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A GENERALIZATION OF THE n-WEAK
AMENABILITY OF BANACH ALGEBRAS

O.T. Mewomo and G. Akinbo

Abstract

Let A be a Banach algebra and ¢ : A — A be a continuous ho-
momorphism. We generalize the notion of n-weak amenability of A to
that of (¢) — n-weak amenability for n € N. We give conditions under
which the module extension Banach algebra and second dual of A are
(¢) — n-weakly amenable.

1 Introduction

In [4], Bodaghi, Gordji and Medghalchi generalized the concept of weak amenabil-
ity of Banach algebras to that of (y,)-weak amenability. They determined
the relations between weak amenability and (i, ¢)-weak amenability of a Ba-
nach algebra A.

Also, in [7], Dales, Ghahramani, and Gronbaek introduced the concept of
n-weak amenability for Banach algebras for n € N. They determined some
relations between m- and n-weak amenability for general Banach algebras
and for Banach algebras in various classes, and proved that, for each n € N,
(n 4+ 2)- weak amenability always implies n-weak amenability. Let A be a
weakly amenable Banach algebra. Then it is also proved in [7] that in the case
where A is an ideal in its second dual (A”,0), A is necessarily (2m — 1)-weakly
amenable for each m € N. The authors of [7] asked the following questions:
(i) Is a weakly amenable Banach algebra necessarily 3-weakly amenable? (ii)
Is a 2-weakly amenable Banach algebra necessarily 4-weakly amenable? A
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counter-example resolving question (i) was given by Zhang in [18], but it seems
that question (ii) is still open.

It is also shown in Corollary 5.4 of [7] that for certain Banach space E the
Banach algebra N(E) of nuclear operators on E is n-weakly amenable if and
only if n is odd.

Let L'(G) be the group algebra of a locally compact group G. It is proved
in Theorem 4.1 of [7] that each group algebra is n-weakly amenable whenever
n is odd, and it is conjectured that L!(G) is n-weakly amenable for each n € N;
this is true whenever G is amenable, and it is true when G is a free group [12].

A class of Banach algebras that was not considered in [3] is the Banach
algebras on semigroups. In [13] Mewomo considered this class of Banach
algebras by examining the n-weak amenability of some semigroup algebras,
and give an easier example of a Banach algebra which is n-weakly amenable
if n is odd.

In this paper, we shall extend the notion of (p,)-weak amenability to
that of (¢) — n— weak amenability of Banach algebras.

2 Preliminaries

First, we recall some standard notions; for further details, see [6] and [17].
Let A be an algebra and let X be an A-bimodule. A derivation from A to
X is a linear map D : A — X such that

D(ab) =Da - b+a - Db (a,be A).

For example, §, : a +— a - x —x - a is a derivation; derivations of this form are
the inner derivations.

Let A be a Banach algebra, and let X be an A-bimodule. Then X is a
Banach A-bimodule if X is a Banach space and if there is a constant k& > 0
such that

la - x| <kllallllz], [z -l <klallz] (a€A, zeX).

By renorming X, we can suppose that k£ = 1. For example, A itself is Banach
A-bimodule, and X', the dual space of a Banach A-bimodule X, is a Banach
A-bimodule with respect to the module operations defined by

(x,a - N =(x-a,A), (t,\-a)={(a- -z, \) (zeX)

for a € A and A\ € X'; we say that X’ is the dual module of X. In particular
every closed two-sided ideal I of A is Banach A-bimodule and I’ the dual space
of I is a dual A-bimodule.
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Successively, the duals X (™ are Banach A-bimodules; in particular A is
a Banach A-bimodule for each n € N. We take X(© = X.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then
Z1(A, X) is the space of all continuous derivations from A into X, N1(4, X)
is the space of all inner derivations from A into X, and the first cohomology
group of A with coefficients in X is the quotient space

HYAX)=2YA,X)/NY A, X).

