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NOTES ON ANNIHILATOR CONDITIONS
IN MODULES OVER COMMUTATIVE

RINGS

Ahmad Yousefian Darani

Abstract

Let M be a module over the commutative ring R. In this paper we
introduce two new notions, namely strongly coprimal and super coprimal
modules. Denote by ZR(M) the set of all zero-divisors of R on M . M
is said to be strongly coprimal (resp. super coprimal) if for arbitrary
a, b ∈ ZR(M) (resp. every finite subset F of ZR(M)) the annihilator of
{a, b} (resp. F ) in M is non-zero. In this paper we give some results
on these classes of modules. Also we provide a relationship between the
families of coprimal, strongly coprimal and super coprimal modules. We
prove that if M is a coprimal module of finite Goldie dimension over a
commutative ring, then M is super coprimal. Finally we show that every
proper submodule of a module over a Prüfer domain of finite character
can be expressed as a finite intersection of strongly primal submodules.

1 Introduction

Throughout this paper all rings are commutative with nonzero identity, and all
modules are considered to be unitary. We wish to study properties of submod-
ules of a module over a certain Prüfer domain, in particular, their decomposi-
tion into intersections of strongly primal submodules. So far, the literature on
this subject is sparse and mostly restricted to the question of when or which
submodules admit decompositions as intersections of finitely many primary
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submodules. We know that every submodule of a Noetherian module can be
expressed as a finite intersection of irreducible submodules. Furthermore, in a
Noetherian module, every irreducible submodule is primary. Hence if N is a
proper submodule of the Noetherian module M , then N has a decomposition
as an intersection of a finite number of primary submodules. This happens
rarely in non-noetherian modules, because in general modules irreducible sub-
modules fail to be primary. Therefore we look for another decomposition for
submodules. We investigate decompositions of submodules of a module over
a Prüfer domain into intersections of strongly primal submodules. As we in-
tend to restrict our considerations to finite intersections, we assume to start
with that our domain are of finite character; i.e. every non-zero element is
contained but in a finite number of maximal ideals.

For a given ring R, an R-module M and a submodule N of M , we will
denote by (N :R M) the residual of N by M i.e., the set of all r in R such
that rM ⊆ N . The annihilator of M , denoted by annR(M), is (0 :R M). For
every subset S of R, we denote by AnnM (S) the set of elements m ∈ M such
that ma = 0 for each a ∈ S. An element r ∈ R is called a zero-divisor on M
provided that there exists 0 6= m ∈ M such that rm = 0, that is AnnM (r) 6= 0.
We denote by ZR(M) the set of all zero-divisors of R on M . If we consider R
as an R-module, then we write Z(R) instead of ZR(R).

An annihilator condition on a commutative ring R is property (A). R is
said to have property (A) if every finitely generated ideal I contained in Z(R)
has a nonzero annihilator ([8]). Y. Quentel introduced property (A) in [15],
calling it condition (C). Faith in [5] studied rings with property (A) and called
such rings McCoy. An example of a McCoy ring is a Noetherian ring. However,
the property (A) fails for some non-Noetherian rings [11, p. 63]. To avoid the
ambiguity we call such rings F-McCoy. Let M be an R-module. We define
the R-module M to be an F-McCoy module provided that for every finitely
generated ideal I of R with I ⊆ ZR(M), AnnM (I) 6= 0. This is a natural
extension of the concept of an F-McCoy ring. An example of an F-McCoy
module is a finitely generated module over a commutative Noetherian ring
(see [11, Theorem 82]).

Recently the concept of rings with property (A) has been generalized to
noncommutative rings [9]. Let R be an associative ring with identity. We
write Zl(R) and Zr(R) for the set of all left zero-divisors of R and the set
of all right zero-divisors of R, respectively. Then the ring R has right (left)
Property (A) if for every finitely generated two-sided ideal I ⊆ Zl(R) (Zr(R)),
there exists nonzero a ∈ R (b ∈ R) such that Ia = 0 (bI = 0). A ring R is
said to have Property (A) if R has right and left Property (A).

Nielsen in [14] defined another class of rings and called it McCoy. This
paper is on the basis of some recent papers devoted to this new class of rings.
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Let R be an associative ring with 1 (not necessarily commutative). R is
said to be right McCoy when the equation f(x)g(x) = 0 over R[x], where
f(x), g(x) 6= 0, implies there exists a nonzero r ∈ R with f(x)r = 0. Left
McCoy rings are defined similarly. If a ring is both left and right McCoy then
R is called a McCoy ring. This class of McCoy rings includes properly the
class of Armendariz rings introduced in [16], which is extensively studied in
the last years.

