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SECOND ORDER PARALLEL TENSORS ON
(k, 1)-CONTACT METRIC MANIFOLDS

A. K. Mondal, U. C. De and C. Ozgiir

Abstract

The object of the present paper is to study the symmetric and skew-
symmetric properties of a second order parallel tensor in a (k, p)-contact
metric manifold.

1 Introduction

In 1926, H. Levy [8] proved that a second order symmetric parallel non-singular
tensor on a space of constant curvature is a constant multiple of the metric
tensor. In recent papers R. Sharma ([10], [11], [12]) generalized Levy’s result
and also studied a second order parallel tensor on Kaehler space of constant
holomorphic sectional curvature as well as on contact manifolds . In 1996,
U. C. De [6] studied second order parallel tensors on P—Sasakian manifolds.
Recently L. Das [5] studied second order parallel tensors on a-Sasakian mani-
folds. In this study we consider second order parallel tensors on (k, u)-contact
metric manifolds.
The paper is organized as follows:

In Section 2, we give a brief account of contact metric and (k, u)-contact met-
ric manifolds. In section 3, it is shown that if a (k, u)-contact metric manifold
admits a second order symmetric parallel tensor then either the manifold is
locally isometric to the Riemannian product E"*1(0) x S™(4), or the second
order symmetric parallel tensor is a constant multiple of the associated met-
ric tensor. As an application of this result we obtain that a Ricci symmetric

Key Words: (k, u)—nullity distribution, Second order parallel tensor.
Mathematics Subject Classification: 53C05, 53C20, 53C21,53C25
Received: August, 2009

Accepted: January, 2010

229



230 A. K. MoNDAL, U. C. DE aND C. OzGUR

(VS =0) (k, u)-contact metric manifold is either locally isometric to the Rie-
mannian product E"T1(0) x S"(4), or an Einstein manifold. Further, it is
shown that on a (k, u)-contact metric manifold with &2 + (k — 1)u? # 0 there
is no nonzero parallel 2-form.

2 Contact Metric Manifolds

A (2n+1)-dimensional manifold M is said to admit an almost contact structure
if it admits a tensor field ¢ of type (1,1), a vector field £ and a 1-form 7
satisfying

(a) ¢ =~T+n®& (0) n€) =1, (c) $€=0, (d) no¢=0. (1)

An almost contact metric structure is said to be normal if the induced
almost complex structure J on the product manifold M x R defined by

T F ) = (6X — f&n(X) D)

is integrable, where X is tangent to M, t is the coordinate of R and f is a
smooth function on M x R. Let g be a compatible Riemannian metric with
almost contact structure (¢, §,n), that is,

9(0X,¢Y) = g(X,Y) = n(X)n(Y). (2)

Then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (¢,&,7,¢g). From (1) it can be easily seen that

(a)g(X,dY) = —g(¢X,Y), (b)g(X,§) = n(X)

for all vector fields X, Y. An almost contact metric structure becomes a
contact metric structure if

9(X,9Y) = dn(X,Y)

for all vector fields X, Y. The 1-form 7 is then a contact form and & is its
characteristic vector field. We define a (1,1) tensor field h by h = %i’g(ﬁ,
where £ denotes the Lie-differentiation. Then h is symmetric and satisfies
h¢ = —¢ph. We have T'r.h = Tr.ph = 0 and h€ = 0. Also,

V€ = —¢X — ¢hX (3)

holds in a contact metric manifold. A normal contact metric manifold is a
Sasakian manifold. An almost contact metric manifold is Sasakian if and only
if

(Vxd)(Y) = g(X,Y)e —n(Y)X, X,Y €TM,
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where V is Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M?" (¢, &, n, g) for which £ is a Killing vector is said to be
a K-contact manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [7]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric structure satisfying R(X,Y )¢ = 0 [2]. On the other hand, on a Sasakian
manifold the following holds:

R(X,Y)§ =n(Y)X —n(X)Y,

As a generalization of both R(X,Y)¢ = 0 and the Sasakian case; D. Blair, T.
Koufogiorgos and B. J. Papantoniou [4] considered the (k, u)-nullity condition
on a contact metric manifold and gave several reasons for studying it. The
(k, p)-nullity distribution N (k, 1) ([4], [9]) of a contact metric manifold M is
defined by

