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KUROSH-AMITSUR RADICAL THEORY
FOR GROUPS

B. J. Gardner

Abstract

This is a survey of some aspects of Kurosh-Amitsur radical theory for
groups which touches on history, some links and contrasts with ring rad-
icals and some recent appearances of group radicals in the mathematical
literature.

1 Introduction

Radical theory for groups has not been studied intensively by radical theorists
since the 1960s, which is unfortunate. There are striking similarities between
radicals of groups and associative rings – (ADS) is universally valid, the lower
radical construction stops at or before step ω and the intermediate classes have
a neat description by accessible subgroups, every class defines an upper radical
– and sometimes the group proofs are easier. In some ways life is harder in
groups: for example we have nothing like an Andrunakievich Lemma. For
whatever reason, there are some things we don’t know about groups though
the corresponding questions have long been answered for associative rings. We
don’t know whether there is a lower radical construction over a class of groups
which requires infinitely many steps. We don’t even know how many steps are
required over the class of abelian groups: we only know that at least three are
required. With such basic questions unanswered, and given the current state
of scholarly activity in abstract radical theory, it seems like an appropriate
time to re-direct some attention on to the group case. Further encouragement
comes from a few relatively recent appearances of group radicals in other parts
of mathematics.
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This is not a complete survey of radical theory for groups. We have taken
a few topics where we can illustrate the similarities with rings as well as some
contrasts both in the availability of methods and the comparative paucity of
answers to natural questions. We describe also the recent occurrences of group
radicals in the literature mentioned above and in the final section we give an
account of a method of representing group radicals by actions analogous to the
representation of ring radicals by modules introduced by Andrunakievich and
Ryabukhin. There are a few proofs, included for various reasons, but mostly
we give references. On the whole we give references to primary sources (with
some supplementary references) but for some more peripheral results we have
been content to give secondary sources only. For further reading [23] and [47]
are recommended.

There is some mention of the role of groups in the history of radical theory,
and the intriguing connections between the prime radical and the lower radical
over abelian groups disussed by Baer [6] (implicitly) and Shchukin [50], [53]
(explicitly).

2 The standard results

Semi-simple classes of groups are hereditary and the lower radical construction
terminates in at most ω steps.These and other things are more easily proved
for groups than for rings partly because normality is defined by a type of
automorphic invariance. (ADS) is almost immediate: if R is a radical class
and N / G then then for each g ∈ G we have gR(N)g−1 = R(gNg−1) =
R(N). In general if K / N / G then the normal subgroup K∗ generated by
K is generated by normal (in K) subgroups isomorphic to K, namely the
gKg−1, g ∈ G. This leads to a characterization of the classes Mn in the
Kurosh lower radical construction over a homomorphically closed class M: G
is in Mn if and only if for every non-trivial homomorphic image G we have
H1 / H2 / . . . / Hn−1 / G for some non-trivial H1 ∈ M. This characterization
and the termination result are due to Shchukin [51]. For more details and
a comparison with the corresponding proofs for associative rings (and other
structures) see §2.1 of [23].

3 Some history

The usual account of the genesis of abstract radical theory begins in ring the-
ory and proceds along the Wedderburn-Artin-Jacobson path, leaps to Amitsur
and Kurosh in the 1950s and then describes how the general theory, once estab-
lished, spread to other algebraic structures besides rings (though its separate
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incarnation for modules as torsion theory is also acknowledged). It is a little
more complicated than this, and the role of group theory should be recognized.

Although Kurosh’s fundamental paper on radicals of groups [35] appeared
nine years after his rings and algebras paper [34], the influence of his earlier
group-theoretic work and that of others of the Moscow School is significant.
For instance, in a 1935 paper [33] concerning a generalization of the Jordan-
Hölder Theorem to infinite groups, Kurosh introduced the notion of a normal
series accessible in itself: a transfinite series

N0 / N1 / . . . / Nα / . . . / Nγ = G

such that for each α there are finitely many indices β1, β2, . . . , βn such that

Nα / Nβ1 / Nβ2 / . . . / Nβn
/ G.

This concept was used in [35] and in subsequent papers on radicals of mul-
tioperator groups rings and algebras (see, e.g., [48], [4]). We note that [33]
appeared about halfway between the seminal papers of Artin [5] and Jacobson
[30].