The Banach algebra A is amenable if H (A, X’) = {0} for each Banach A-
bimodule X and weakly amenable if H (A, A’) = {0}. For instance, the group
algebra, L' (G) of a locally compact group G is always weakly amenable ([12]),
and is amenable if and only if G is amenable in the classical sense ([11]). Also,
a C*-algebra is always weakly amenable ([10]) and is amenable if and only if
it is nuclear ([5]).

Let A be a Banach algebra and let ¢, be continuous homomorphisms on
A. As in [4], we consider the following module actions on A,

a-x:=p(a)r, z-a:=z¥(a) (a,z€A).

The authors in [4] denote the above A-module by A, ).
Let X be an A-module. A bounded linear mapping d : A — X is called a
(¢, ¥)-derivation if

d(ab) = d(a) - p(a) + ¢ (a) - d(b) (a,be A).

A bounded linear mapping d : A — X is called a (p,)- inner derivation if
there exists x € X such that

d(a) =z -p(a) —¢(a) -z (a€A).

A derivation D : A — X is called approximately (¢, )- inner if there exsits a
net (z,) in X such that, for all a € A,

D(a) = lima(zq - (a) = (a) - za)

in norm.

Derivations of this form are studied in [14,15,16].

The authors in [4] defined A to be (¢, 1)-weakly amenable if H' (A, (A(,p)’) =
{0}.

In this paper, we consider the case in which ¢ = v and denote (¢, p)-
derivation, (i, p)-inner derivation by (¢)-derivation, (¢)-inner derivation re-
spectively.
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3 (¢) —n-Weak Amenability

Let A and B be Banach algebras. Suppose ¢ : A — B is a continuous
homomorphism, then B(™ can be regarded as an A-module under the module
actions

a-m=q(a)-mm-a=m-p(a) (aeAmeB™ neN).

Let ¢ : A — A be a continuous homomorphism, then A is an A-module
with the module actions

a-m=qp(a)-mm-a=m-¢p(a) (aeA,méA(”),neN).

A direct verification shows that the dual mappings ¢’ : A’ — A’ and
o" A" — A" are A-module morphisms. This is also true for the higher dual
mappings
S0(271—1) . A(Qn—l) _ A(Zn—l) and (p(Qn) . A(2n) N A(Qn)

Proposition 3.1 Let A and B be Banach algebras and let p : A — A, ¢ :
B — B be continuous homomorphism. Let o1 : A — B and v : B — A be
continuous homomorphisms such that o1 o g = Ip.

(i) Suppose D : B — B®"=V) s q (p)-derivation, then D = ((pgznq) oDogys) :
A — AP s (o o py)-derivation.

(i) Suppose D : B — B®™ is a (p)-deriation, then D = ((pézn) oDopq):
A — AP s (p o @1)-derivation.

(i) Supoose D is (¢ o @y)-inmer, then D is inner

(iv) Suppose D is (@ o p1)-inner, then D is (p)-inner.

(v) Suppose A is (¢ o v1) — n-weakly amenable for n € N, then B is (p) — n-
weakly amenable .

Proof (i) Let D : B — B®"~ 1 be a (¢)-derivation. Then, for a,b € A,
we have

D(ab) = (¢ "V o Do p1)(ab) = "V 0 D(p1(a)p1 (b))

= 2"V (D(p1(a))e(p1 (D) + (1 (a)) D(1 (D))

= o(p1(0) - ¢V (D(p1(a))) + V(D1 (1)) - (1(a))
= o(p1(0)) - D(a) + D(b) - p(1(a))
= o p1(b) - D(a) + D(b) - p o ¢1(a)

Thus D is (¢ o ¢1)-derivation.
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(ii) Let D : B — B®" be a (p)-derivation. Then, for a,b € A, we have
D(ab) = (95" 0 D o p1)(ab) = 5™ o D(p1(a)r (b
ab) = (p5 p1)(ab) = ¢y p1(a)p1(b))

= 057 (D (1) (1 (b)) + ¢ (1(0) D(p1 (1))
= (1) - 95 (D(1(a))) + 5" (D(1(h))) - ¢(p1(a))
= ¢(p1(b)) - D(a) + D(b) - (01 (a))
=popi(b)-D(a)+ D(b) - popi(a)

Thus D is (¢ o ¢y)-derivation.