Let R be a commutative ring with identity. Then concepts ”F-McCoy ring”
and ”McCoy ring” are different concepts. In fact neither implies the other.
For example, if R is a reduced ring, then it is McCoy by [14, Theorem 2]. But
we know that there are reduced rings which are not F-McCoy. Also if we let
Z4 to be the ring of integers modulo 4, then, by [9, Theorem 2.1], M2(Z4), the
set of all 2 × 2 matrices over Z4, has Property (A) but it is not right McCoy
by [17].

For the sake of completeness we give some definitions and results that
we will use throughout. The concept of primality has been first considered
by Fuchs in [6] for ideals, and then by Dauns [3] for modules. Let R be a
commutative ring, M an R-module and N a submodule of M . An element
r ∈ R is called prime to N if rm ∈ N (m ∈ M) implies that m ∈ N , that is
(N :M r) = {m ∈ M : rm ∈ N} = N . Denote by S(N) the set of all elements
of R that are not prime to N . Then N is said to be primal if S(N) forms
an ideal; this ideal is always a prime ideal, called the adjoint ideal P of N .
In this case we also say that N is a P -primal submodule of M . If the zero
submodule of M is primal, then M will be called a coprimal module [1]. It is
clear that S(0) = ZR(M). Hence M is a coprimal R-module if ZR(M) forms
an ideal of R. The ring R is coprimal if it is coprimal as an R-module (see
[3]). It is easy to check that a submodule N of an R-module M is primal if
and only if the factor module M/N is coprimal as an R/(N :R M)-module.
It has been proved in [4] that N is a P -primal submodule of M if and only if
(N :R M) ⊆ P and ZR/(N :RM)(M/N) = P/(N :R M). Let M be a module
over the commutative ring R. A submodule N of M is called irreducible if N
can not be expressed as a finite intersection of proper submodules of M that
contain properly N . It is proved in [3, Proposition B] that every irreducible
submodule is primal.

Let R be a commutative ring. We say that an R-module M is strongly
coprimal if for arbitrary a, b ∈ ZR(M) the annihilator of {a, b} in M is non-
zero. M is called super coprimal if for every finite subset F of ZR(M), the
annihilator of the set F in M is nonzero.

Here we provide a brief summary of the paper. The relationship between
the classes of coprimal, strongly coprimal and super coprimal submodules are
given in Section 2. For example it is shown in Proposition 2.2 that every super
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coprimal module is strongly coprimal and every strongly coprimal module is
coprimal. Also, every super coprimal module is F-McCoy, and M is super
coprimal if and only if it simultaneously is coprimal and F-McCoy. Example
2.3 shows that the converse of these implications do not hold. Consider the
module of polynomials M [x]. Then, M [x] is a coprimal R[x]-module if and
only if M is a coprimal and a F-McCoy R-module (see Corollary 2.10). Let N
be an irreducible submodule of M . It is shown in Proposition 2.12 that M/N
is a F-McCoy R-module. According to Example 2.3, a coprimal module need
not be super coprimal. In Theorem 2.13 we show that, if M is a coprimal R-
module of finite Goldie dimension, then M is super coprimal. In section 3 we
first give some results concerning the relationship between the strongly primal
submodules of M and strongly primal submodules of T−1M , the module of
fractions of M with respect to a multiplicatively closed subset T of R. Then
we show that if M is a module over the Prüfer domain R of finite character,
then every proper submodule of M can be written as an intersection of finitely
many strongly primal submodules.

2 Results

We start with the following definitions:

Definition 2.1. Let R be a commutative ring and let M be an R-module.

(1) M is called strongly coprimal if for arbitrary a, b ∈ ZR(M) the annihila-
tor of {a, b} in M is nonzero.

(2) M is called super coprimal if for every finite subset F of ZR(M), the
annihilator of the set F in M is nonzero.

The submodule N of the R-module M is called strongly primal (respectively
super primal) if M/N is a strongly coprimal (respectively super coprimal)
R/(N :R M)-module.

The next result follows directly from definitions.