It is reasonable to say that general radical theory grew out of the need
to find generalizations, useful in larger classes of groups and rings, of, respec-
tively, solvability and nilpotence in finite groups and nilpotence in rings with
some sort of finiteness condition. (Of course it grew a long way!) Looked at
appropritely, the two tasks can be seen as very closely related, a circumstance
conducive to a parallel development in the group and ring cases, but there
are important differences, which we might almost describe as “cultural” and
which make it less surprising that radical theory for groups (at least in the
Kurosh-Amitsur sense) went very quiet after the 1960s (though it had become
“mainstream” enough to appear in Robinson’s book [47] in 1972 and has made
several more recent appearance in the literature).

There is a wide-ranging analogy between groups and rings in which the
group operation (which we’ll call multiplication) corresponds to the ring addi-
tion and the commutator operation [•, •] to ring multiplication. The analogy
involves the following correspondences:

normal subgroup ↔ ideal
centre of group ↔ two sided annihilator of ring

centralizer of element ↔ two sided annihilator of element
nilpotent ↔ nilpotent

hypercentral ↔ (two sided) T -nilpotent
abelian group ↔ zeroring.

(As the commutator is anticommutative, there is no “handedness” on the group
side. A subgroup N is normal in a group G if and only if [g, n] ∈ N for all
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n ∈ N, g ∈ G and [n, g] ∈ N if and only if [g, n] ∈ N and so it goes with other
things, so we can associate two sided ring concepts with group concepts.)
Because of associativity of ring multiplication, solvability doesn’t correspond
to anything useful. Things are different though for non-associative rings where
the analogy still holds. (In Lie rings, practitioners even use terms like “centre”
and “abelian” rather than “annihilator” and “zeroring”.)

As noted, abelian groups correspond to zerorings, i.e.in effect to themselves,
or, if you like,

“{groups} ∩ {rings}={abelian groups}”.

There is a certain curiosity value in knowing how close groups can be to rings
without being zerorings. The following seems to be due to Levi [36].

Proposition 3.1. In a group [•, •] is distributive over multiplication if and
only if [[x, y], z] = 1 for all x, y, z.

Proof. Assuming distributivity, we have xyzx−1z−1y−1 = x(yz)x−1(yz)−1 =
[x, yz] = [x, y][x, z] = xyx−1y−1xzx−1z−1, so zx−1z−1y−1 = x−1y−1xzx−1z−1

and hence 1 = (zx−1z−1y−1)−1x−1y−1xzx−1z−1 = yzxz−1x−1y−1xzx−1z−1 =
y[z, x]y−1[x, z] = [y, [z, x]], and conversely, if [y, [z, x]] = 1 then working back-
wards we get (zx−1z−1y−1)−1(x−1y−1xzx−1z−1) = 1, so x−1y−1xzx−1z−1 =
zx−1z−1y−1 and thus [x, y][x, z] = xyx−1y−1xzx−1z−1 = xyzx−1z−1y−1 =
[x, yz]. ¤

Thus we have a nearring if and only if the group is nilpotent of class ≤ 2.(In
fact the commutator is associative if and only if [x, [y, z]] = 1 for all x, y, z.)

Although nilpotent groups and rings correspond to each other they have
been viewed rather differently. Nilpotent rings were seen as something like a
contamination to be eliminated, whence the search for more general properties
which could be factored out to produce a ring containing no trace of the new
property and hence no nilpotence. Nilpotent (and solvable) groups were seen
as nice. Even abelian groups were seen as nice but largely irrelevant – the
proper way to view them is as modules – in contrast to zerorings which are
utterly trivial from the point of view of ring theory. It is not really surpris-
ing then that group theorists attach great importance to the “Hirsch-Plotkin
radical” – the largest locally nilpotent normal subgroup – though it is not a
radical in the Kurosh-Amitsur sense. (We’ll see shortly that it comes fairly
close.)

4 Examples

We present a few examples of radical classes of groups in this section. Some
classes we mention have more than one standard name and notation. We’ll
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use “descriptive script” notation for classes and choose a name for each but
occasionally indicate an alternative. We denote the lower radical class defined
by a class M by L(M); the classes Mα are the classes from the Kurosh lower
radical construction.

