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SECOND ORDER PARALLEL TENSORS ON

(k, µ)-CONTACT METRIC MANIFOLDS

A. K. Mondal, U. C. De and C. Özgür

Abstract

The object of the present paper is to study the symmetric and skew-
symmetric properties of a second order parallel tensor in a (k, µ)-contact
metric manifold.

1 Introduction

In 1926, H. Levy [8] proved that a second order symmetric parallel non-singular
tensor on a space of constant curvature is a constant multiple of the metric
tensor. In recent papers R. Sharma ([10], [11], [12]) generalized Levy’s result
and also studied a second order parallel tensor on Kaehler space of constant
holomorphic sectional curvature as well as on contact manifolds . In 1996,
U. C. De [6] studied second order parallel tensors on P−Sasakian manifolds.
Recently L. Das [5] studied second order parallel tensors on α-Sasakian mani-
folds. In this study we consider second order parallel tensors on (k, µ)-contact
metric manifolds.

The paper is organized as follows:
In Section 2, we give a brief account of contact metric and (k, µ)-contact met-
ric manifolds. In section 3, it is shown that if a (k, µ)-contact metric manifold
admits a second order symmetric parallel tensor then either the manifold is
locally isometric to the Riemannian product En+1(0) × Sn(4), or the second
order symmetric parallel tensor is a constant multiple of the associated met-
ric tensor. As an application of this result we obtain that a Ricci symmetric
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(∇S = 0) (k, µ)-contact metric manifold is either locally isometric to the Rie-
mannian product En+1(0) × Sn(4), or an Einstein manifold. Further, it is
shown that on a (k, µ)-contact metric manifold with k2 + (k − 1)µ2 6= 0 there
is no nonzero parallel 2-form.

2 Contact Metric Manifolds

A (2n+1)-dimensional manifoldM is said to admit an almost contact structure
if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η

satisfying

(a) φ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) φξ = 0, (d) η ◦ φ = 0. (1)

An almost contact metric structure is said to be normal if the induced
almost complex structure J on the product manifold M × R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M , t is the coordinate of R and f is a
smooth function on M × R. Let g be a compatible Riemannian metric with
almost contact structure (φ, ξ, η), that is,

g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2)

Then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (φ, ξ, η, g). From (1) it can be easily seen that

(a)g(X,φY ) = −g(φX, Y ), (b)g(X, ξ) = η(X)

for all vector fields X, Y . An almost contact metric structure becomes a
contact metric structure if

g(X,φY ) = dη(X,Y )

for all vector fields X, Y . The 1-form η is then a contact form and ξ is its
characteristic vector field. We define a (1, 1) tensor field h by h = 1

2£ξφ,
where £ denotes the Lie-differentiation. Then h is symmetric and satisfies
hφ = −φh. We have Tr.h = Tr.φh = 0 and hξ = 0. Also,

∇Xξ = −φX − φhX (3)

holds in a contact metric manifold. A normal contact metric manifold is a
Sasakian manifold. An almost contact metric manifold is Sasakian if and only
if

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X, X, Y ∈ TM,
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where ∇ is Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector is said to be
a K-contact manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [7]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric structure satisfying R(X,Y )ξ = 0 [2]. On the other hand, on a Sasakian
manifold the following holds:

R(X,Y )ξ = η(Y )X − η(X)Y.