Proposition 2.2. Let R be a commutative ring and let M be an R-module.
Then the following statements hold:

(1) Every super coprimal R-module is strongly coprimal, and every strongly
coprimal R-module is coprimal.

(2) Every super coprimal R-module is F-McCoy.

(3) An R-module is super coprimal if and only if it is coprimal and F-McCoy.
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It is shown in Examples 2.3 that the converse implications in Proposition
2.2 do not hold.

Examples 2.3. (1) An F-McCoy R-module need not be strongly coprimal.
For example, let R = Z2 × Z2. Then Z(R) = {(0, 0), (1, 0), (0, 1)} . Now
assume that I is an ideal of R with I ⊆ Z(R). Then I = {(0, 0)}, I =
{(0, 0), (1, 0)} or I = {(0, 0), (0, 1)}; and in any case it is easy to see that
AnnR(I) 6= 0. Hence R is an F-McCoy ring. Now assume that a1 = (1, 0)
and a2 = (0, 1). Then the ideal generated by a1 and a2 is equal to R, that is
< a1, a2 >= R. Hence Ann(< a1, a2 >) = 0. Thus R is not strongly coprimal.

(2) Here we provide an example of an F-McCoy module which is not co-
primal. Let R = Z and consider the R-module M = Z2 × Z3. It is easy to
check that ZR(M) = 2Z ∪ 3Z. Hence M is not a coprimal R-module. On the
other hand, since R is a principal ideal domain, M is F-McCoy.

(3) In this example we use the concept of so-called A+B-rings introduced
in [12]. Let K be a field, w, y and z algebraically independent indeterminates,
M = (w, y, z)K[w, y, z] and let D = K[w, y, z]M . Clearly D is a local ring. Let
Q be the maximal ideal of D and let P denote the set of height two primes of
D. For each Pα ∈ P, let Qα = Q/Pα. Let I = A×N where A is an index set for
P and let B =

∑
Qi where Qi = Qα, for each i = (α, n) ∈ I. Set R = D + B

the ring constructed from D ×B by setting (r, a) + (s, b) = (r + s, a + b) and
(r, a)(s, b) = (rs, rb + sa + ab). It is proved in [13, Example 5.1] that

(1) Z(R) = Q + B is a prime ideal of R. So R is a coprimal ring.
(2) Every subset {a, b} of Z(R) has a nonzero annihilator in R.
(3) The subset {(w, 0), (y, 0), (z, 0)} of Z(R) does not have a nonzero an-

nihilator in R.
(4) R is not F-McCoy.
This example shows that:
(i) A coprimal module need not to be F-McCoy.
(ii) A coprimal module need not to be super coprimal.
(iii) A strongly coprimal module need not be super coprimal.
(iv) A strongly coprimal module need not to be F-McCoy.

Lemma 2.4. Let I and P be a finitely generated ideals of a commutative ring
R with P prime and I ⊆ P . If IP 6= 0, then (IP )(P ) is a super primal ideal
of R.

Proof. Set J = IP . It follows from IP 6= 0 and Nakayama’s Lemma that
JP 6= IP and so J(P ) 6= I(P ). Therefore

J(P ) ⊂ I(P ) ⊆ (J(P ) :R P ).
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So xP ⊆ J(P ) for some x /∈ J(P ).
Now assume that A = {a1, ..., an} is a finite subset of Z(R/J(P )). By [7,

Lemma 1.7], J(P ) is a P -primal ideal of R. Hence it follows from ZR(R/J(P )) =
P that A ⊆ P . Therefore the nonzero element x + J(P ) of R/J(P ) annihilates
A. Thus J(P ) is super primal.

Theorem 2.5. Let R be a commutative ring. The following statements are
equivalent.

(i) R is an arithmetical ring.
(ii) Every primal ideal of R is irreducible.
(iii) Every strongly primal ideal of R is irreducible.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow from [7, Theorem
1.8] and the fact that every strongly primal ideal is primal. To prove (iii) ⇒
(i), assume that M is a maximal ideal of R and a, b ∈ M . Assume that I is
the ideal of R generated by the set {a, b}. We may assume that IM 6= 0. Then
(IM)(M) is an strongly primal ideal of R by Lemma 2.4. Hence (IM)(M) is
an irreducible ideal of R by (iii). It follows that (IM)M is an irreducible ideal
of RM . Hence by the observation (†) given in the proof of [7, Theorem 1.8],
either RMa ⊆ RMb or RMb ⊆ RMa. Consequently RM is a valuation ring,
and so R is an arithmetical ring.

