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The asymptotic behaviour of the number of
solutions of polynomial congruences

Dirk Segers

Abstract

One mentions in a lot of papers that the poles of Igusa’s p-adic zeta
function determine the asymptotic behavior of the number of solutions
of polynomial congruences. However, no publication clarifies this con-
nection precisely. We try to get rid of this gap.

1 Introduction

(1.1) Let f ∈ Z[x1, . . . , xn] be a polynomial over the integers in n vari-
ables. Put x = (x1, . . . , xn). We are interested in the number of solutions
of f(x) ≡ 0 mod m in (Z/mZ)n for an arbitrary positive integer m. The Chi-
nese remainder theorem reduces this problem to the case that m is a power
of a prime. Fix from now on a prime p and let Mi, i ∈ Z≥0, be the num-
ber of solutions of the congruence f(x) ≡ 0 mod pi in (Z/piZ)n. The aim of
this paper is to study the asymptotic behaviour of the numbers Mi, and to
relate this behaviour with information about the poles of Igusa’s p-adic zeta
function, which will be defined in (1.3).

(1.2) Let Zp be the ring of p-adic integers. The behaviour of the Mi is
well understood if f−1{0} has no singular point in Zn

p . Indeed, we can take
a k ∈ Z>0 for which f has no singular point modulo pk because f has no
singular point in the sequentially compact space Zn

p . Using Hensels lemma,
one obtains that Mi = M2k−1p

(n−1)(i−2k+1) for every i ≥ 2k − 1.
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(1.3) The behaviour of the Mi is more complicated if f has a singular point
in Zn

p . At this stage, we introduce Igusa’s p-adic zeta function Zf (s) of f . It
is defined by

Zf (s) =
∫

Zn
p

|f(x)|s |dx|

for s ∈ C, Re(s) > 0, where |dx| denotes the Haar measure on Qn
p , so normal-

ized that Zn
p has measure 1. Note that Zf (s) only depends on p−s. We will

write Zf (t) if we consider Zf (s) as a function in the variable t := p−s.
All the Mi describe and are described by Zf (t) through the equivalent

relations

Zf (t) = P (t)− P (t)− 1
t

and P (t) =
1− tZf (t)

1− t
,

where the Poincaré series P (t) of f is defined by

P (t) =
∞∑

i=0

Mi(p−nt)i.

(1.4) Igusa proved in [Ig1] that Zf (s) is a rational function of p−s by calcu-
lating the integral on an embedded resolution of the singularities of f , which
always exists by Hironaka’s theorem [Hi]. This implies that it extends to a
meromorphic function Zf (s) on C, which is also called Igusa’s p-adic zeta
function of f . We also obtain from the relations in (1.3) that P (t) is a rational
function.

Igusa determined actually a specific form of the rational function which
involves geometric data of an embedded resolution g of f . He obtained that
Zf (t) can be written in the form

Zf (t) =
A(t)∏

j∈J (1− p−νj tNj )
,

where A(t) ∈ S[t], with S := {z/pi | z ∈ Z, i ∈ Z≥0}, where A(t) is not
divisible by any of the 1− p−νj tNj and where the Nj and νj − 1 are the multi-
plicities of f ◦ g and g∗dx along an irreducible component Ej of g−1(f−1{0}).
It is surprising that most irreducibele components of g−1(f−1{0}) do not in-
duce a factor in the denominator. This would be elucidated if the monodromy
conjecture (see for example [De]) is true.

It follows from (1.3) and Zf (t = 1) = 1 that we can write

P (t) =
B(t)∏

j∈J(1− p−νj tNj )
,
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where B(t) ∈ S[t]. Here, B(t) is also not divisible by any of the 1− p−νj tNj .
The poles of P (t) and Zf (t) are actually the same.

(1.5) In this paper, we try to explain the relation between the poles (and their
order) of P (t), which are the same as those of Zf (t), and the numbers Mi. If
also the principal parts of the Laurent series of P (t) at all poles are known, we
will even calculate the numbers Mi (and not only their asymptotic behaviour)
for i large enough. The principal parts of the Laurent series of Zf (t) and P (t)
at a certain pole can be calculated from each other, which is also the case
for the ones of Zf (s) and Zf (t) at corresponding poles. Therefore, it is also
possible to calculate the numbers Mi for i large enough from the principal
parts of the Laurent series of Zf (s) at all its poles. This will not be worked
out in the paper because it leads to formulas which are more complicated and
which do not give us more insight.