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case; D. Blair, T.
Koufogiorgos and B. J. Papantoniou [4] considered the (k, µ)-nullity condition
on a contact metric manifold and gave several reasons for studying it. The
(k, µ)-nullity distribution N(k, µ) ([4], [9]) of a contact metric manifold M is
defined by

N(k, µ) : p −→ Np(k, µ) =

= {W ∈ TpM : R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )},

for all X,Y ∈ TM , where (k, µ) ∈ R
2. A contact metric manifold M2n+1

with ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold (see also [3]). In
particular on a (k, µ)-contact metric manifold, we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]. (4)

On a (k, µ)-contact metric manifold k ≤ 1. If k = 1, the structure is Sasakian
(h = 0 and µ is indeterminant) and if k < 1, the (k, µ)-nullity condition
determines the curvature of M2n+1 completely [4]. In fact, for a (k, µ)-contact
metric manifold, the condition of being a Sasakian manifold, a K-contact
manifold, k = 1 and h = 0 are all equivalent.
Also, if M is a contact metric manifold with ξ ∈ N(k, µ), we have the following
relations [4]:

R(ξ,X)Y = k{g(X,Y )ξ − η(Y )X}+ µ{g(hX, Y )ξ − η(Y )hX}, (5)

h2 = (k − 1)φ2, k ≤ 1. (6)

We now state some results which will be used later on.

Lemma 2.1. ([2]) A contact metric manifold M with R(X,Y )ξ = 0 for all
vector fields X,Y is locally isometric to the Riemannian product of a flat (n+
1)−dimensional manifold and an n-dimensional manifold of positive curvature
4, that is, En+1 × Sn(4).
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Lemma 2.2. [4] Let M be a contact metric manifold with ξ belonging to the
(k, µ)−nullity distribution, then k ≤ 1. If k = 1, then h = 0 and M(ξ, η, φ, g)
is a Sasakian manifold. If k < 1, the contact metric structure is not Sasakian
and M admits three mutually orthogonal integrable distributions, the eigen
distributions of the tensor field h : D(0), D(λ) and D(−λ), where 0, λ =√
1− k and −λ are the (constant) eigenvalues of h.

Lemma 2.3. [4] Let M be a contact metric manifold with ξ belonging to the
(k, µ)−nullity distribution. If k < 1, then for any X orthogonal to ξ, the
ξ−sectional curvature K(X, ξ) is given by

K(X, ξ) = k + µg(hX,X) = k + λµ if X ∈ D(λ)

= k − λµ if X ∈ D(−λ).

3 Second order parallel tensor

Definition 3.1 A tensor α of second order is said to be a parallel tensor if
∇α = 0, where ∇ denotes the operator of the covariant differentiation with
respect to the metric tensor g.

Let α be a (0, 2)-symmetric tensor field on a (k, µ)-contact metric manifold
M such that ∇α = 0. Then it follows that

α(R(W,X)Y,Z) + α(Y,R(W,X)Z) = 0, (7)

for arbitrary vector fields W,X, Y, Z ∈ T (M).
Substitution of W = Y = Z = ξ in (7) gives us

α(R(ξ,X)ξ, ξ) = 0,

since α is symmetric.
Now take a non-empty connected open subset U of M and restrict our

considerations to this set.
As the manifold is a (k, µ)-contact metric manifold, using (5) in the above

equation we get

k{g(X, ξ)α(ξ, ξ)− α(X, ξ)} − µα(hX, ξ) = 0. (8)

We now consider the following cases:
Case 1. k = µ = 0,
Case 2. k 6= 0, µ = 0,
Case 3. k 6= 0, µ 6= 0.

For the Case 1, we have from (4) that R(X,Y )ξ = 0 for all X,Y and hence
by Lemma 2.1, the manifold is locally isometric to the Riemannian product
En+1(0)× Sn(4).
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For the Case 2, it follows from (8) that

α(X, ξ)− α(ξ, ξ)g(X, ξ) = 0. (9)

Differentiating (9) covariantly along Y , we get

g(∇Y X, ξ)α(ξ, ξ) + g(X,∇Y ξ)α(ξ, ξ) + 2g(X, ξ)α(∇Y ξ, ξ)

− α(∇Y X, ξ)− α(X,∇Y ξ) = 0. (10)

Changing X by ∇Y X in (9) we have

g(∇Y X, ξ)α(ξ, ξ)− α(∇Y X, ξ) = 0. (11)