Example 4.1.

Let AB denote the class of abelian groups. Then L(AB) is the class of
subsolvable groups first discussed by Baer [6]. It was proved independently by
Chang Wang-Hao [11] and Phillips and Combrink [45] that L(AB) 6= AB2.
Apart from its radical theoretic implication this discovery answered a question
in group theory by showing that two classes of generalized solvable groups are
distinct. We note that L(AB) is strongly hereditary, since AB is.

Example 4.2.

Let S be a set of primes, TS the class of S-torsion groups whose elements
have orders in the monoid generated by S. When S is the set of all primes we
just write T (the class of torsion groups). It is quite straightforward to show
that all these classes are radical classes. In general it is far from true that T(G)
is the set of elements with finite order (and the corresponding statements are
true for each TS). These classes are strongly hereditary and a group belongs
to a class TS if and only if its finitely generated subgroups do so.

Example 4.3.

Let ČC be the class of Chernikov complete groups, those groups which are
generated by nth powers for each n ∈ Z+. (As a generalization for each set S of
primes we can consider the class ČCS of groups generated by their nth powers
where n varies over the monoid generated by S.) If N / G and N,G/N ∈ ČC,
then for x ∈ G there exist a1, a2, . . . , ak ∈ G with xN = a1

na2
n . . . ak

nN
and then as x(a1

na2
n . . . ak

n)−1 ∈ N there are elements b1, b2, . . . , bm ∈ N
with x(a1

na2
n . . . ak

n)−1 = b1
nb2

n . . . bm
n and thus x = b1

n . . . ak
n. Hence

G belongs to ČC which is therefore closed under extensions. The rest of the
proof that ČC is a radical class uses similarly straightforward arguments and
the same goes for the classes ČCS . These radical classes are closed under
unions of directed sets of subgroups but are not hereditary as can be seen
from the divisible abelian groups.

Example 4.4.

Let AF denote the class of antifinite groups, those without proper sub-
groups of finite index. A group is antifinite if and only if it has no proper
normal subgroup of finite index (see, e.g., [29], p.44) so AF is the upper radi-
cal defined by the class of finite groups. It is strict. It is clear that ČC ⊆ AF.
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In the same way each ČCS is a subclass of the upper radical class defined by
the groups with orders in the monoid generated by S. The first inclusion is
proper as is the second if S contains a prime ≥ 665. These statements follow
from the known existence of infinite simple groups of prime exponent. See
[47], Part 2, pp.123-124, but note the improved bound 665 arising from the
improved solution to the Burnside problem [2]. The existence of such simple
groups can also be obtained from [1]. If S = {2} or {3} the second inclusion is
not proper. Commutators are products of squares, so if G(2) is the (normal)
subgroup of G generated by the squares and G 6= G(2) then G/G(2) is an
abelian 2-group and so has a finite homomorphic image. The second Engel
word [[x, y], y] is a product of cubes and so G/G(3) (with the obvious meaning)
is a 2-Engel group. These are nilpotent of class ≤ 3 (see [47], Part2, p.45) and
it follows that likewise ČC coincides with the upper radical class defined by
the finite 3-groups. Explicit formulae for the products of powers alluded to
are given in [25], for example.

Example 4.5.

The class LF of locally finite groups is a (strongly hereditary) radical class.
The tricky part is proving that LF is closed under extensions (Shmidt [55],
Theorem 6). A proof is given in [23], p. 22.

5 Wreath products

An important source of examples and counterexamples and of demonstrations
that groups are “radically different” from rings is the wreath product, a standard
construction in group theory which may not be universally familiar and which
we’ll therefore briefly describe.

What we discuss here is called the regular wreath product to distinguish
it from other variants, but we’ll suppress the adjective. Let G and H be
groups and let B =

∏
Gh, h ∈ H, be a direct (cartesian) product of copies Gh

of G. Then H acts on itself as index set via the left regular representation
x 7→ hx and hence on B: (gx)x∈H is sent to the element which has gx as its
hx- coordinate and hence gh−1x as its x-coordinate, i.e. we have (gx)x∈H 7→
(gh−1x)x∈H . The wreath product G o H is a semidirect product of B and H
with

((ax)x∈H , h)((bx)x∈H , k) = ((ax)x∈H(bh−1x)x∈H , hk) = ((axbh−1x)x∈H , hk).