Theorem 2.6. Let R be a PID and M an R-module and N a submodule of
M . The following statements are equivalent:

(1) N is a primal submodule of M .
(2) N is an strongly primal submodule of M .
(3) N is a super primal submodule of M .

Proof. Since every super primal submodule is strongly primal and every strongly
primal submodule is primal, what we need is to prove (1) ⇒ (3). So assume
that N is a P -primal submodule of M . Set I = (N :R M), R̄ = R/I,
P̄ = P/I and M̄ = M/N . Then ZR̄(M̄) = P̄ by [4, Theorem 2.3]. There
exists x̄ = x + I ∈ P̄ such that ZR̄(M̄) = R̄x̄. Now assume that {ā1, ..., ān} is
a finite subset of ZR̄(M̄). Then, for every 1 ≤ i ≤ n, āi = r̄ix̄ for some ri ∈ R.
Since x̄ ∈ ZR̄(M̄), there exists a nonzero m̄ in M̄ such that x̄m̄ = 0. In this
case āim̄ = 0 for every 1 ≤ i ≤ n. Thus the annihilator of {ā1, ..., ān} in M̄ is
nonzero. Consequently, N is a super primal submodule of M .

Proposition 2.7. Let R be a commutative ring, M an R-module and N
a submodule of M . Then f(x) ∈ R[x] is not prime to N [x] if and only if
mf(x) ∈ N [x] for some m ∈ M\N .
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Proof. Assume that f ∈ R[x] is not prime to N [x] and mf(x) /∈ N [x] for all
m ∈ M\N . As f(x) is not prime to N [x], there exists a polynomial g(x) of
smallest degree with the properties g(x) ∈ M [x]\N [x] and f(x)g(x) ∈ N [x].
Assume that f(x) = Σs

i=0aix
i and g(x) = Σt

i=0mix
i. Then mt /∈ N and

t ≥ 1. Since mtf(x) /∈ N [x], there is 1 ≤ i ≤ s with mtai /∈ N , and hence
aig(x) /∈ N [x]. Let q be the largest integer for which aqg(x) /∈ N [x]. Then we
have

(a0 + a1x + ... + aqx
q)(m0 + m1x + ... + mtx

t) ∈ N [x].

This shows that aqmt ∈ N . In this case (aq(g(x)−mtx
t))f(x) ∈ N [x], which

contradicts the minimality of g(x).

We will show in Proposition 2.11 that if we can find conditions under which
M [x] is a coprimal R[x]-module, then one can have conditions under which
the module M is super coprimal and hence primal. In the following results we
give sufficient conditions for M [x] to be a coprimal R[x]-module.

Proposition 2.8. Let R be a commutative ring, M an R-module and N an
irreducible submodule of M . Then:

(1) N [x] is a primal submodule of M [x].

(2) If P is the adjoint ideal of N , then P [x] is the adjoint ideal of N [x].

Proof. (1) Assume that f(x) = Σs
i=0aix

i and g(x) = Σt
i=0bix

i are not prime
to N [x]. By Proposition 2.7, there exist m,m′ ∈ M\N with mf(x) ∈ N [x]
and m′g(x) ∈ N [x]. As N is irreducible and Rm + N and Rm′ + N are
proper divisors of N , we have N ⊂ (Rm + N) ∩ (Rm′ + N). So there exists
z ∈ (Rm + N) ∩ (Rm′ + N) with z /∈ N . So z = r1m + n1 = r2m

′ + n2

in which r1, r2 ∈ R and n1, n2 ∈ N . Clearly r1m, r2m
′ /∈ N . Furthermore,

z(f(x)− g(x)) = (r1m + n1)f(x)− (r2m
′ + n2)g(x) ∈ N [x]. So f(x)− g(x) is

not prime to N [x], that is N [x] is primal.
(2) As N is irreducible, it is primal by [3, Proposition B]. Assume that P

is the adjoint ideal of N , and suppose that f(x) = Σs
i=0aix

i is not prime to
N [x]. By Proposition 2.7, mf(x) ∈ N [x] for some m ∈ M\N . Thus, for every
1 ≤ i ≤ s, mai ∈ N , which implies that ai is not prime to N and so ai ∈ P .
Therefore f(x) ∈ P [x].