From (10) and (11) it follows that

g(X,∇Y ξ)α(ξ, ξ) + 2g(X, ξ)α(∇Y ξ, ξ)− α(X,∇Y ξ) = 0. (12)

Using (1), (3) and (9) we have from (12)

α(X,φY )− α(X,hφY ) = α(ξ, ξ)g(X,φY )− α(ξ, ξ)g(X,hφY ). (13)

Replacing Y by φY in (13) and using (1) we get

α(X,Y )− g(X,Y )α(ξ, ξ) = α(X,hY )− α(ξ, ξ)g(X,hY ). (14)

Changing Y by hY in (14) and using (6) we have

α(X,hY )− α(ξ, ξ)g(X,hY ) = −(k − 1){α(X,Y )− α(ξ, ξ)g(X,Y )}. (15)

Using (14) in (15) we obtain

k(α(X,Y )− α(ξ, ξ)g(X,Y )) = 0,

Since k 6= 0,
α(X,Y )− α(ξ, ξ)g(X,Y ) = 0.

Hence, since α and g are parallel tensor fields, α(ξ, ξ) is constant on U . By
the parallelity of α and g, it must be α(X,Y ) = α(ξ, ξ)g(X,Y ) on whole of
M .

Finally for the Case 3, changing X by hX in the equation (8) and using
(6) we obtain

kα(hX, ξ) = (k − 1)µ(α(X, ξ)− g(X, ξ)α(ξ, ξ)). (16)

Using (16) in (8) we get

(k2 + (k − 1)µ2){α(X, ξ)− α(ξ, ξ)g(X, ξ)} = 0. (17)
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Now k2 + (k − 1)µ2 6= 0 means {k + µ
√
1− k}{k − µ

√
1− k} 6= 0 which

implies {k + µ
√
1− k} 6= 0 and {k − µ

√
1− k} 6= 0. Also

TM = [ξ]⊕ [D(λ)]⊕ [D(−λ)],

where D(λ)(resp. D(−λ)) is the distribution defined by the vector fields hX =
λX (resp. hX = −λX), λ =

√
1− k which follows from (6)). Hence the

relation k2 + (k − 1)µ2 6= 0 basically means that the sectional curvatures of
plane sections containing ξ are non-vanishing, that is, K(X, ξ) 6= 0 for any
vector field X perpendicular to ξ. Again from Lemma 2.3, it follows that
K(X, ξ) = 0 if and only if

k + λµ = 0 for X ∈ D(λ)

k − λµ = 0 for X ∈ D(−λ),

where λ =
√
1− k. Then we have k + µ

√
1− k = 0 and k − µ

√
1− k = 0.

These two relations gives us k = µ = 0. But in this case we have assumed
that k 6= 0 and µ 6= 0. Consequently we must have K(X, ξ) 6= 0 for all X
perpendicular to ξ in this case. Hence we must have k2 +(k− 1)µ2 6= 0. Then
(17) implies that the relation (9) holds and hence proceeding in the same way
as in case 2, we can show that α(X,Y ) = α(ξ, ξ)g(X,Y ) on whole of M .

Therefore considering all the cases we can state the following:

Theorem 3.1. If a (k, µ)-contact metric manifold admits a second order sym-
metric parallel tensor then either the manifold is locally isometric to the Rie-
mannian product En+1(0) × Sn(4) including the 3-dimensional case, or the
second order symmetric parallel tensor is a constant multiple of the associated
metric tensor.

Application: We consider the Ricci symmetric (k, µ)−contact metric mani-
fold. Then ∇S = 0. Hence from Theorem 3.1, we have the following:

Corollary 3.1. A Ricci symmetric (∇S = 0) (k, µ)-contact metric manifold
is either locally isometric to the Riemannian product En+1(0)× Sn(4), or an
Einstein manifold.

The above Corollary has been proved by Papantoniou in [9].