(iii) Clearly, ¢ ( n=b . A@n=1) 5 Bn=1) g 4 Bomodule morphism. Sup-
pose D is (po gpl) -inner, then there exists F € A®"~1) with

D(a) =popi(a) - F'=F-popi(a) (a€A).

(2n—2) o 9022”72)

Since ;1 o w9 = Ip, we have ¢; = Ip@n-2), and so for every

be B and m € B?"2) we have
(D(b),m) = (D(g1 0 @2(b)), > 0 "~ (m))
= (" o Do pi(pa(b)), 05" (m)
(D(p()), 08" (m)
(2n—2)

(powi(pa(d)) - F' = F-powpi(pa(h)), vy (m))

(Since D is (¢ o ¢1)-inner)
(p(b) - F — F - o(b), 5" (m))
= (05" (b)) - F — F - (b)), m)

(o (0) -5V (F) = "V (F) - (b))
Thus, D is (¢)-inner.

(iv) The proof of (iv) is similar to that of (iii).

(v) This follows directly from (i),(ii),(iii) and (iv)
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Theorem 3.2 Let A be a Banach algebra such that A = B & I for some
closed ideal I and closed subalgebra B. Let ¢ : A — A be a continuous homo-
morphism. Suppose A is (p o 1) — n-weakly amenable where p1 : A — B is a
natural projection of A onto B. Then B is (p) — n-weakly amenable.

Proof Let s : B — A be the natural injection into A. Clearly, ¢; and
(g are continuous homomorphism with ¢ o 9o = Ig. Thus, the result follows
from Proposition 3.1.

We recall that a short exact sequence of Banach algebras is a triple of
Banach algebras A, B and C together with a pair of continuous homomorphism
¢ :A— Band ¢ : B — C such that ¢ is injective, its image ¢(A) equals
Kernel(y), and v is surjective. This short exact sequence is denoted by

0—-A—-B—-C=0.

The short exact sequence is said to be split if there is a continuous homomor-
phism x : C' — B with 1 o x the identity map on C (see [17] for details).

Corollary 3.3 Let A be a Banach algebra and let I be a closed ideal of A.
Let o : A— A, and v1 : A — A/I. Suppose the natural short exact sequence

0—-A—A—A/T—0

splits. If A is (p o p1) — n-weakly amenable, then A/I is (p) — n-weakly
amenable.

Proof Since the short exact sequence split, there exists a continuous ho-
momorphism ¢y : A/I — A such that ¢ o 9o = I4,7. Thus the result follows
from above result.

Proposition 3.4 Let A be an algebra and let X be an A-bimodule. Define
A to be the linear space A ® X with the product

(a,x)~(b,y):(ab,ay+xb) (aabeAwTang)'

(i) A is an algebra with respect to the specified product; A is commutative if
and only if A is commutative and X is an A-module. The map ® : A — A
defined by ®((a,x)) = a is an epimorphism.
(i) Let D : A — X be a map and let p : A — A be a continuous homo-
morphism. Define 0 : A — A by 6(a) = (p(a),D(a))(a € A). Then 0 is a
homomorphism if and only if D is a (p)-derivation.
(iii) Suppose D : A — X is a (@)-derivation. Then D : A — A defined by
D((a,z)) = (0,D(a)) is a (f o ®)-derivation

Proof (i) This is Theorem 1.8.14 (i) of [6].
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(ii) Suppose D is a (p)-derivation. Then, for a,b € A,
0(ab) = (y(ab), D(ab))

= (p(a)p(b), D(a) - ¢(b) + ¢(a) - D(b))
= (¢(a), D(a)) - (¢(b), D(b)) = O(a) - 0(b).

