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GROUNDWATER POLLUTANT

TRANSPORT: TRANSFORMING LAYERED

MODELS TO DYNAMICAL SYSTEMS

Robert McKibbin

Abstract

Chemical species such as tracers or dissolved pollutants disperse as
they are advected by a fluid flowing within a permeable matrix. In
many groundwater systems, the porous media have (near-horizontal)
layered structures that have been determined by the geological processes
which formed them. The advection-dispersion equations that model the
transport then have coefficients that depend mainly on depth.

In this study, the parameters that contribute to the coefficients in
the partial differential equations are assumed constant within each layer,
but can be different in each of the various layers. This allows aquifer
systems with parallel-bedded structures to be modelled without having
to resort to full numerical simulations. Anisotropy in permeability and
in the dispersive length scales, as well as removal of the chemical by
adsorption onto the matrix surface and movement into and/or out of
dead-end pores, may all be incorporated. The resulting linear constant-
coefficient pde’s are coupled by mass flux continuity requirements at the
layer interfaces.

In many cases, full or partial analytic solutions for the species con-
centration can be found, thereby saving computational effort. The use
of integral transforms, Green’s functions and other techniques are used
to solve the system of differential equations.

First, the equations that describe the movement of the fluid and
pollutant species are summarized. The modelling device of images is
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then used to provide an analytical solution for species released into a
homogeneous layer. This is followed by a derivation of the model equa-
tions for a multi-layered system; Fourier transforms allow conversion
to a dynamical system that is partly solved analytically using standard
techniques. The layered system may also be used as an approximate
realization of an aquifer with properties that vary smoothly with depth.
Some examples are given.

1 Introduction

The aim of this study is to mathematically model the transport of a pollutant
injected into a groundwater aquifer that is composed of several different paral-
lel sedimentary layers, where the layer thicknesses are assumed small compared
to the lateral extent of the aquifer. The groundwater flow throughout is as-
sumed to be under the influence of a uniform pressure gradient parallel to the
layers. Within each layer, the pollutant concentration varies in the plane of
the flow, but at each point is assumed to be nearly uniform through the layer
perpendicular to the flow. Transfer of the pollutant across the layer interfaces
may occur when the concentrations within adjoining layers are not equal.

The resulting mathematical model is a set of coupled linear time-dependent
advection-dispersion equations. Fourier transforms (FT’s) are applied with
respect to the spatial variables; the resulting set of coupled linear first-order
ordinary differential equations for the (complex-valued) pollutant concentra-
tion transforms (in time, and carrying the FT parameters) may then be solved
using standard linear dynamical system techniques. The predicted pollutant
concentrations are efficiently retrieved by numerically evaluating the inverse
transforms.

The technique of using a layered model, either in its own right or as an
approximate analogue of a continuous system, has been explored in other
contexts. For example, [McKibbin & O’Sullivan(1981)] and [McKibbin(1992)]
investigated thermally-driven convection in layered porous media.

[Lim et al.(2008)] and [McKibbin(2008)], using Green’s functions, found
analytic expressions for the airborne concentration and ground deposits of
volcanic ash that falls though a stratified atmosphere. The application, as
described below, of transforms to a system of coupled advection-dispersion
equations is, to the author’s knowledge, innovative and not used in the current
context before.
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2 The equations

A general derivation of the equations and discussion of the parameters is given,
for example, in [Bear(1972)]. For isothermal, single-phase flow in a stationary
porous medium, the momentum conservation equation (Darcy’s law) is of the
form:

q = −k

µ
∇(p + ρgz) (1)

where, in the Cartesian coordinate system (x, y, z) [dimension: m] with the
z-axis vertical upwards, q = (u, v, w) is the specific volume flux of the fluid
[(m3 s−1)/m2 = m s−1] (the so-called Darcy velocity), k is the permeability
tensor [m2], µ is the dynamic viscosity of the fluid [kg m−1 s−1], p is the
absolute pressure [Pa = kg m−1 s−2], ρ is the uniform and constant fluid
density [kg m−3] and g is gravitational acceleration [m s−2]. The (second-
order) permeability tensor is symmetric. If the permeability is assumed to be
horizontally isotropic, the principal directions are aligned with the Cartesian
coordinate axes, and the horizontal and vertical permeability components vary
only with depth, then the tensor takes the form:

k =





kH(z) 0 0
0 kH(z) 0
0 0 kV (z)