Now pick an element g(x) = Σt
i=0bix

i in P [x]. Set I = (N :R M). If
g(x) ∈ I[x], then g(x) ∈ S(N [x]) since S(I[x]) ⊆ S(N [x]). Now assume that
g(x) /∈ I[x]. Let S = {s1, ..., sk} ⊆ {1, ..., s} be such that asi /∈ I for all
1 ≤ i ≤ k. As asi ∈ P , there exists msi ∈ M\N with asimsi ∈ N . Since N
is irreducible we have N ⊂ ∩k

i=1(Rmsi + N). There is y ∈ ∩k
i=1(Rmsi + N)

with y /∈ N . In this case y = rs1ms1 + n1 = rs2ms2 + n2 = ... = rsk
msk

+ nk



66 Ahmad Yousefian Darani

in which rsi ∈ R and ni ∈ N for 1 ≤ i ≤ k. It is easy to see that yg(x) ∈ N [x]
with y /∈ N [x]. So g(x) is not prime to N [x]. We have already shown that
P [x] consists exactly of those elements of R[x] that are not prime to N [x]. So
N [x] is P [x]-primal.

Theorem 2.9. Let R be a commutative ring, P a prime ideal of R, M an R-
module and N a submodule of M . Then, N [x] is a primal submodule of M [x]
with the adjoint prime ideal P [x] if and only if N is a primal submodule of M
with the adjoint prime ideal P and M/N is an F-McCoy R/(N :R M)-module.

Proof. Suppose first that N [x] is a P [x]-primal submodule of M [x]. Set
I = (N :R M) and let A = (a1 + I, a2 + I, ..., ak + I) be an ideal of R/I
consisting entirely of zero-divisors of M/N . In this case a1, ..., ak belong to
S(N) ⊆ S(N [x]) = P [x]. Consequently f(x) = Σk

i=0aix
i ∈ P [x]. Therefore,

by Proposition 2.7, mf(x) ∈ N [x] for some m ∈ M\N . This implies that
m + N is a nonzero element of M/N which annihilates A. Thus M/N is a
McCoy R/I-module. This also shows that N is a P -primal submodule of M .

Conversely, assume that N is a P -primal submodule of M and M/N is
a McCoy R/I-module. Suppose that f(x) = Σs

i=0aix
i and g(x) = Σt

i=0bix
i

are not prime to N [x]. There are m,m′ ∈ M\N with mf(x) ∈ N [x] and
m′g(x) ∈ N [x] by Proposition 2.7. As N is assumed to be P -primal, this shows
that a0, a1, ..., as, b0, b1, ..., bt all belong to P . It follows from [4, Theorem
2.3] that the ideal T = (a0 + I, ..., as + I, b0 + I, ..., bt + I) is contained in
P/I = ZR/I(M/N). Since M/N is McCoy, there exists 0 6= m + N ∈ M/N
with (m + N)T = 0. Therefore m(f(x)− g(x)) ∈ N [x] with m ∈ M\N , that
is f(x)− g(x) is not prime to N [x]. So N [x] is a primal submodule of M [x].

Finally we show that the adjoint ideal of N [x] is just P [x]. Assume that
g(x) = Σk

i=0cix
i ∈ P [x]. In this case the ideal U = (c0 + I, c0 + I, ..., ck + I) is

contained in P/I = ZR/I(M/N) by [4, Theorem 2.3]. Since M/N is McCoy,
there is an element 0 6= m+N ∈ M/N with (m+N)U = 0. This implies that
mci ∈ N for each 1 ≤ i ≤ k with m ∈ M\N . This shows that mg(x) ∈ N [x]
with m ∈ M\N . Thus g(x) is not prime to N [x], and hence P [x] ⊆ S(N [x]).
On the other hand we may prove in the same way as in the proof of Proposition
2.8 that S(N [x]) ⊆ P [x], and hence S(N [x]) = P [x].

Corollary 2.10. Let R be a commutative ring and let M be an R-module.
Then M [x] is a primal R[x]-module if and only if M is a primal and a McCoy
R-module.

One can easily check that for every module M over a commutative ring R,
ZR(M) ⊆ ZR[x](M [x]) and it is easy to see that if M [x] is a primal R[x]-module
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then ZR[x](M [x]) = ZR(M)[x]. Combining this result with Proposition 2.7,
we get:

Proposition 2.11. Let R be a commutative ring and let M be an R-module.
Then the following conditions are equivalent:

(i) M [x] is a primal R[x]-module;

(ii) M is a super primal R-module;

(iii) M [x] is a super primal R[x]-module;

(iv) M [x] is a strongly primal R[x]-module.