The identity is (1, 1) and ((ax)x∈H , h)−1 = ((a−1
hx)x∈H , h−1). The restricted

wreath product is obtained if we replace the cartesian product with the re-
stricted product {(ax)x∈H : ax = 1 for almost all x}.
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We use the wreath product to show that there is nothing in group theory
analogous to the Andrunakievich Lemma or the following results.

Accessible idempotent subrings are ideals.
If I / J / A (rings) and J/I is semiprime, then I / A.

Proposition 5.1. For every group G with |G| > 1 there is a chain H /K /M
of groups with K/H ∼= G and H 6M .

Proof. Let 〈a〉 = {a, e} be a cyclic group of order 2. In G o 〈a〉 we have,
for g 6= 1, ((1, 1), a)((g, 1), e)((1, 1), a)−1 = ((1, 1), a)((g, 1), e)((1, 1), a−1) =
((1, g), a)((1, 1), a−1) = ((1, g), e). Thus Ga / Ga ×Ge = B / G o 〈a〉, but
Ga 6 G o 〈a〉, while B/Ga

∼= Ge
∼= G. ¤

This demonstrates a big difference between groups and associative rings.
There appears to be nothing like the wreath product in the latter case, though
for non-associative rings and algebras the situation could be more complicated:
there is a kind of wreath product for Lie algebras [44]. It should be pointed
out that consideration of (group) wreath products provided a large part of the
motivation for the non-associative ring constructions in [18].

6 Radicals (and non-radicals) related to nilpotence

There are many varieties of non-associative rings in which the locally nilpo-
tent rings do not form a Kurosh-Amitsur radical class. For groups the story is
the same. Even finite nilpotent groups are not closed under extensions (look
at dihedral groups for example) so naturally a class of “generalized nilpotent”
groups, a class whose finite members are the finite nilpotent groups, will not
be a radical class, though we can ask how close it comes to being one. One
measure of closeness is the number of steps required in its lower radical con-
struction. If we take the p-groups in such a class we might hope for better
luck.

A group is
locally nilpotent if its finitely generated subgroups are nilpotent;
Baer nilpotent [6] if every finite homomorphic image of every subgroup is
nilpotent.

Let LN, BN denote, respectively, the classes of locally nilpotent and Baer
nilpotent groups . Neither of these is a radical class.

The class of p-groups in LN is a radical class. This is a consequence of

Proposition 6.1. A p-group is locally nilpotent if and only if it is locally
finite.

Proof. Let G be a nilpotent p-group with upper central series
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1 ⊆ Z(G) ⊆ Z2(G) ⊆ . . . ⊆ Zn(G) = G.

Then each Zi+1(G)/Zi(G) is an abelian p-group and hence locally finite, so by
4.5 G is locally finite. It follows that every locally nilpotent p-group is locally
finite. Conversely, in a locally finite p-group every finitely generated subgroup
is a finite p-group and hence nilpotent. ¤

Using 4.2 and 4.5 we get

Corollary 6.2. The class of locally nilpotent p-groups is a radical class for
all primes p.

Every p-group is Baer nilpotent, so trivially the Baer nilpotent p-groups
form a radical class. We have

LN ⊂ BN

(proper inclusion: see [47], Part 2, p. 9). Although LN is not a radical class we
have L(LN) = LN2. This was in effect proved by Plotkin [46]. His argument
shows that

L(M) = M2 for every homomorphically closed class M of groups such that

N, K / G and N, K ∈ M ⇒ NK ∈ M and
M is closed under unions of directed sets of subgroups.

For a proof with this generality see [23], p.89.
The effect of radicals on nilpotent groups and the nature of the intersection

of a radical class with the class of nilpotent groups is completely controlled by
abelian groups. This is made more precise in our next result. (Note that we
can take the nilpotent groups as a universal class for radical theory.)

