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FIXED POINT RESULTS FOR
MULTI-VALUED NON-EXPANSIVE

MAPPINGS ON AN UNBOUNDED SET

M. Abbas and Y. J. Cho

Abstract

Some results regarding the existence of a fixed point for a multi-
valued non-expansive mapping defined on an unbounded subset of a
reflexive Banach space are established.

1. Introduction and Preliminaries

Let X be an arbitrary real Banach space. We denote by CB(C) the fam-
ily of all nonempty closed bounded subsets of C, by K(C) the family of all
nonempty compact subsets of C and by KC(C) the family of all nonempty
convex compact subsets of C. On CB(X), the Hausdorff metric is defined by

H(A,B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}, ∀A,B ∈ CB(X),

where d(x,E) = inf{d(x, y) : y ∈ E} is the distance from a point x ∈ X
to a subset E of X. A multi-valued mapping T : C → CB(X) is said to be
contractive if there exists a constant k ∈ [0, 1) such that if, for any x, y ∈ C,

H(Tx, Ty) ≤ k ‖x− y‖ , ∀x, y ∈ C.

The mapping T is said to be non-expansive if

H(Tx, Ty) ≤ ‖x− y‖ , ∀x, y ∈ C.
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The mapping T is said to be asymptotically contractive on C if, for some x0

in C, there exists y0 in Tx0 such that

lim sup
‖x‖→∞

‖y − y0‖
‖x− x0‖ < 1, ∀y ∈ Tx.

Example 1.1. Let T : [0,∞) → 2[0,∞) be a multi-valued mapping defined by

Tx =





0, x ∈ Q+,

[1,
x

2
], x ∈ [0,∞)−Q+ and 1 <

x

2
,

[
x

2
, 1], x ∈ [0,∞)−Q+ and

x

2
< 1,

where Q+ is set of all nonnegative rational numbers. Take x0 = 0, then y0 = 0.

If x ∈ Q+, then, for any y ∈ Tx, lim sup
|x|→∞

|y − y0|
|x− x0| = 0 < 1. If x ∈ [0,∞)−Q+,

and 1 <
x

2
, then, for any y ∈ Tx, lim sup

|x|→∞

|y − 0|
|x− x0| ≤

1
2

< 1. Hence T is an

asymptotical contraction with respect to 0.

A non-self mapping T : C → X is said to satisfy the inward condition on
C if

Tx ⊆ IC(x), ∀x ∈ C,

and the mapping T is said to satisfy the weakly inward condition on C if

Tx ⊆ IC(x), ∀x ∈ C,

where
IC(x) = {x + λ(y − x) : λ ≥ 0, y ∈ C}

is the inward set of C at x and E denotes the closure of a set E ⊆ X. The
mapping T is called demiclosed at y ∈ C if, for any sequence {xn} in C which
is weakly convergent to an element x and yn ∈ Txn with {yn} converging
strongly to y, we have y ∈ Tx. A point x ∈ C is called a fixed point of the
multi-valued mapping T if x ∈ Tx.

Lim [7] proved the following theorem, which will be very useful to prove
results on fixed points for nonself-nonexpansive multi-valued mappings.

Theorem 1.2. Let C be a nonempty closed subset of a Banach space X and
T : C → 2X − {∅} be a contraction taking closed values. If Tx ⊆ IC(x) for
any x ∈ C, then T has a fixed point in C.
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For a bounded sequence {xn} in X, denote lim sup
n→∞

‖xn − x‖ by r(x, {xn}),
where x ∈ X. The number inf

x∈C
r(x, {xn}) is called the asymptotic radius of

{xn} with respect to C. A point z ∈ C is called the asymptotic center of the
sequence {xn} with respect to C if

r(z, {xn}) = inf
x∈C

r(x, {xn}).

The set of all asymptotic centers of {xn} with respect to C is denoted by
Z(C, {xn}). A bounded sequence {xn} in X is said to be regular with respect
to C if

inf
x∈C

r(x, {xn}) = inf
x∈C

r(x, {xnk
})

for every subsequence {xnk
} of {xn}. A regular sequence {xn} is said to be

asymptotically uniform with respect to C if Z(C, {xn}) = Z(C, {xnk
}) for

each subsequence {xnk
} of {xn}.

Let G : X ×X → R be a mapping which is linear in the first coordinate
and, for any x, y ∈ X, satisfies ‖x‖2 ≤ G(x, x) and |G(x, y)| ≤ M ‖x‖ ‖y‖ for
some M > 0 ([4]). For the information of the reader, we list some examples
of the function G which satisfy conditions mentioned above as follows:

(1) If X is a Hilbert space, then the mapping G can be the inner product
of X.