Next, let M be a (k, µ)-contact metric manifold admitting a second order
skew-symmetric parallel tensor. Putting Y = W = ξ in (7) and using (5), we
obtain

k{η(X)α(ξ, Z) − α(X,Z)− η(Z)α(ξ,X)}
= µ{α(hX,Z) + η(Z)α(ξ, hX)}. (18)
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Changing X by hX in (18) we have

k{α(hX,Z) + η(Z)α(ξ, hX)} = (k − 1)µ{α(X,Z)

+ η(Z)α(ξ,X)− η(X)α(ξ, Z)}. (19)

Using (18) and (19) we obtain

(k2 + (k − 1)µ2){α(X,Z)− η(X)α(ξ, Z) + η(Z)α(ξ,X)} = 0. (20)

Consider a non-empty open subset U of M such that k2 + (k − 1)µ2 6= 0
and k 6= 0 on U. Then

α(X,Z)− η(X)α(ξ, Z) + η(Z)α(ξ,X) = 0. (21)

Now, let A be a (1, 1) tensor field which is metrically equivalent to α, that
is, α(X,Y ) = g(AX,Y ). Then from (21) we have

g(AX,Z) = η(X)g(Aξ,Z)− η(Z)g(Aξ,X),

and thus
AX = η(X)Aξ − g(Aξ,X)ξ. (22)

Since α is parallel, then A is parallel. Hence, using (1), (22) follows that

∇X(Aξ) = A(∇Xξ) = −A(φX) +A(hφX).

Using (1), we have

∇φX(Aξ) = A(X)− η(X)Aξ −A(hX). (23)

Using (22) in (23) we obtain

∇φX(Aξ) = −A(hX)− g(Aξ,X)ξ. (24)

Also from (22) we get
g(Aξ, ξ) = 0. (25)

Using (25), from (24) we have

g(∇φX(Aξ), Aξ) = −g(A(hX), Aξ).

Thus,
g(∇φXξ, A2ξ) = −g(hX,A2ξ). (26)

Now from (3) we get

∇φXξ = −φ2X + hφ2X

= X − hX − η(X)ξ.
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Using this in (26) we have

A2ξ = −‖Aξ‖2ξ. (27)

Differentiating (27) covariantly along X, it follows that

∇X(A2ξ) = A2(∇Xξ) = A2(−φX − φhX) = −‖Aξ‖2(∇Xξ).

Hence

−A2(φX)−A2(φhX) = ‖Aξ‖2φX + ‖Aξ‖2φhX. (28)

Replacing X by φX and using (1) we obtain from (27)

A2(X)−A2(hX) = −‖Aξ‖2X + ‖Aξ‖2hX. (29)

Changing X by hX in (29) and using (1) and (29) we obtain

A2(hX) + (k − 1)A2(X) = −‖Aξ‖2hX − (k − 1)‖Aξ‖2X. (30)

Using (29) from (30) we get

k{A2X + ‖Aξ‖2X} = 0.

Now k 6= 0 implies A2X = −‖Aξ‖2X.

Now, if ‖Aξ‖ 6= 0, then J = 1
‖Aξ‖A is an almost complex structure on

U . In fact, (J, g) is a Kaehler structure on U . The fundamental second order
skew-symmetric parallel tensor is g(JX, Y ) = κg(AX,Y ) = κα(X,Y ), with
κ = 1

‖Aξ‖ = constant. But (21) means α(X,Y ) = η(X)α(ξ, Y )− η(Y )α(ξ,X)

and thus α is degenerate, which is a contradiction. Therefore ‖Aξ‖ = 0 and
hence α = 0 on U . Since α is parallel on U , α = 0 on M .

Hence we can state the following:

Theorem 3.2. On a (k, µ)-contact metric manifold with k 6= 0 there is no
nonzero second order skew symmetric parallel tensor provided k2+(k−1)µ2 6=
0.
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