Theorem 6.3. (Warfield [58]; see also [23], p.89.) For a radical class R of
abelian groups, let R̃ denote the class of nilpotent groups with a finite ascending
invariant series with factors in R. Then

(i) the correspondence R 7→ R̃ defines a bijection from the radical classes
of abelian groups to those of nilpotent groups and

(ii) R̃ = L(R) (constructed in the class of nilpotent groups) for all R.
Also

(iii) if N is nilpotent and U is a radical class of nilpotent groups, then
N ∈ U if and only if N/[N, N ] ∈ U.

If a radical class U of nilpotent groups contains a cyclic group or Q then
fairly clearly it contains a non-abelian group. In the contrary case, all abelian
groups in U are divisible torsion groups. It turns out then that all groups in U

are abelian. We’ll deduce this shortly from something more general. The class
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ČC of Chernikov complete groups contains the class C of complete groups, those
in which every element is an nth power, for all n. A hypercentral group is one
with an ascending central series. It seems likely that the behaviour towards
hypercentral groups of radicals in general and the Chernikov complete radical
in particular might be tractable but complicated enough to be interesting.
The following results of Chernikov are pertinent.

(i) All hypercentral Chernikov complete groups are complete ([12], Theo-
rem 10).

(ii) All hypercentral antifinite groups are Chernikov complete ([12], Theo-
rems 1,2).

(iii) Every (Chernikov) complete hypercentral torsion group is abelian ([12],
Theorem 5).

The ring analogue of hypercentrality is T -nilpotence. Radicals of T -nilpotent
rings are, like those of nilpotent rings, determined by zerorings [17], so we
have an analogue for rings of Warfield’s theorem which can be generalized to
T -nilpotent rings. It’s not clear whether we can generalize Warfield’s theorem
itself in group theory, but (iii) is an important result pointing in this direc-
tion (and it generalizes the result stated above concerning radical classes of
nilpotent groups defined by divisible torsion groups).

In the same paper [12] Chernikov gives an example of a Chernikov com-
plete group which is not complete, based on a construction of Shmidt [54].
This group is an extension of Z(p∞) by itself. Robinson [47], Part 2, pp. 123-
124 uses Z(p∞) o Z(p∞) to the same effect. Thus even the lower radical class
L(Z(p∞)) contains groups which are not hypercentral. This is not very ring-
like: the lower radical class defined by the zeroring on Z(p∞) contains only the
divisible p-zerorings. An interesting problem: sort out the relationship be-
tween the following radical classes: ČC, L(C), L({Q∪{Zp∞) : p prime }).
One can also ask about universal classes in which the complete groups form a
radical class; cf. [59].

While the classes ČC and C can be viewed as generalizations of divisible
abelian groups, they are very much more general. For example there are are
finitely generated complete groups [22]. (Complete and Chernikov complete
groups are often called radicable and semiradicable respectively in the litera-
ture.)

It is natural that there should be a degree of similarity between some
generalizations of nilpotent rings and some generalizations of solvable and
nilpotent groups. We end this section with a look at the prime radical and
L(AB). Inasmuch as abelian groups correspond to zerorings their lower radical
classes could be said to correspond also. There are other ways of describing
the prime radical however, and we shall consider two here. Both of them have
correspondents for groups.
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In 1949 McCoy [38] considered the prime radical as the intersection of
all prime ideals and obtained a description in terms of m-systems. Two
years later Levitzki [35] used the related idea of an m-sequence: a sequence
a1, a2, . . . , an, . . . such that there is another sequence b1, b2, . . . , bn, . . . with
an+1 = anbnan for each n. An element a belongs to the prime radical if and
only if every m-sequence starting with a becomes zero, so that in particular a
ring is in the prime radical class if and only if all its m-sequences become zero.
Four years after this Baer [6] showed that (in our terminology) a group is in
AB2 if and only if for all sequences a1, a2, . . . , an, . . . for which there is another
sequence b1, b2, . . . , bn, . . . such that an+1 = [an, [an, bn]] for every n, eventu-
ally an = 1. We have preserved the original notation, but the difference in
appearance is superficial (the commutator operation being anticommutative).
Baer’s sequences correspond to m-sequences under our group-ring correspon-
dence. Baer characterizes AB2 by these sequences, but of course the prime
radical class is the second step class over the zerorings.

