

# THE EXISTENCE OF CRITICAL VALUES IN AN ABSTRACT PERTURBATION PROBLEM

### G. Cicortas

### Abstract

The aim of this paper is to obtain conditions for the existence of a critical value for the perturbed function  $f^{\varepsilon}=f+\varepsilon g$  in a given interval, in the presence of Palais-Smale condition.

# 1 Introduction

It is well-known and often applied the fact that, in the presence of Palais-Smale type conditions, important information concerning the critical points of a function can be obtained. In some problems it is difficult to study the function directly and we need to perturb it.

Let M be a  $C^2$ -Finsler manifold and let  $f: M \to \mathbb{R}$  be of  $C^1$  class, bounded from below. Perturb it with a function  $g: M \to \mathbb{R}$  of  $C^1$  class, such that g > 0. Define  $f^{\varepsilon} = f + \varepsilon g$ , with  $\varepsilon > 0$  enough small. Assume that f and  $f^{\varepsilon}$  satisfy the Palais-Smale condition on M and the set of critical values of f has the form  $\{s_1, s_2, \ldots, s_k\}$ . A basic result in critical point theory is the second deformation theorem, which shows that, in the above conditions, the sublevel set  $M_{s_{p-1}}(f)$  is a strong deformation retract of  $M_{s_p}(f)$ , for  $p = \overline{2,k}$ . Then the  $n^{th}$  relative homology group  $H_n(M_{s_p}(f), M_{s_{p-1}}(f)) = 0$ , for  $p = \overline{2,k}$  and for any n.

With suitable assumptions on the function g, we can obtain conditions such that the  $n^{\text{th}}$  relative homology group of some sublevel sets of the perturbed

Key Words: homology group, Palais-Smale condition, critical point, deformation retract. 2010 Mathematics Subject Classification: 57R70, 58E05, 46M18.

Received: May, 2009 Accepted: January, 2010 54 G. Cicortaş

function is nontrivial. This fact implies the existence of a critical value of  $f^{\varepsilon}$  in a given interval.

We mention that the use of relative homology of sublevel sets in some perturbation problems comes back to A. Marino and G. Prodi, see [2].

## 2 Preliminaries

Let M be a  $C^1$ -Finsler manifold and  $f \in C^1(M, \mathbb{R})$ . A point  $p \in M$  is critical for f if df(p) = 0 and  $c \in \mathbb{R}$  is a critical value of f if there exists  $p \in M$  such that df(p) = 0 and f(p) = c. The critical set of f is  $C[f] = \{p \in M | df(p) = 0\}$  and  $C_c[f] = C[f] \cap f^{-1}(c)$  is the critical set of level c of f. We call  $f^{-1}(c)$  the set of level c of f and  $M_c(f) = \{p \in M | f(p) \le c\}$  the set of sublevel c. Recall that f satisfies the Palais-Smale condition on M if any sequence  $(x_n)$  in M such that  $(f(x_n))$  is bounded and  $df(x_n) \to 0$  has a convergent subsequence.

In this paper we need the second deformation lemma, see R. Palais [4] and Kc. Chang [1].

**Theorem 2.1.** Let M be a  $C^2$ -Finsler manifold and let  $f: M \to \mathbb{R}$  be of  $C^1$  class. Suppose that f satisfies the Palais-Smale condition on M and the interval [a,b] does not contain critical values of f. Then  $M_{\alpha}(f)$  is a strong deformation retract of  $M_b(f)$ .

Denote by  $H_n(B, A)$  the  $n^{th}$  relative singular homology group of the pair (B, A) with real coefficients, where  $A \subset B$ . Recall that for a deformation retract A' of A we have, for any n,  $H_n(A, A') = 0$ . See, for instance, W. Massey [3].

In this section we prove the following:

**Lemma 2.1.** Let A, X, B, A', Y, B' be topological spaces such that  $A \subset X \subset B \subset A' \subset Y \subset B'$  and  $H_n(A', X) = 0$ ,  $H_n(B', A') = 0$ , for any n.