Proposition 2.12. Let R be a commutative ring and let M be an R-module.
If N is an irreducible submodule of M , then M/N is a McCoy R-module.

Proof. Assume that N is an irreducible submodule of M . Then N [x] is a
primal submodule of M [x] by Proposition 2.8. Now the result follows from
Theorem 2.9.

A submodule N of M is called essential if for every nonzero submodule K
of M , N ∩K 6= 0. The module M is uniform if every nonzero submodule of
M is essential in M . By Proposition 2.8, every uniform R-module is coprimal.

Our next result provides a sufficient condition, via Goldie Dimension, under
which an R module is super coprimal.

Theorem 2.13. Let R be a commutative ring. If M is a coprimal R-module
of finite Goldie dimension, then M is super coprimal. In particular, M is
McCoy.

Proof. Since M is of finite Goldie dimension, it contains an essential submod-
ule N , N = U1 ⊕ U2 ⊕ ... ⊕ Uk, where U1, U2, ..., Uk are uniform submodules
of M . For every element a ∈ ZR(M), AnnM (a) 6= 0. Thus essentiality of
N implies that N ∩ AnnM (a) 6= 0. Thus there are mi ∈ Ui, not all equal
to 0, such that a(m1 + m2 + ... + mk) = 0. However, ami ∈ Ui implies
ami = 0 for all 1 ≤ i ≤ k. This shows that if mi 6= 0, then a ∈ ZR(Ui).
It follows that ZR(M) = ∪k

i=1ZR(Ui). But, by Proposition 2.8 each Ui

(1 ≤ i ≤ k) is a primal R-module; so ZR(Ui) is a prime ideal of R for ev-
ery 1 ≤ i ≤ k. Now Prime Avoidance Theorem implies that ZR(M) = ZR(Ui)
for some 1 ≤ i ≤ k. Assume that F = {a1, a2, ..., at} is a subset of R with
F ⊆ ZR(M). Consequently AnnM (aj) ∩ Ui 6= 0 for every 1 ≤ j ≤ t. As Ui is
uniform, AnnM (a1)∩AnnM (a2)∩ ...∩AnnM (at)∩Ui 6= 0. This implies that
AnnM (F ) 6= 0, as required.
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Corollary 2.14. Let M be a module over a commutative ring R. Then under
each of the following conditions every primal submodule of M is strongly primal
(super primal).

(1) Every quotient of M has finite Goldie dimension.
(2) Every submodule N of M contains a finitely generated submodule T ,

such that N/T has no maximal submodules.

Proof. It follows from Theorem 2.13 and [2].

3 Strongly primal decomposition

In this section we will show that if M is a module over a prüfer domain of
finite character R, then every proper submodule of M can be expressed as an
intersection of a finite number of strongly primal submodules.

Let R be a commutative ring, T a multiplicatively closed subset of R and M
an R-module. Consider the T−1R-module T−1M , the module of fractions of
M with respect to T . In Propositions 3.2 and 3.3 we discuss on the relationship
between the strongly primal submodules of M and strongly primal submodules
of T−1M .

Lemma 3.1. Let T be a multiplicatively closed subset of a ring R, M be an
R-module and N be a strongly primal submodule of M with S(N) ∩ T = ∅. If
m/s ∈ T−1N , then m ∈ N .

Proof. It follows from [4, Lemma 2.5] since every strongly primal submodule
is primal.

Proposition 3.2. Let T be a multiplicatively closed subset of R, M be an
R-module and N be a strongly primal submodule of M with S(N) ∩ T = ∅.
Then T−1N is a strongly primal submodule of T−1M .

Proof. Let N be a strongly primal submodule of M with S(N) ∩ T = ∅ and
let {a/s, b/t} be a subset of ZT−1R(T−1M/T−1N). Then {a, b} is a subset of
ZR(M/N) by Lemma 3.1. So there exists an element m ∈ M\N such that
m+N annihilates {a, b} in M/N . In this case m/1 /∈ T−1N and m/1+T−1N
annihilates the set {a/s, b/t} in T−1M/T−1N . Consequently T−1N is strongly
primal.