The prime radical is the intersection of the prime ideals (or the whole
ring). Shchukin [50], following on from work of Schenkman [49] and Murata
[40], sought a “prime radical” for groups, using a concept of prime normal
subgroup in accord with the group-ring analogy. Thus a normal subgroup P
of G is prime if for A, B / G with [A,B] ⊆ P we must have A ⊆ P or B ⊆ P .
This also led to AB2. Again the parallel with rings is striking. This story has,
in a sense, a happy ending. Later Shchukin [53] showed that all L(AB)-semi-
simple groups are subdirect products of prime L(AB)-semi-simple groups, so
that L(AB) is “special”. Are there any other interesting group radicals
which are special in this sense?

7 Verbal radicals, amenability, categories ...

A variety which is closed under extensions is a radical class (in contexts where
everything makes sense) and sometimes a semi-simple class as well. There are
no non-trivial extension-closed varieties of groups: one source of this result
is the Neumanns’ results [41] on the structure of the set of group varieties
with respect to the Mal’tsev product. There are not even any non-trivial
group varieties V satisfying the weaker condition that if N and K are in V

and both are normal in some group G then NK ∈ V. This result is due to
Shores [56]. (Thus no group variety satisfies the conditions in the middle of
p.7.) Nevertheless there are ways of getting group radicals which are related
to varieties. We’ll examine two such.

Every variety determines a strict upper radical class and these were studied
by Shchukin [52]. Let V be a group variety, RV its upper radical class. A
radical arising in this way is called a verbal radical. Let G(V) denote the verbal
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subgroup of G with respect to V. Let G(V0) = G, G(Vα+1) = G(Vα)(V) for
all ordinals α and let G(Vβ) =

⋂
γ<β G(Vγ) for limit ordinals β. For each G

there is some ordinal λ for which G(Vλ+1) = G(Vλ) and then RV(G) = G(Vλ)
[52]. An example of a verbal radical is the class RAB of perfect groups. The
radicals defined by atomic varieties recently introduced by Martynov [39] in a
general setting and studied by Kornev [31] and by Kornev and Pavlova [32] in
groups, rings and group rings also fit in here.

Verbal radicals have arisen more recently in algebraic topological contexts.
Berrick [7] has found a significance for surjective homomorphisms f : G → H
such that f(RAB(G)) = RAB(H). Casacuberta, Rodríguez and Scevenels [10]
established a connection between verbal radicals and homotopy theory, in the
process establishing a rather interesting result concerning the former. For
every variety V of groups there is a locally free group LV ∈ RV such that
for every group G, RV(G) is generated by the images of the homomorphisms
LV → G. See also [9].

We’ll call a radical class local if it satisfies the condition

G ∈ R ⇔ each finitely generated subgroup of G is in R.

Then R is local if and only if it is strongly hereditary and closed under unions
of directed sets of subgroups. E.g. T is local.

A group G is amenable if it has a finitely additive left invariant measure
µ such that µ(G) = 1. The notion of amenability arose from the Banach-
Tarski “paradox”. Amenable groups G are the “non-paradoxical” ones and the
measure of G can be transferred to sets on which G acts, which are accordigly
not paradoxical with respect to G. For background and full details of all this
see Wagon [57]. Its significance for our present discussion comes from

Theorem 7.1. The class AG of amenable groups is a local radical class.

This theorem is an amalgam of results of von Neumann [42], Day [15] and
Følner [16]. It is known that finite and abelian groups are amenable, while
free groups of rank > 1 are not. Now it’s clear that intersections of local
radical classes are local radical classes, so there is a smallest local radical class
containing the finite and abelian groups. Its members are called elementary
groups and we’ll call the class EG. The groups without free subgroups of rank
> 1 also form a local radical class [21]. Following Day [15], we’ll call this class
NF. We have

EG ⊂ AG ⊂ NF

and each inclusion is known to be strict: again see [57] for details. Ching
Chou [13] gave a transfinite construction of EG. In [19] there is a transfinite
construction for the smallest local radical class containing a given class of
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rings and this transfers straightforwardly to groups (cf. [22]). Recently Osin
[43] has considered local radical classes of groups under the name elementary
classes, using the Ching Chou construction to build them. (This construction
differs from that of [19].) It was proved in [19] that local radical classes are
the same things as extension-closed locally equational classes in the sense of
Hu [28]. This is the other link between radicals and extension-closed varieties
adverted to at the beginning of this section.