 (2)

If the pressure is hydrostatic and the horizontal component of the pressure
gradient is constant and aligned with the x-axis, then p = pa − G(x − xa) −
g(z − za) [where subscript “a” refers to some datum, with p(xa, y, za) = pa],
and v = w = 0. Equation (1) gives:

u

kH(z)
=

(

− 1

µ

∂p

∂x

)

=
G

µ
= constant (3)

thereby determining the horizontal speed profile of the fluid. The conservation
of mass of the fluid, which is assumed to contain only very small amounts
(mass/mass) of the pollutant, is expressed by

∂(φρ)

∂t
+ ∇ · (ρq) = φ

(

∂ρ

∂t
+

q

φ
· ∇ρ

)

+ ρ∇ · q = φ
Dρ

Dt
+ ρ∇ · q = 0 (4)

where φ [-] is the porosity of the matrix. Here, Dρ/Dt is the so-called material
or Lagrangian derivative of the density. In the case where the fluid is liquid
water, it may be assumed uniform and incompressible, in which case Dρ/Dt =
0, and then ∇ · q = 0.
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The mass flux of a pollutant species per unit area of the fluid-saturated
matrix has advective and dispersive components. The latter is modelled here
as mechanical Fickian-type dispersion caused by the porous medium. The flux
is then given by

qc = φcq − D · ∇c (5)

where c [kg m−3] is the mass of species per unit volume of the fluid and
D is the dispersion tensor. As for the permeability, the dispersion tensor is
symmetric. If it is assumed that the dispersion is horizontally isotropic, the
principal directions are aligned with the Cartesian coordinate axes, and the
dispersion varies only with depth, it takes the form:

D =





DH(z) 0 0
0 DH(z) 0
0 0 DV (z)



 (6)

The dispersion coefficients depend on fluid speed as well as the matrix
geometry [see [Bear(1972)], and others, for a discussion]. The conservation
equation, based on changes of solute mass per unit matrix volume, is:

∂(φc)

∂t
= −∇ · qc − φγc + φf(x, y, z, t) (7)

where γ [s−1] is the rate of removal of the species due to adsorption on the
matrix surface or trapping in dead-end pores, and f [kg s−1 m−3] is a source
term (mass injection rate of species per unit volume of fluid). After substitu-
tion for qc, use of the above assumptions, and also that the components of D

are constant with depth, some rearrangement of (7) gives:

∂c

∂t
= −q · ∇c + DH

(

∂2c

∂x2
+

∂2c

∂y2

)

+ DV

∂2c

∂z2
− γc + f (8)

3 Homogeneous layer

For a single homogeneous confined layer of thickness H, with uniform flow u in
the x-direction and constant dispersion coefficients, the species concentration
after a uniform release Q [kg m−1] from the line (x, z) = (X,Z) at time t =
0, is given by:

∂c

∂t
+ u

∂c

∂x
= DH

∂2c

∂x2
+ DV

∂2c

∂z2
− γc + Qδ(x − X)δ(z − Z)δ(t) (9)

with boundary and initial conditions:

∂c

∂z
(0, t) =

∂c

∂z
(H, t) = 0
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c(x, t) → 0 as x → ±∞

c(x, 0−) = 0 (10)

corresponding, respectively, to zero flux through the bottom and top of the
layer, vanishing concentration far away, and zero concentration before release.
The zero flux conditions make the problem difficult to solve analytically, so a
modelling device is used. The solution for an infinite system is known in terms
of a Green’s function. For Equation (9) with boundary and initial conditions:

c(x, t) → 0 as x, z → ±∞

c(x, 0−) = 0 (11)

the solution is [see, for example, Kevorkian (1990)]:

c(x, t) =
Q

4π
√

DHDV t
exp

(

− [x − (X + ut)]2

4DHt
− (z − Z)2

4DV t
− γt

)

(12)

