ln f)||Z||^2 = g(h(Z,Z),FX) - g(h(X,Z),FZ).$$
(3.9)

Thus, $(TX \ln f) = 0$ if and only if g(h(Z, Z), FX) = g(h(X, Z), FZ). This proves the theorem.

The following corollaries are consequences of the above theorem.

Corollary 3.1. There does not exist any warped product pseudo-slant submanifolds $M = N_{\theta} \times {}_{f}N_{\perp}$ of a nearly Kaehler manifold \overline{M} , if the condition

$$h(TM, D^{\perp}) \in \mu,$$

holds, where μ is the invariant normal subbundle of TM and D^{\perp} is a distribution corresponding to the submanifold N_{\perp} .

Proof. The proof follows from (3.9).

Corollary 3.2. There does not exist any mixed totally geodesic pseudo-slant warped product submanifold $M = N_{\theta} \times {}_{f}N_{\perp}$ of a nearly Kaehler manifold \overline{M} such that $h(Z, Z) \in \mu$ for all $Z \in D^{\perp}$.

References

- R.L. Bishop and B. O'Neill, *Manifolds of negative curvature*, Trans. Amer. Math. Soc. 145(1969), 1-49.
- [2] A. Carriazo, New developments in slant submanifolds theory, Narosa Publishing House, New Delhi, India, 2002.
- [3] B.Y. Chen, *Slant immersions*, Bull. Austral. Math. Soc. 41(1990), 135-147.
- [4] B.Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math. 133(2001), 177-195.
- [5] A. Gray, Nearly Kaehler manifolds, J. Diff. Geom. 4(1970), 283-309.
- [6] V.A. Khan and M.A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian J. Pure Appl. Math. 38(2007), 31-42.
- [7] V.A. Khan and K.A. Khan, Generic warped product submanifolds in nearly Kaehler manifolds, Beitrge zur Algebra und Geometrie 50(2009), 337-352.
- [8] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie 39(1996), 183-198.
- [9] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, Ann. St. Univ. Iasi 9(1994), 55-61.
- [10] B. Sahin, Warped product submanifolds of Kaehler manifolds with a slant factor, Ann. Pol. Math. 95(2009), 207-226.
- [11] K. Yano, and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore, 1984.

Institute of Mathematical Sciences, Faculty of Science,University of Malaya, 50603 Kuala Lumpur, MALAYSIA e-mail: siraj.ch@gmail.com

Institute of Mathematical Sciences, Faculty of Science,University of Malaya, 50603 Kuala Lumpur, MALAYSIA e-mail: acym@um.edu.my