Reference. An introduction to Igusa’s p-adic zeta function which contains
more details can be found in [Se1, Section 1.1], [Ig2] or [De].

Acknowledgements. I want to thank Pierrette Cassou-Noguès for pointing my
attention at this problem.

2 The asymptotic behaviour

(2.1) We define an equivalence relation on J . We say that j1 ∼ j2 iff νj1/Nj1 =
νj2/Nj2 . This equivalence relation determines a partition of J into sets Jk,
k ∈ V . For k ∈ V , we denote the lowest common multiple of the νj , j ∈ Jk,
by ak and the lowest common multiple of the Nj , j ∈ Jk, by bk. Remark
that ak/bk = νj/Nj for all j ∈ Jk. Let mk be the cardinality of Jk. Because
1− p−aktbk is a multiple of 1− p−νj tNj for all j ∈ Jk, we can write

P (t) =
C(t)∏

k∈V (1− p−aktbk)mk
,

where C(t) ∈ S[t].

Theorem. There exists a unique decomposition of every Mi with i > deg(P (t))
of the form

Mi =
r∑

k=1

gk(i)pplkiq,

where the lk are different rational numbers and where every gk(i) is a nonzero
function which is polynomial with rational coefficients on residue classes. The
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r numbers lk − n are the real parts of the poles of Zf (s). If we denote the
elements of V by 1, . . . , r in such a way that lk − n = −ak/bk for every
k ∈ {1, . . . , r}, we have for k ∈ {1, . . . , r} that

1. the function gk(i) is polynomial on each residue class modulo bk,

2. the maximum of the degrees of these polynomials is equal to mk−1 and

3. these polynomials (and thus also gk(i)) are determined by the principal
parts of the Laurent series of Zf (s) in the poles with real part −ak/bk.

Remark. (1) The lk are rational numbers less than n because the real parts of
the poles of Zf (s) are negative rational numbers. The author proved in [Se3]
that the real part of every pole of Zf (s) is larger than or equal to −n/2. This
implies that lk ≥ n/2 for every k ∈ {1, . . . , r}. Moreover, in the case that
n = 3 and f has no singular point in Z3

p of multiplicity 2, the author proved
[Se2] that there are no poles with real part less than −1, which implies that
lk ≥ 2 for every k ∈ {1, . . . , r}.

(2) It follows from the theorem that the asymptotic behaviour of the num-
ber of solutions is determined by the largest real part of a pole of Zf (s) and
by the largest order of a pole with maximal real part.

Proof. Applying decomposition into partial fractions in Q[t], we can write

P (t) = C0(t) +
∑

k∈V

Ck(t)
(1− p−aktbk)mk

,

where every Ck(t) ∈ Q[t] and where deg(Ck(t)) < mkbk for k ∈ V . Note that
the term C0(t) does not give a contribution to Mi for i > deg(C0(t)) and that
deg(C0(t)) = deg(P (t)) if one of them is non-negative. Now we look at the
contributions of the other terms. So fix k ∈ V . Note that Ck(t) contains
exactly the information of the principal parts of the Laurent series of P (t) at
the poles with absolute value pak/bk . We have

Ck(t)
(1− p−aktbk)mk

=
Ck,mk

(t)
(1− p−aktbk)mk

+
Ck,mk−1(t)

(1− p−aktbk)mk−1
+ · · ·+ Ck,1(t)

1− p−aktbk

=
bk−1∑

d=0

∞∑
e=0

gk,d(e)p−eaktebk+d

=
bk−1∑

d=0

∞∑
e=0

gk,d(e)pxdak/bkypp(n−ak/bk)(ebk+d)q tebk+d

pn(ebk+d)
,
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where Ck,l(t) ∈ Q[t] with deg(Ck,l(t)) < bk and where the maximum of the
degrees of the polynomials gk,d(e) is equal to mk − 1. Actually, if we denote
the coefficient of td in Ck,l(t) by Ck,l,d, we get

gk,d(e) = Ck,mk,d
(e + mk − 2)!