N(k,p) = p—> Ny(k,p) =
= {(WeT,M: R(X,Y)W = (kI +puh)(g(Y,W)X — g(X,W)Y)},

for all X,Y € TM, where (k,u) € R%2. A contact metric manifold M?"+!
with € € N(k,p) is called a (k, u)-contact metric manifold (see also [3]). In
particular on a (k, u)-contact metric manifold, we have

R(X,Y)§ = k[n(Y)X —n(X)Y] + pn(Y)hX —n(X)hY]. (4)

On a (k, u)-contact metric manifold k < 1. If k = 1, the structure is Sasakian
(h = 0 and p is indeterminant) and if & < 1, the (k,pu)-nullity condition
determines the curvature of M?"*! completely [4]. In fact, for a (k, u)-contact
metric manifold, the condition of being a Sasakian manifold, a K-contact
manifold, k =1 and h = 0 are all equivalent.

Also, if M is a contact metric manifold with & € N (k, i), we have the following
relations [4]:

R(EX)Y = k{g(X,Y){ —n(Y)X} + p{g(hX,Y)§ —n(Y)RX},  (5)
R = (k—1)¢% k < 1. (6)
We now state some results which will be used later on.

Lemma 2.1. ([2]) A contact metric manifold M with R(X,Y )¢ = 0 for all
vector fields X,Y is locally isometric to the Riemannian product of a flat (n+
1)—dimensional manifold and an n-dimensional manifold of positive curvature
4, that is, E"T1 x S"(4).
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Lemma 2.2. [4] Let M be a contact metric manifold with & belonging to the
(k, ) —nullity distribution, then k < 1. If k =1, then h =0 and M(&,n, ¢, g)
1s a Sasakian manifold. If k < 1, the contact metric structure is not Sasakian
and M admits three mutually orthogonal integrable distributions, the eigen
distributions of the tensor field h : D(0), D(\) and D(—M\), where 0, A =
V1 —Fk and —\ are the (constant) eigenvalues of h.

Lemma 2.3. [4] Let M be a contact metric manifold with & belonging to the
(k, p)—nullity distribution. If k < 1, then for any X orthogonal to &, the
&—sectional curvature K (X, ) is given by

K(X,6)=k+ughX,X) = k+iu if X e D\
= k—Xu if XeD(=N).

3 Second order parallel tensor

Definition 3.1 A tensor « of second order is said to be a parallel tensor if
Va = 0, where V denotes the operator of the covariant differentiation with
respect to the metric tensor g.

Let o be a (0, 2)-symmetric tensor field on a (k, u)-contact metric manifold
M such that Va = 0. Then it follows that

a(R(W, X)Y, Z) + oY, R(W, X)Z) = 0, (7)

for arbitrary vector fields W, XY, Z € T(M).
Substitution of W =Y = Z = ¢ in (7) gives us

a(R(§, X)§,€) =0,

since « is symmetric.

Now take a non-empty connected open subset U of M and restrict our
considerations to this set.

As the manifold is a (k, u)-contact metric manifold, using (5) in the above
equation we get

k{g(X7 f)oz(f,f) - Oé(X, §)} - /’La(th f) =0. (8)

We now consider the following cases:
Case 1. k=pu=0,
Case 2. k#0,u=0,
Case 3. kK #0,u # 0.

For the Case 1, we have from (4) that R(X,Y )¢ = 0 for all X, Y and hence
by Lemma 2.1, the manifold is locally isometric to the Riemannian product
E"TH0) x S™(4).



SECOND ORDER PARALLEL TENSORS ON (k, 4)-CONTACT METRIC

MANIFOLDS 233
For the Case 2, it follows from (8) that
a(X,§) — a(§,£)g(X,£) = 0. (9)
Differentiating (9) covariantly along Y, we get
9(Vy X, §a(,§) + g(X,Vy&a(§,§) +29(X, a(VyE,€)
— a(VyX,€) —a(X,Vy&) =0. (10)
Changing X by Vy X in (9) we have
9(Vy X, 9a(&,§) — a(Vy X, §) = 0. (11)
From (10) and (11) it follows that
9(X, Vy§)a(§,§) +29(X,§)a(VyE, &) — a(X, VyE) = 0. (12)
Using (1), (3) and (9) we have from (12)
(X, 9Y) — a(X, heY) = a(£,£)g(X, 9Y) — (&, §)g(X, heY). (13)
Replacing Y by ¢Y in (13) and using (1) we get
a(X,Y) = g(X,Y)a(§,§) = a(X, hY) — a(§, §)g(X, hY). (14)
Changing Y by hY in (14) and using (6) we have
a(X,hY) —a(§,§)g(X,hY) = —=(k = D{a(X,Y) — a(§,§g(X,Y)}. (15)

Using (14) in (15) we obtain
k(o‘(X’ Y) - o‘(ﬁ? f)g(X’ Y)) =0,

Since k # 0,
Oé(X,Y) - a(§7§)g(X7Y) =0.