Conversely, suppose 6 is a homomorphism. It is easy to see that

D(ab) = D(a) - p(b) + ¢(a) - D(b).
(iii) Since D is a (p)-derivation, then 6 is a homomorphism by (ii) and so
by (i) ® is a homomorphism. Let (a x),(b,y) € A,a,b € A,z,y € X. Then

D((a,x)) - 0 ®((b,y)) + 6 0 ®((a,2)) - D((b,y))

= (0,D(a)) - 6(b) +6(a) - (0, D(b))
(0, D(a)) - (p(b), D(b)) + (¢(a), D(a)) - (0, D(b))
= (0,D(a) - (b)) + (0, ¢(a) - D(b))
(0, D(a) - ¢(b) + ¢(a) - D(b))

— (0, D(ab)) = D((ab,a -y + - b))

= D((a,z)(b,y))
and so D is a (f o ®)-derivation.
Let A be a Banach algebra and let X be a Banach A-bimodule. Then the
I*-direct sum A = A @ X is a Banach algebra under the product

(a,z) - (b,y) = (ab,ay +xb) (a,b€ A, 2,y € X).

This is known as a module extension Banach algebra. Since X is an ideal of
A and A is a closed subalgebra of A, then as a consequence of Theorem 3.2,
we have the next result.

Corollary 3.5 Let A be a Banach algebra and X be a Banach A-bimodule.
Let p: A X — A® X be a continuous homomorphism and 1 : A X — A
a projection of A® X onto A. Suppose A® X is (po 1) —n-weakly amenable,
then A is (p) — n-weakly amenable.

Let A be a Banach algebra and let X be a Banach A-bimodule. The higher
duals X (™) are Banach A-bimodules. We recall that a Banach A-bimodule X
is symmetric if a-x = z-a for n € Nya € A,z € X. If X is symmetric,
then each higher dual X(") is symmetric. Let ¢ : A — A be a continuous
homomorphism, since A is a Banach A-module under the module actions

a-m=ga)-mm-a=m-p(a) (acAmeA™)
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By using the fact that (A, ,))’ is a symmetric Banach A-module (see Example
4.1 of [4]), we have the next result.

Proposition Let A be a commutative weakly amenable Banach algebra
and let
v : A = A be a continuous homomorphism. Then A is (p) — n-weakly
amenable.

Proof This follows from Theorem 1.5 of [3] and the above explanation.

4 (p) — n-Weak Amenability of the Second Dual

Let A be a Banach algebra. There are two products on the second dual A” of
A, these products are denoted by [J and ¢ and are called the first and second
Arens products on A; the original definitions of the two products were given
in [1]. We recall briefly the definitions of O and ©.

First, for A € A’, we have

<b,0,'>\> = <ba7>\>7<ba)"a> = (ab,)\>(a,b6A)
For A € A" and ¢ € A", define A - and ¢ - X in A’ by

<av)"w> = <¢,a')\>a<a7¢')\> = <¢7)\'a>(a€ A)
Finally, for 11,1, € A”, define

<w1|:|1/)2a)‘> = <’(/)1aw2 . A)a

(Y1 02, A) = (2, X - 1) (A € A').

The Banach algebra A is said to be Arens regular if the two products O and
© concide in A”
Suppose that ¥ = limya, and e = limgbg for nets (a,) and (bg) in A.
Then
P1e = limglimgaabs

Y1 0Py = limglimaaabg,
where all limits are taken in the o(A”, A’)-topology on A”.

Theorem 4.1 [9] Let A be a Banach algebra. Then both (A”,0) and
(A”,0) are Banach algebras containing A as a closed subalgebra.

Using Theorem 4.1, we have that (A”,0) and (A”,¢) are Banach A-
bimodule with respect to the product on (A”,0) and (A”,o) respectively.



A GENERALIZATION OF THE n-WEAK AMENABILITY OF BANACH
ALGEBRAS 219

Let A and B be Banach algebras, and let ¢ : A — B be a continuous homo-
morphism. Then ¢ : (A”,0) — (B”,0) is a continuous homomorphism. Let
A be a closed subalgebra of B. Then we regard (A”,0) as a closed subalgebra
of (B”,0). For further details on these products see [8].

We also recall that a Banach algebra A is called a dual Banach algebra if
there is a closed submodule A: of A’ such that A = A.

Proposition 4.2 (See [8, Propositiom 5.2])
For a Banach algebra A the following statements are equivalent
(i) (A”,0) is a dual Banach algebra (with predual A’)
(ii) A is Arens regular.
As a consequence of Theorem 3.2 and Theorem 4.1, we have the next result.