(2) If X is a Banach space, then the semi-inner product in the sense of
Lumer [8] can play the role of the mapping G.

(3) If X is a Banach space, B : X × X → R is a bilinear mapping and
there is a positive constant k such that B(x, x) ≥ k ‖x‖2 for all x ∈ X, then

G : X × X → R defined by G(x, y) =
1
k

B(x, y) satisfies all of the above
conditions.

(4) Consider the Banach space C([0, 1],H), where H is a Hilbert space.
For the mapping G, we can define

G(x, y) =
∫ 1

0

< x(t), y(t) > dt,

where < ·, · > is the inner product defined on H.

Definition 1.3. ([11]) A normed space X is said to satisfy Opial’s condition
if, whenever a sequence {xn} converges weakly to a point x ∈ X, then, for any
y ∈ X (y 6= x),

lim inf ‖xn − x‖ < lim inf ‖xn − y‖ .
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It is well-known from [11] that all of the lp spaces for 1 < p < ∞ have
Opial’s property. However, the Lp spaces do not have Opial’s property unless
p = 2.

The study of the existence of fixed points for multi-valued contractions and
nonexpansive mappings by using the Hausdorff metric was initiated by Markin
[10]. Later, an interesting and rich fixed point theory for such mappings
was developed, which has applications in control theory, convex optimization,
differential inclusion and economics (see [3] and references cited therein).

In 1978, Goebel and Kuczumov [2] proved that, if X is a closed convex
subset of l2 and T : X → X is non-expansive for which there exists a point
x ∈ X such that the set

LS(x, Tx; X) = {z ∈ X : 〈z − x, Tx− x〉 ≥ 0}
is bounded, then T has a fixed point in X.

In 1991, Marino [9] extended the results of Goebel and Kuczumov [2] to
the multi-valued case and improved some known results.

The following is a very general fixed point theorem for multi-valued non-
expansive self-mappings, which is due to Kirk and Massa [5].

Theorem 1.4. Let C be nonempty closed bounded and convex subset of a
Banach space X and T : C → KC(C) be a nonexpansive mapping. Assume
that the asymptotic center in C of each bounded sequence of X is nonempty
and compact. Then T has a fixed point in C.

For the sake of completeness, we state the following theorem, in which Xu
[13] gave an extension of Theorem 1.3 for nonself-multi-valued non-expansive
mappings satisfying an inwardness condition.

Theorem 1.5. Let C be a nonempty closed bounded and convex subset of a
Banach space X and T : C → KC(X) a non-expansive mapping satisfying the
inwardness condition Tx ⊆ IC(x) for all x ∈ C. Assume that the asymptotic
center in C of each bounded sequence of X is nonempty and compact. Then
T has a fixed point in C.

Xu [13] further proved the following theorem, in which T assumes compact
values only.

Theorem 1.6. Let C be a nonempty closed bounded and convex subset of a
uniformly convex Banach space X and T : C → K(X) be a non-expansive
mapping satisfying the weak inwardness condition Tx ⊆ IC(x) for all x ∈ C.
Then T has a fixed point in C.

Theorems 1.4 and 1.5 can be applied to Banach spaces which are uniformly
convex. However, they can not be extended to a nearly uniform convex Banach
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spaces since, in such a space, the asymptotic center of a bounded sequence with
respect to a closed bounded and convex subset of X is not necessarily compact.
In such cases, T is also assumed to be compact and convex.

In this paper, we present some results which establish the existence of
a fixed point for multi-valued non-expansive mappings defined on an un-
bounded convex set, which in turn generalizes several comparable results valid
for bounded sets.

2. Fixed Point Theorems

In [12], Penot, using the notion of asymptotic contraction, obtained some
existence theorems for single-valued non-expansive mappings defined on an
unbounded set. We extend the notion to multi-valued mappings to obtain a
general fixed point result for non-expansive multi-valued mappings, which in
turn extends Proposition 2 of [12] to multi-valued mappings.

The following theorem also relaxes the condition of convexity on the do-
main of the given mapping. It is also noted that, using the notion of the
asymptotic contraction, the comparable results in the literature of fixed point
theory for multi-valued mappings can be extended to unbounded sets.

Theorem 2.1. Let (X, ‖·‖) be a reflexive Banach space and C be a nonempty
unbounded closed star-shaped subset of X. Suppose that the mapping T : C →
CB(X) is a non-expansive and asymptotical contraction with respect to the
star-center x0 ∈ C. If Tx ⊆ IC(x) for any x ∈ C and I − T is demiclosed,
then T has a fixed point in C.

Proof. Let {λn} be a sequence of real numbers in (0, 1) such that lim
n→∞

λn = 0.

Let x0 ∈ C. For each n ≥ 1, define the mapping Tn : C → CB(X) by

Tnx = (1− λn)Tx + λnx0, ∀x ∈ C.