Hence, since o and g are parallel tensor fields, a(¢,€) is constant on U. By
the parallelity of o and g, it must be a(X,Y) = «(£,£)g(X,Y") on whole of

M

Finally for the Case 3, changing X by hX in the equation (8) and using

(6) we obtain
ka(hX, &) = (k= 1)pu(a(X,§) — g(X, §)a(€,€)).
Using (16) in (8) we get
(K + (k = 1)p*){a(X, ) — al&, )g(X, €} = 0.

(16)

(17)
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Now k% + (k — 1)u? # 0 means {k + uv1 — k}{k — pv/1 — k} # 0 which
implies {k + pv1 —k} # 0 and {k — uv/1 — k} # 0. Also

TM = [£] @ [D(N)] @ [D(=N)],

where D(A)(resp. D(—))) is the distribution defined by the vector fields hX =
AX (resp. hX = —AX), A = /1 —k which follows from (6)). Hence the
relation k? + (k — 1)u? # 0 basically means that the sectional curvatures of
plane sections containing ¢ are non-vanishing, that is, K(X,&) # 0 for any
vector field X perpendicular to £&. Again from Lemma 2.3, it follows that
K(X,¢) =0 if and only if

kE+A=0 for X eD(\)
k—Au=0 for X € D(-)),
where A = /1 — k. Then we have k + uv/1—k = 0 and k — pv1 —k = 0.

These two relations gives us k = p = 0. But in this case we have assumed

that k£ # 0 and p # 0. Consequently we must have K(X,£) # 0 for all X

perpendicular to ¢ in this case. Hence we must have k2 + (k — 1)u? # 0. Then

(17) implies that the relation (9) holds and hence proceeding in the same way

as in case 2, we can show that a(X,Y) = «(£,£)g(X,Y") on whole of M.
Therefore considering all the cases we can state the following:

Theorem 3.1. If a (k, p)-contact metric manifold admits a second order sym-
metric parallel tensor then either the manifold is locally isometric to the Rie-
mannian product E"T(0) x S™(4) including the 3-dimensional case, or the
second order symmetric parallel tensor is a constant multiple of the associated
metric tensor.

Application: We consider the Ricci symmetric (k, ;1) —contact metric mani-
fold. Then V.S = 0. Hence from Theorem 3.1, we have the following:

Corollary 3.1. A Ricci symmetric (VS = 0) (k, p)-contact metric manifold
is either locally isometric to the Riemannian product E"*1(0) x S™(4), or an
Einstein manifold.

The above Corollary has been proved by Papantoniou in [9].
Next, let M be a (k, p)-contact metric manifold admitting a second order

skew-symmetric parallel tensor. Putting Y =W = ¢ in (7) and using (5), we
obtain

Mn(X)a(§, 2) - o(X,2) —n(Z)a(, X)}
= {alhX, Z) + n(Z)a(§, hX)}. (18)
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Changing X by hX in (18) we have
ka(hX, Z) +n(Z)a§,hX)} = (k= 1p{a(X, Z)
+ n(Z2)a(€ X) —n(X)a(§ 2)}. (19)
Using (18) and (19) we obtain
(k% + (k = Dp*){a(X, 2) = n(X)a(, Z) + n(Z)a(& X)} = 0. (20)

Consider a non-empty open subset U of M such that k? + (k — 1)u? # 0
and k # 0 on U. Then

a(X, Z) = n(X)a(§, 2) + n(Z)a(E, X) = 0. (21)

Now, let A be a (1, 1) tensor field which is metrically equivalent to «, that
is, (X,Y) = g(AX,Y). Then from (21) we have

9(AX, Z) = n(X)g(AE, Z) — n(Z)g(AE, X),

and thus
AX = n(X)AL — g(AE, X)E. (22)

Since « is parallel, then A is parallel. Hence, using (1), (22) follows that
Vx(A§) = A(Vx¢§) = —A(¢X) + A(hoX).
Using (1), we have
Vox (AS) = A(X) = n(X)AL — A(hX). (23)
Using (22) in (23) we obtain
Vox (AL) = —A(hX) — g(AL, X)E. (24)