We note finally that there has been much work in recent years on radicals
in categories with a strong emphasis on the extension to non-abelian categories
of torsion theory as previously developed in certain abelian categories. (For
example see [8], [14] and their references.) Groups form a semi-abelian cate-
gory and might thus be expected to feature at least as a source of examples
in this work (and the same goes for rings, for that matter). However there
is a culturally imposed restriction that the assignment of radicals should be
functorial, and this requires strictness. Now many of the more familiar radi-
cal classes of groups satisfy extra conditions: thus T, L(AB) and L(LN) are
strongly hereditary. There is never going to be any interaction between these
and “torsion theory” as the only strongly hereditary strict radical classes of
groups (in fact the only hereditary strict ones [20]) are the class of all groups
and the class of one element groups. Note, though, that verbal radicals are
strict.

8 Radicals and representations

Andrunakievich and Ryabukhin [3] showed that every radical of rings could
be represented by a class of modules . In this final section we briefly describe
how group radicals can similarly be represented in terms of group actions. We
omit the proofs: they can be adapted fairly mechanically from those of the
corresponding ring results which are given in detail in [25], pp.118 ff.

For a group G, a G− set is a set E 6= ∅ on which G acts by permutations,
i.e. for which there is a homomorphism F : G → SE , the group of permutations
of E, but for g ∈ G, x ∈ E we write gx rather than F (g)(x). If E is a G-
set, we let KerG(E) = {g ∈ G : gx = x∀x ∈ E}. If E is a G-set, N / G
and N ⊆ KerG(E) then E is a G/N -set with respect to gNx = gx and
KerG/N (E) = KerG(E)/N . If N / G and E is a G/N -set, then by defining
gx = gNx we make E a G-set with N ⊆ KerG(E).

For each group G let ΣG be a class of G-sets, Σ =
⋃

G ΣG. Let Ker(ΣG) =⋂{KerG(E) : E ∈ ΣG}. Here are some conditions Σ might satisfy.
(M1) If E ∈ ΣG/N , then E ∈ ΣG.
(M2) If E ∈ ΣG and N ⊆ KerG(E), then E ∈ ΣG/N .
(M3) If Ker(ΣG) = {1} then ΣN 6= ∅ for every N / G with |N | > 1.
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(M4) If ΣN 6= ∅ for each N / G with |N | > 1, then Ker(ΣG) = {1}.
(The notation in (M1) and (M2) has the same meaning as above.)

Let F (Σ) = {G : ∃E ∈ ΣG with KerG(E) = {1}}. If Σ satisfies (M3),
then F (Σ) is a regular class.

Proposition 8.1. For a class Σ satisfying (M1), (M2) and (M3), let RΣ =
{G : ΣG = ∅}. Then RΣ is the upper radical class defined by F (Σ).

Proposition 8.2. If Σ satisfies (M1), (M2), (M3) and (M4), then
(i) RΣ(G) = 1 if and only if G is a subdirect product of groups in F (Σ)

and
(ii) RΣ(G) = Ker(ΣG) for every group G.

As in the ring case, for every radical we can find a defining Σ but it is
too big to be practically useful. Note that for the proof of this claim we need
a faithful G-set for each group G and the regular action of G on itself will
serve. In the ring case the corresponding role of a universal faithful module
was played by the standard unital extension.

We do not have any useful examples of classes satisfying (M1)-(M4), but
this matter has not been explored very much. Probably (M4) will prove to be
elusive, but there may be interesting things to find among the classes satisfy-
ing (M1)-(M3) as in [22]. Another possibility would be to look at classes in
which the G-sets have some extra structure and the action is defined by a ho-
momorphism from G into automorphisms of some kind. Here is one example
of this kind of thing.

Let K be a class of groups and for each group G let ΣG consist of all groups
in K with all possible actions of G by automorphisms. Then

RΣ = {G : every K oG with K ∈ K is a direct product }.
Acknowledgement. The author is grateful to Laci Kovács for helpful
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