Then each Tn is a multi-valued contraction with Lipschitz constant (1− λn).
Since IC(x) is convex for any x ∈ C, it follows that Tnx ⊆ IC(x) and hence
Tnx ⊆ IC(x) for any x ∈ C. By Theorem 1.1, each Tn has a fixed point xn ∈ C
such that

xn = (1− λn)yn + λnx0 (2.1)

for some yn ∈ Txn.

Now, we show that {xn} is a bounded sequence. Assume that {xn} is
not bounded. Then there exists a subsequence of {xn} whose norm tends to
infinity. For notational convenience, denote this subsequence by {xm}. Since
T is an asymptotical contraction with respect to x0 ∈ C, for some y0 ∈ Tx0,
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there exist α ∈ (0, 1) and β > 0 such that ‖ym − y0‖ ≤ α ‖xm − x0‖ for some
ym ∈ Txm and ‖xm‖ > β. For m large enough, we have

‖xm‖ = ‖(1− λm)ym + λmx0‖
≤ (1− λm) ‖ym − y0‖+ ‖y0‖+ λm ‖x0 − y0‖
≤ (1− λm)α ‖xm − x0‖+ ‖y0‖+ λm ‖x0 − y0‖
≤ (1− λm)α ‖xm‖+ (1− λm)α ‖x0‖+ ‖y0‖+ λm ‖x0 − y0‖ .

Dividing both sides of the above inequality by ‖xm‖ and taking the limit as
m → ∞, we obtain 1 ≤ α, which is a contradiction. Thus ‖xn‖ is bounded.
From (2.1), it follows that {yn} is bounded and so is ‖yn − x0‖ . Therefore,

‖xn − yn‖ = λn ‖yn − x0‖

approaches zero as n → ∞. Since a Banach space X is reflexive and {xn} is
a bounded sequence, we have a subsequence {xm} which is weakly convergent
to an element p ∈ C, xm − ym ∈ (I − T )xm and xm − ym → 0 as m → ∞.
The demiclosedness of I − T implies that 0 ∈ (I − T )p. Hence p ∈ Tp. This
completes the proof.

In Theorems 1 and 2 of [9], the multi-valued non-expansive mapping was
assumed to be compact valued, while, in the following theorem, the condi-
tion of compactness is replaced by a weak condition of the closedness and
boundedness.

Theorem 2.2. Let (X, ‖·‖) be a reflexive Banach space and C be a nonempty
unbounded closed star-shaped subset of X. Suppose that the mapping T : C →
CB(X) is a non-expansive multi-valued mapping with Tx ⊆ IC(x) for any
x ∈ C. If

lim sup
‖x‖→∞

G(y, x)
‖x‖2 < 1, ∀y ∈ Tx, (2.2)

and I − T is demiclosed, then T has a fixed point in C.

Proof. Let {λn} be a sequence of real numbers in (0, 1) such that lim
n→∞

λn = 0.

For each n ≥ 1, define a mapping Tn : C → CB(X) by

Tnx = (1− λn)Tx, ∀x ∈ C.

Then each Tn is a multi-valued contraction with Lipschitz constant (1− λn).
Since Tx ⊆ IC(x) for any x ∈ C, we have Tnx ⊆ IC(x). It follows from
Theorem 1.2 that each Tn has a fixed point xn ∈ C such that

xn = (1− λn)yn



FIXED POINT RESULTS FOR MULTI-VALUED NON-EXPANSIVE MAPPINGS
ON AN UNBOUNDED SET 11

for some yn ∈ Txn.
Now, we show that {xn} is a bounded sequence. Assume that {xn} is not

a bounded sequence. Then there exists a subsequence {xm} of {xn} whose
norm tends to infinity. By (2.2), there exist α ∈ (0, 1) and β > 0 such that
G(ym, xm) ≤ α ‖xm‖2 for any x ∈ C and ‖xm‖ > β. For m large enough, we
have

‖xm‖2 ≤ G(xm, xm)
≤ G((1− λm)ym, xm)
≤ (1− λm)G(ym, xm)

≤ (1− λm)α ‖xm‖2 .

Dividing both sides of the above inequality by ‖xm‖2 and taking the limit as
m → ∞, we obtain 1 ≤ α, which is a contradiction. Thus ‖xn‖ is bounded.
The rest of the proof is similar to that given in Theorem 2.1. This completes
the proof.

The following theorem offers a simple proof of Corollary 4 in [9].