Also from (22) we get
9(A¢,€) = 0. (25)
Using (25), from (24) we have
Thus,
9(Vox§& A%€) = —g(hX, A%¢). (26)
Now from (3) we get
Voxé = —62X +ho?X
= X —hX - n(X)E.
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Using this in (26) we have
A%¢ = — || Ag|%e. (27)
Differentiating (27) covariantly along X, it follows that
Vx(A%€) = A%(Vx§) = A%(=¢X = ¢hX) = —[|A[*(Vx9),

Hence

—A%(¢X) — A%(phX) = [|AE|*¢ X + || Ag||*phX. (28)
Replacing X by ¢X and using (1) we obtain from (27)

AX(X) — A2 (hX) = —[|AE|P X + || A€[|*hX. (29)
Changing X by hX in (29) and using (1) and (29) we obtain
A2 (hX) + (k = 1) A*(X) = —[|AE|hX — (k — D[ AE|X. (30)
Using (29) from (30) we get
R{A2X + || A€ X} = 0.

Now k # 0 implies A2X = —||A¢|>X.

Now, if ||AE|| # 0, then J = m/l is an almost complex structure on
U. In fact, (J,g) is a Kachler structure on U. The fundamental second order
skew-symmetric parallel tensor is g(JX,Y) = kg(AX,Y) = ka(X,Y), with
K= HTlgn = constant. But (21) means a(X,Y) = n(X)a(£,Y) — n(Y)a(£, X)
and thus « is degenerate, which is a contradiction. Therefore ||A¢|| = 0 and
hence a = 0 on U. Since « is parallel on U, « =0 on M.

Hence we can state the following:

Theorem 3.2. On a (k,p)-contact metric manifold with k # 0 there is no

nonzero second order skew symmetric parallel tensor provided k* + (k—1)u® #
0.

References

[1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes
in Math, 509, Springer Verlag, Berlin, Heidelberg, 1976.

[2] Blair, D. E., Two remarks on contact metric structures, Tohoku Math.
J., 29 (1977), 319-324.



SECOND ORDER PARALLEL TENSORS ON (k, u)-CONTACT METRIC
MANIFOLDS 237

3]

Blair, D. E., Kim, J-S. and Tripathi, M. M., On the concircular curvature
tensor of a contact metric manifold, J. Korean Math. Soc., 42 (2005),
883-892.

Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric
manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-
214.

Das, L., Second order parallel tensor on a—Sasakian manifold, Acta
Math. Acad. Paedagogicae Nyiregyhaziensis, 23 (2007), 65-69.

De, U. C., Second order parallel tensor on P—Sasakian manifolds, Publ.
Math. Debrecen, 49 (1996), 33-37.

Jun J. B. and Kim, U. K., On 3-dimensional almost contact metric man-
ifolds, Kyungpook Math. J., 34 (1994), 293-301.

Levy, H., Symmetric tensors of the second order whose covariant deriva-
tives vanish, Annals of Maths., 27 (1926), 91-98.

Papantoniou, B .J., Contact Riemannian manifolds Satisfying
R(¢,X).R =0 and ¢ € (k, u)—nullity distribution, Yokohama Math. J.,
40 (1993), 149-161.

Sharma, R., Second order parallel tensor in real and complex space forms,
International J. Math. and Math. Sci., 12(1989), 787-790.

Sharma, R., Second order parallel tensor on contact manifolds, Algebras,
Groups and Geometries, 7(1990), 787-790.

Sharma, R., Second order parallel tensor on contact manifolds II, C.R.
Math Rep. Acad. Sci. Canada, XIII, No-6,6(1991), 259-264.

Tanno, S., Ricci curvature of contact Riemannian manifolds, Tohoku
Math. J., 40(1983), 271-448.

ABUL KALAM MONDAL

Dum Dum Subhasnagar High School(H.S.)

43, Sarat Bose Road, Kolkata-700065, West Bengal, India.
e-mail: kalam_ju@yahoo.co.in

UDAY CHAND DE

University of Calcutta

Department of Pure Mathematics,

35, B.C. Road, Kolkata-700019, West Bengal, India.
e-mail: uc_.de@yahoo.com



238

A. K. MoNDAL, U. C. DE aND C. OzGUR

CIHAN OZGUR
Balikesir University
Department of Mathematics,

10145, Cagus, Balikesir, Turkey.

e-mail: cozgur@balikesir.edu.tr