Let R be a commutative ring, M be an R-module and T be a multiplica-
tively closed set in R. If K is a submodule of T−1M , set K ∩M = f−1(K)
where f : M → T−1M is the natural homomorphism given by m 7→ m/1.
Clearly, K ∩M is a submodule of M .
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Proposition 3.3. Let T be a multiplicatively closed subset of a ring R, M
be an R-module and K be a strongly primal submodule of the T−1R-module
T−1M . Then K ∩M is a strongly primal submodule of M .

Proof. Let K be a strongly primal submodule of T−1M . For every a ∈
ZR(M/(K ∩ M), there exists m /∈ K ∩ M with am ∈ K ∩ M . In this case
m/1 /∈ K and (a/1)(m/1 + K) = 0 imply that a/1 ∈ ZT−1R(T−1M/K). Now
assume that {a, b} is a subset of ZR(K ∩ M). Then the set {a/1, b/1} is
contained in ZT−1R(T−1M/K). Since K is strongly primal, there exists an
element m/s /∈ K with am/s ∈ K and bm/s ∈ K. Then m /∈ K ∩ M with
am, bm ∈ K ∩M . This implies that m + K ∩M ∈ M/(K ∩M) annihilates
the set {a, b} in M/(K ∩M). So K ∩M is strongly primal.

Let R be a commutative ring with identity. R is called a valuation ring
if the set of ideals of R is linearly ordered by inclusion. R is called an arith-
metical rings if for every maximal ideal M of R, RM is a valuation ring. We
are interested in the question of when a proper submodule of a module over a
commutative ring with identity is the intersection of a finite number of super
primal submodules. We shall examine this question for the class of arithmeti-
cal rings. Of particular interest is the class of Prüfer domains, namely the
arithmetical integral domains. The Prüfer domain R is said to be of finite
character if every non-zero element of R is contained but in a finite number of
maximal ideals.

Proposition 3.4. Let R be a valuation ring, and let M be an R-module. Then
every proper submodule of M is strongly primal (super primal).

Proof. Let N be a proper submodule of M . Assume that a, b ∈ R are two
zero-divisors on M/N . We can assume that b = ra for some r ∈ R. Then
there exists m ∈ M\N such that a(m+N) ∈ N and b(m+N) = o, that is the
set {a, b} has a nonzero annihilator in M/N . Hence N is a strongly primal
submodule of M .

Corollary 3.5. Let R be an arithmetical ring, P be a maximal ideal of R and
M be an R-module. Then every proper submodule of the RP -modules MP is
strongly primal.

Let R be a commutative ring, M be an R-module and T be a multiplica-
tively closed subset of R. For every submodule N of M , let

NT = {m ∈ M : sm ∈ N for some s ∈ T}.
It is clear that NT is a submodule of M containing N . Also if (N :R M)∩T 6= ∅,
then NT = M . NT is called the T -component of N . Let P be a prime ideal
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of a commutative ring R and set TP = R\P . Then m ∈ NTP if and only if
(N :R m) * P . Furthermore NTP

= NP ∩M where NP is the localization of
N at P . We denote NTP

by N(P ).

Theorem 3.6. Let R be an arithmetical ring, and let M be an R-module.
Then, for every non-zero submodule N of M and every maximal ideal P con-
taining (N :R M), N(P ) is a strongly primal submodule of M .

Proof. Clearly, NP is a proper submodule of MP . As RP is a valuation ring,
NP is a strongly primal submodule of MP by Proposition 3.5. Now N(P ) =
NP ∩M is a strongly primal submodule of M by Proposition 3.3.

Let R be a commutative ring, M an R-module and N an R-submodule
of M . Denote by Max(R) the set of all maximal ideals of R. Then N =⋂

P∈Max(R) N(P ).

Theorem 3.7. Let R be a Prüfer domain of finite character, M be an R-
module and N be a proper submodule of M . Then N is the intersection of a
finite number of strongly primal submodules.

Proof. Since R is a domain of finite character, there are only a finite number
of maximal ideals, say P1, P2, ..., Pk, containing (N :R M). Also if P is a
maximal ideal of R not containing (N :R M), N(P ) = M , and if P contains
(N :R M), then N(P ) is a strongly primal submodule of M by Theorem 3.6.
Therefore N = N(P1) ∩ N(P2) ∩ ... ∩ N(Pk) is a decomposition of N as the
intersection of strongly primal submodules.
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