- There exists an injective homomorphism H<sub>n</sub>(X, A) → H<sub>n</sub>(B, A).
- (ii) There exists an injective homomorphism  $H_n(A', B) \to H_n(Y, B)$ .
- (iii) There exists an injective homomorphism  $H_n(Y,X) \to H_n(Y,B)$ .
- (iv) There exists an injective homomorphism  $H_n(A', A) \to H_n(Y, A)$ .

*Proof.* (i) We use the exact sequence of the triple (A', X, A) and the inclusions  $X \subset B \subset A'$  and we obtain the following diagram:



Because  $\beta_n \circ \alpha_n = i_n$  and  $i_n$  is an isomorphism, it follows that  $\alpha_n$  is injective. (ii) The conclusion follows by using the exact sequence of (B', A', B) and the inclusions  $A' \subset Y \subset B'$ :



(iii) We use the exact sequence of the triple (Y, A', X) and the inclusions  $X \subset B \subset A'$ , which give the following diagram:



(iv) We use the exact sequence of (B', A', A) and the inclusions  $X \subset B \subset A'$ :



### 3 The main result

Let  $f^{\varepsilon} = f + \varepsilon g$ , where M is a  $C^2$ -Finsler manifold,  $f,g: M \to \mathbb{R}$  are of  $C^1$  class, f is bounded from below, g > 0 on M and  $\varepsilon > 0$  is enough small. Assume that f and  $f^{\varepsilon}$  satisfy the Palais-Smale condition on M and  $f(C[f]) = \{s_1, s_2, \ldots, s_k\}, \ a < s_1 < \ldots < s_k < b$ .

It is obvious that  $M_a(f) \subseteq M_{s_1}(f) \subseteq \ldots \subseteq M_{s_k}(f) \subseteq M_b(f)$  and any interval  $(s_{p-1}, s_p)$ ,  $p = \overline{2, k}$ , is non-critical for f, i.e. it does not contain critical values. By using Theorem 2.1, the sublevel set  $M_{s_{p-1}}(f)$  is a strong deformation retract of  $M_{s_p}(f)$ , for  $p = \overline{2, k}$ . Then we get that  $H_n(M_{s_p}(f), M_{s_{p-1}}(f)) = 0$ , for  $p = \overline{2, k}$  and for any n.

In order to simplify the problem, we consider that there exists only one critical value of f into the interval (a, b) and denote it by s. Then  $H_n(M_s(f), M_a(f)) = 0$  and  $H_n(M_b(f), M_s(f)) = 0$ , for any n.

56 G. Cicortaş

In the sequel, we want to obtain information about  $M_a(f^{\varepsilon}), M_s(f^{\varepsilon})$  and  $M_b(f^{\epsilon}).$ 

We work in the presence of the following hypothesis:

$$a + \varepsilon q(x) \le s \le b - \varepsilon q(x), x \in M.$$

It is easy to see that the following inclusions hold:

$$M_a(f^{\varepsilon}) \subseteq M_a(f) \subseteq M_s(f^{\varepsilon}) \subseteq M_s(f) \subseteq M_b(f^{\varepsilon}) \subseteq M_b(f).$$

Lemma 2.1 implies the following statements:

**Proposition 3.1.** There exist the following injective homomorphisms:

- (i)  $H_n(M_a(f), M_a(f^{\varepsilon})) \to H_n(M_s(f^{\varepsilon}), M_a(f^{\varepsilon}));$
- (ii)  $H_n(M_s(f), M_s(f^{\varepsilon})) \to H_n(M_b(f^{\varepsilon}), M_s(f^{\varepsilon}));$
- (iii)  $H_n(M_b(f^{\varepsilon}), M_a(f)) \rightarrow H_n(M_b(f^{\varepsilon}), M_s(f^{\varepsilon}));$
- (iv)  $H_n(M_s(f), M_a(f^{\varepsilon})) \rightarrow H_n(M_b(f^{\varepsilon}), M_a(f^{\varepsilon})).$

We give now the main result of the paper:

**Theorem 3.1.** The following statements hold:

- (i) If there exists m such that  $H_m(M_a(f), M_a(f^{\varepsilon})) \neq 0$ , then  $H_m(M_s(f^{\varepsilon}), M_a(f^{\varepsilon}))$  $M_a(f^{\varepsilon}) \neq 0$ ; consequently  $C[f^{\varepsilon}] \cap (f^{\varepsilon})^{-1}([a,s]) \neq \emptyset$ . (ii) If there exists m such that  $H_m(M_s(f), M_s(f^{\varepsilon})) \neq 0$ , then  $H_m(M_b(f^{\varepsilon}), M_s(f^{\varepsilon})) \neq 0$
- $M_s(f^{\varepsilon}) \neq 0$ ; consequently  $C[f^{\varepsilon}] \cap (f^{\varepsilon})^{-1}([s,b]) \neq \emptyset$ .
- (iii) If there exists m such that  $H_m(M_b(f^{\varepsilon}), M_a(f)) \neq 0$ , then  $H_m(M_b(f^{\varepsilon}), M_a(f)) \neq 0$ , then  $H_m(M_b(f^{\varepsilon}), M_a(f)) \neq 0$ .  $M_s(f^{\varepsilon}) \neq 0$ ; consequently  $C[f^{\varepsilon}] \cap (f^{\varepsilon})^{-1}([s,b]) \neq \emptyset$ .
- (iv) If there exists m such that  $H_m(M_s(f), M_a(f^{\varepsilon})) \neq 0$ , then  $H_m(M_b(f^{\varepsilon}), M_a(f^{\varepsilon}))$  $M_a(f^{\varepsilon}) \neq 0$ ; consequently  $C[f^{\varepsilon}] \cap (f^{\varepsilon})^{-1}([a, b]) \neq \emptyset$ .
- *Proof.* (i) Assume that  $C[f^{\varepsilon}] \cap (f^{\varepsilon})^{-1}([a, s]) = \emptyset$ ; then [a, s] is a noncritical interval for  $f^{\varepsilon}$  and Theorem 2.1 implies that  $H_n(M_s(f^{\varepsilon}), M_a(f^{\varepsilon})) = 0$  for any n. But Proposition 3.1 gives  $H_m(M_s(f^{\epsilon}), M_a(f^{\epsilon})) \neq 0$ .

(ii), (iii) and (iv) follows by the same argument. 
$$\Box$$

### An auxiliary result 4

The following lemma, which was obtained by the author during the preparation of this paper, can be useful in the study of other perturbation problems.

**Lemma 4.1.** Let A, X, B, A', Y, B' be topological spaces such that  $A \subset X \subset A'$  $B \subset A' \subset Y \subset B'$ . If  $H_n(A', A) = H_n(Y, X) = 0$ , then there exists an injective homomorphism

$$H_n(B',A) \to H_n(B',B)$$
.

*Proof.* We have the following diagram, which follows from the exact sequence of (B',A',A) and the inclusions  $A \subset X \subset A'$ :



We conclude that  $i_n$  is an isomorphism. On the other hand, we can write  $i_n = \beta_n \circ \alpha_n$ . Then  $\alpha_n$  is injective. The same argument can be used for the diagram



which follows from the exact sequence of (B', Y, X) and the inclusions  $X \subset B \subset Y$ . Then  $j_n = \delta_n \circ \gamma_n$  and the fact that  $j_n$  is an isomorphism assure the injectivity of  $\delta_n$ .

We obtain that 
$$h_n = \gamma_n \circ \alpha_n$$
 is injective.

Remark 4.1. The ideea of this lemma in related to the following result of [2]: if  $A \subset X \subset B \subset A' \subset Y \subset B'$  and  $H_n(B,A) = H_n(B',A') = 0$ , then there exists an injective homomorphism  $H_n(A',A) \to H_n(Y,X)$ .

The authors use this result in order to prove some stability properties of critical values in presence of Palais-Smale type conditions.

### References

- KC. CHANG, Infinite dimensional Morse theory and multiple solution problems, Birkhauser, 1993.
- [2] A. Marino, G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 11 (Suppl.) (1975), 1–32.
- W. Massey, A Basic Course in Algebraic Topology, Springer, 1991.
- [4] R. Palais, Morse theory on Hilbert manifolds, Topology, 2 (1963), 299–340.

58 G. Cicortaş

University of Oradea, Faculty of Sciences, University Street 1, 410087, Oradea, Romania e-mail: cicortas@uoradea.ro