Proposition 4.3 Let A be a dual Banach algebra and let o : A — A be a
continuous homomorphism. Suppose (A”,0) is (po 1) —n -weakly amenable
for o1 : A” — A a natural projection of A” onto A, then A is (p) — n-weakly
amenable.

Proof Let A be a dual Banach algebra with respect to the predual A, and
let i : A» — A’ be the canonical embedding with adjoint 1 and ¢o : A — A"
be the canonical embedding. Clearly, 1 0 w2 = I4 and g : A — A” is
a homomorphism. Also, ¢; : A” — A is a homomorphism since for a €
A iy, 1y € A” with nets (aq), (bg) in A such that 11 = limgaq, 2 = limgbg,
we have

(p1(¥10¢2), a) = (10¢2,i(a))
= limqlimg(anbg,i(a))
= limqlimgp(p1(aa)ei1(bp),a)
= lima(i(a - p1(aq)), ¥2)
= lima(aa, i(¢1(12) - a))
= (Y1, i(p1(¢2) - a))
= (p1(¢1)p1(v2), a).

Thus, the result follows using Theorem 3.2.

Proposition 4.4 Let A be a Banach algebra, let ¢ : A — A be a continuous
homomorphism and let X be a Banach A-bimodule. Suppose D : A — X is
a continuous (p)-deriwation. Then D" : (A”,0) — X" is a continuous (¢")-
derivation.
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Proof Clearly D" : A” — X" is a continuous linear operator. Let 91, 1o €
A" with 1 = limga, and o = limgbg in (A”,0(A”, A)), where (aq), (bg)
are nets in A with [[aq|| < [[¢1] and [[bg]| < [|¢2]|. Then

D" (1 0n) = D" (limalimsaabs)
— limalimsD(aabg)
= limalimg(D(aa) - ¢(bg) + ¢(aa) - D(bg)
= D"(¢1) - " (1h2) + ¢" (Y1) - D" (12)

and so D" is a (¢")-derivation.

Theorem 4.5 Let A be a Banach algebra, let ¢ : A — A be a continuous
homomorphism, and let D, : A — (A”,0) be a continuous (¢)-derivation.
Suppose A is Arens regular. Then there is a continuous (¢")-derivation Dy
(A”,0) — (A”,0) such that

Dyn(a) = Dy(a) (a € A),

and a is the canonical image in A" of a € A.

Proof By Proposition 4.4, D7 : (A”,00) — A" is a continuous (¢")-
derivation. By using the fact that A is Arens regular, we have that the canon-
ical projection P : A" — A" is a (A”,0)-bimodule morphism. Let ¢ € A”
such that a, — ¢ in o(A”, A’), where (a,) is a bounded net in A. We have
o — 1p in o(A”, A"), where 1) is the canonical image of ¢ in A”. By taking
Dy = P oDy, Dy clearly satisfy D, (a) = Dy(a)(a € A).

Corollary 4.6 Let A be a Banach algebra which is Arens regular and
let o : A — A be a continuous derivation. Suppose every continuous (¢")-
derwation from (A”,0) to (A”,0) is (¢”)- inner. Then A is (¢)-2-weakly
amenable.

Proof Let D : A — A” be a continuous (¢)-derivation. By Theorem 4.5,
there exists a continuous (¢”)-derivation D such that D(a) = D(a) (a € A).
Thus, there exists ¢, € A” such that

Do) = " (h2)1 — Y (2) (¥1 € A”).

In particular,
D(a) = p(a) -1 —¢1-p(a) (a€A)
and so D is (p)-inner. Thus, A is (p)-2-weakly amenable.
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Corollary 4.7 Let A be a Banach algebra and let ¢ : A — A be a contin-

uous homomorphism. Suppose (A”,0) is a dual Banach algebra (with predual
Ar) and every continuous (¢")-derivation from A" to A" is (¢")-inner. Then
A is (¢)-2-weakly amenable.

Proof This follows Proposition 4.2 and the above result.
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