(e− 1)!(mk − 1)!
+Ck,mk−1,d

(e + mk − 3)!
(e− 1)!(mk − 2)!

+ · · ·+Ck,1,d.

¤

(2.2) Finally, we give two examples. In the first example, all the coefficients
of the polynomials Ck(t), k ∈ V , are in S. This is in some sense the easiest
situation. The second example shows that this is not always the case. There
are several ways to compute the Poincaré series: one can calculate the integral
on an embedded resolution of singularities of f , one can use the formula for
polynomials which are non-degenerated over Fp with respect to their Newton
polyhedron [DH] and one can use the p-adic stationary phase formula [Ig2,
Theorem 10.2.1]. All these techniques are also explained in [Se1, Section 1.1].

Example 1. Let f(x, y) = y2 − x3 and let p be an arbitrary prime. Then,

P (t) =
−t6 + p4t2 − p3t2 + p6

(p5 − p6)(p− t)

=
2p−5t5 + 2p−4t4 + 2p−3t3 + 2p−2t2 + (p + 1)p−2t + (p + 1)p−1

1− p−5t6

= − p−1

1− p−1t
.

We obtain for every e ∈ Z≥0 that

M6e = (p + 1)p7e−1 − p6e−1, M6e+1 = (p + 1)p7e − p6e,
M6e+2 = 2p7e+2 − p6e+1, M6e+3 = 2p7e+3 − p6e+2,
M6e+4 = 2p7e+4 − p6e+3 and M6e+5 = 2p7e+5 − p6e+4.

Example 2. Let f(x, y) = x3 + y5 and let p be an arbitrary prime. Then,

P (t) =

−t15 + (p− 1)t14 + (p− 1)pt12 + (p− 1)p3t9

+(p− 1)p3t8 + (p− 1)p5t5 + (p− 1)p6t3 + (p− 1)p6t2 + p9

(p8 − t15)(p− t)

=
C1(t)

1− p−8t15
+

C2(t)
1− p−1t

,
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where

C1(t) =
p7 + p− 2
(p7 − 1)p8

t14 +
p7 + p2 − p− 1

(p7 − 1)p8
t13 +

p7 + p2 − p− 1
(p7 − 1)p7

t12 +

+
p7 + p3 − p2 − 1

(p7 − 1)p7
t11 +

p7 + p3 − p2 − 1
(p7 − 1)p6

t10 +
p7 + p3 − p2 − 1

(p7 − 1)p5
t9 +

+
p7 + p4 − p3 − 1

(p7 − 1)p5
t8 +

p7 + p5 − p4 − 1
(p7 − 1)p5

t7 +
p7 + p5 − p4 − 1

(p7 − 1)p4
t6 +

+
p7 + p5 − p4 − 1

(p7 − 1)p3
t5 +

p7 + p6 − p5 − 1
(p7 − 1)p3

t4 +
p7 + p6 − p5 − 1

(p7 − 1)p2
t3 +

+
2p7 − p6 − 1
(p7 − 1)p2

t2 +
p8 − 1

(p7 − 1)p2
t +

p8 − 1
(p7 − 1)p

and

C2(t) = − p− 1
(p7 − 1)p

.

As an illustration, we calculate the Mi for i in the residue class of 3 modulo
15:

M3+15e =
(p7 + p6 − p5 − 1)p4+22e

p7 − 1
− (p− 1)p2+15e

p7 − 1
(1)

= p4+22e +
(p− 1)p9+22e

p7 − 1
− (p− 1)p2+15e

p7 − 1

= p4+22e + (p− 1)
p7e+7 − 1

p7 − 1
p2+15e

= p4+22e + (p− 1)(p7e + · · ·+ p14 + p7 + 1)p2+15e.

Note that the two terms in (1) are not integers and that one of them is negative.
Note also that the Poincaré series in the two examples are rational functions
of t and p, but this is not the case in general.
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