Theorem 2.3. Let (X, ‖·‖) be a reflexive Banach space and C be a nonempty
unbounded closed star-shaped subset of X. Suppose that the mapping T : C →
CB(X) is a non-expansive multi-valued mapping with Tx ⊆ IC(x) for any
x ∈ C. If, for the star-center x0 ∈ C,

lim sup
‖x‖→∞

G(y − x0, x)
‖x‖2 < 1, ∀y ∈ Tx, (2.3)

and I − T is demiclosed. Then T has a fixed point in C.

Proof. Let {λn} be a sequence of real numbers in (0, 1) such that lim
n→∞

λn = 0.

For each n ≥ 1, define a mapping Tn : C → CB(X) by

Tnx = (1− λn)Tx + λnx0, ∀x ∈ C.

Then each Tn is a multi-valued contraction with Lipschitz constant (1− λn).
Since IC(x) is convex for any x in C, it follows that Tnx ⊆ IC(x) for any
x ∈ C. By Theorem 1.2, each Tn has a fixed point xn ∈ C such that

xn = (1− λn)yn + λnx0

for some yn ∈ Txn.
Now, we show that {xn} is a bounded sequence. Assume that {xn} not

a bounded sequence. Then there exists a subsequence {xm} of {xn} whose
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norm tends to infinity. By (2.3), there exist α ∈ (0, 1) and β > 0 such that
G(ym, xm) ≤ α ‖xm‖2 for any x ∈ C and ‖xm‖ > β. For m large enough, we
have

‖xm‖2 ≤ G((1− λn)ym + λmx0, xm)
≤ G((1− λm)ym − (1− λn)x0 + x0, xm)
≤ (1− λm)G(ym − x0, xm) + G(x0, xm)

≤ (1− λm)α ‖xm‖2 + M ‖x0‖ ‖xm‖ .

Dividing both sides by ‖xm‖2 and taking the limit as m → ∞, we obtain
1 ≤ α, which is a contradiction. Thus ‖xn‖ is bounded. The rest of the proof
is similar to that given in Theorem 2.1. This completes the proof.

Remark 2.4. Let T : R → 2R be a multi-valued mapping defined by

Tx = [0,
x

2
], ∀x ∈ R.

Take G(x, y) = xy for all x, y ∈ R, then, for x0 = 0, (2.3) is satisfied.

In the following theorem, we assume that every bounded sequence in C is
regular and has a unique asymptotic center.

Theorem 2.5. Let C be a nonempty closed star-shaped subset of a reflexive
Banach space X. Suppose that the mapping T : C → K(X) is a non-expansive
and asymptotical contraction with respect to the star-center x0 ∈ C. If Tx ⊆
IC(x) for any x ∈ C. Then T has a fixed point in C.

Proof. Following the proof of Theorem 2.1, we obtain a bounded sequence
{xn} in C such that lim

n→∞
‖xn − yn‖ = 0 for some yn ∈ Txn. Since

d(xn, Txn) ≤ ‖xn − yn‖ ,

d(xn, Txn) → 0 as n → ∞. Also, {xn} is regular with the unique asymptotic
center z (say) and hence is asymptotically uniform. We denote the asymptotic
radius of {xn} by r. Since Tz is compact, select zn ∈ Tz such that

‖yn − zn‖ ≤ H(Txn, T z) ≤ ‖xn − z‖ .

Since {zn} ⊆ Tz, there exists a subsequence {zm} of {zn} such that zm → z0

for some z0 ∈ Tz. Consider

‖xm − z0‖ ≤ ‖xm − ym‖+ ‖ym − zm‖+ ‖zm − z0‖ .

Therefore, we have

lim sup
m→∞

‖xm − z0‖ ≤ lim sup
m→∞

‖xm − z‖ = r.
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By the uniqueness of the asymptotic center of {xn}, we conclude that z = z0

and hence z ∈ Tz. This completes the proof.

Remark 2.6. (1) Theorems 2.1, 2.2 and 2.3 can easily be extended to locally
convex spaces.

(2) Theorems 2.2 and 2.3 extend Theorems 3.1 and 3.2 of [4] to multi-
valued non-expansive nonself-mappings. These theorems are also applicable
to the closed convex cones.

(3) Theorems 2.1, 2.2 and 2.3 improve Theorem 1.3 of [5], Theorem 3.4 of
[1] and Theorem 1.4 of [13] in the sense that T assumes closed and bounded
values instead of compact and convex values. Moreover, our theorems do not
require the assumption of compactness of the asymptotic center in C. Also, in
our theorems, the domain of the mapping involved is unbounded.

(4) Theorem 2.5 improves Theorem 1.5 of [13].
(5) Theorems 2.1, 2.2 and 2.3 employ simpler techniques to prove fixed

point results than those given in [1] and [9]. Moreover, our results extend the
results of [9] to nonself-mappings.

Acknowledgement: The authors thank the referees for their careful reading
of the manuscript and for their suggestions.
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