An infinite set of image releases at points which are mirrored in the top
and bottom surfaces are used, to ensure that the zero flux conditions apply at
z = 0, H (and in fact at all levels z = nH, −∞ < n < ∞). For the original
problem (9) with (10), the solution is:

c(x, t) =
∞
∑

n=−∞

Q

4π
√

DHDV t
exp

(

− [x−(X+ut)]2

4DHt
− [z−(2nH+Z)]2

4DV t
− γt

)

∞
∑

n=−∞

Q

4π
√

DHDV t
exp

(

− [x − (X + ut)]2

4DHt
− [z − (2nH − Z)]2

4DV t
− γt

)

(13)

Figure 1 shows an example for a set of arbitrary, non-physical parameter values
(for illustrative purposes only). In this computation, −3 ≤ n ≤ 3 is enough to
get convergence.

4 Layered system

Conceptually, the non-homogeneous aquifer system is supposed to be com-
posed of N (horizontal) layers with thicknesses dk [m], porosities φk [-], fluid
specific volume fluxes uk [m s−1], and horizontal dispersion coefficients Dk [m2

s−1], all for k = 1, 2, . . . , N . The fluid fluxes uk are determined from the hor-
izontal pressure gradient and layer permeabilities through Equation (3). At
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Figure 1: Concentration contours after t = 0.8 from a line release in a uniform
layer with zero flux conditions at the top and bottom boundaries. The release
line is marked *. Parameters are: u = 1, DH = DV = 0.1, Q = 1, H = 1,
Z = 0.275, γ = 0 (all units given in the text).

the interfaces between the layers, it is supposed that there is a thin zone where
mixing of the differently-concentrated layer fluids occurs, with transfer of pol-
lutant from high to low concentration regions. The rate at which this occurs
is quantified by interlayer transfer coefficients αk [m s−1] , k = 0, 1, 2, . . . , N ,
that are assumed to be constants, but which are likely to depend on local flow
shear, porosity contrasts, etc. The two-dimensional formulation described be-
low may be readily generalized to include variation in the y-direction; however,
the 2-D version allows easier conceptual clarity and graphical representation
of solutions.

If ck(x, t) [kg m−3] is the volumetric concentration of the pollutant in the
fluid phase in Layer k, then over a small time interval [t, t + ∆t], within a
small slice [x, x+∆x] of Layer k, thickness dk and (arbitrary but fixed) width
W across the aquifer (within which the volume of fluid is φkWdk∆x), the net
increase in mass of pollutant is given by the sum of the net influxes due to
advection, dispersion, inter-layer transport, sources and sinks:

φkWdk∆x[ck(x, t + ∆t) − ck(x, t)] = Wdkuk[ck(x, t) − ck(x + ∆x, t)]∆t+

+φkWdk

[

−Dk

∂ck

∂x
(x, t) + Dk

∂ck

∂x
(x + ∆x, t)

]

∆t+

+W∆xαk−1[ck−1(x, t) − ck(x, t)]∆t−

−W∆xαk[ck(x, t) − ck+1(x, t)]∆t+

+φkWdk∆xfk(x, t)∆t − φkWdk∆xγkck(x, t)∆t+

+O(∆x2∆t,∆x∆t2) (14)
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where fk(x, t) [kg m−3 s−1] is a pollution source term (mass injection of pol-
lutant species per unit volume of interstitial fluid in Layer k), that may be
distributed spatially and/or in time, and γk is a mass removal rate corre-
sponding to adsorption on the matrix surface or trapping in pores. The latter
“trapping” parameters are assumed constant, although in calculations below
will be taken to be negligible compared with other terms and be given the
values γk = 0. The inter-layer transport of the pollutant is assumed to be pro-
portional to the difference in concentrations in adjacent layers, with αk [m s−1]
(similar to osmosis parameters) being the inter-layer transfer rate coefficient
for the interface between Layer k and Layer k+1 at z = zk (k = 1, . . . , N −1),
with α0 = αN = 0 to reflect the impermeability at the upper and lower bound-
aries. Dividing (14) by φkdkW∆x∆t, taking the limits as ∆x → 0, ∆t → 0,
and rearranging gives:

∂ck

∂t
= −uk

φk

∂ck

∂x
+ Dk

∂2ck

∂x2
+

+
αk−1

φkdk

ck−1 −
(

αk−1 + αk

φkdk

+ γk

)

ck +
αk

φkdk

ck+1 + fk(x, t) (15)

Here, α0 = αN = 0, but otherwise the values may be non-zero. A zero internal
αk indicates that there can be no exchange between Layers k and k + 1. The
system of N coupled pde’s is subject to boundary and initial conditions:

ck(x, t) → 0 as x → ±∞, ck(x, 0−) = 0 (16)

Taking the Fourier transform (FT) w.r.t. x:

ck(x, t) → ĉk(ω, t) =

∞
∫

−∞

e−iωxck(x, t)dx,

and treating the transform parameter ω as a constant, gives:

dĉk

dt
= βk ĉk−1 − ξk ĉk + ζk ĉk+1 + f̂k(ω, t) (17)

where ĉk(ω, 0) = 0 and

β1 = 0, ξ1(ω) = iω
u1

φ1
+ ω2D1 +

α1

φ1d1
+ γ1, zeta1 =

α1

φ1d1
, (18)

βk =
αk−1

φkdk

, ξk(ω) = iω
uk

φk

+ω2Dk+
αk−1 + αk

φkdk

+γk, ζk =
αk

φkdk

, k = 2, ..., N−1,

(19)
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and

βN =
αN−1

φNdN

, ξN (ω) = iω
uN

φN

+ ω2DN +
αN−1

φNdN

+ γN , ζN = 0. (20)

The system of the N first-order differential equations in time may be writ-
ten in matrix form:

dĉ

dt
= A(ω)ĉ + f̂(ω, t),with ĉ(ω, 0) = 0, (21)

where ĉ(ω, t) is an N ×1 column vector with elements ĉk(ω, t), and A(ω) is
an N ×N tri-diagonal matrix whose diagonal elements are complex functions
of the parameter ω, as given above. In general, A is not symmetric. If A(ω)
has eigenvalues and corresponding normalized eigenvectors λk(ω), ξk(ω), k =
1, . . . , N , then we may form the N ×N matrix P that has the eigenvectors as
columns:

P =
[

ξ1 ξ2 ξ3 . . . ξN

]

= P (ω) (22)

A is diagonalizable, and

P−1AP =















λ1 0 0 · · · 0
0 λ2 0 0
0 0 λ3 0
...

. . .
...

0 0 0 · · · λN















(23)

Write Ẑ = P−1ĉ. Then:

dẐ

dt
= P−1APẐ + ĝ(ω, t),with Ẑ(ω, 0) = 0 (24)

where ĝ = P−1f̂ . In terms of individual components:

dẐk

dt
= λkẐk + ĝk(ω, t),with Ẑk(ω, 0) = 0. (25)

Solving, we find:

Ẑk(ω, t) =

∫ t

0

eλk(t−τ)ĝk(ω, τ)dτ (26)

and ĉ = PẐ. Then, inverting the FT,

c(x, t) =
1

2π

∞
∫

−∞

eiωxĉ(ω, t)dω =
1

2π

∞
∫

−∞

eiωxPẐ(ω, t)dω (27)
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or, component-wise:

ck(x, t) =
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)Ẑj(ω, t)dω

=
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)





t
∫

0

eλjt−τ)ĝj(ω, τ)dτ



dω (28)

The solutions are then found by quadratures. Certain simple forms for
the initial source terms allows explicit integration with respect to time, and
consequent fast computation of the concentration profiles. Some examples are
given below.

5 Example calculations

5.1 Homogeneous layer with vertical dispersion

A simple test of the model is provided by a homogeneous layer with vertical
dispersion, as already discussed in Sction 3 above. When modelled by a multi-
layered analogue, the inter-layer transfer parameters may be written in terms
of an equivalent vertical dispersion parameter DV . The vertical mass flux of
pollutant per unit area across the interface between Layers k and k + 1, at
z = zk, is

−αk[ck+1(x) − ckx)] ≈ −DV

[

∂c

∂z

]

z=zk

(29)

If the layers are thin, the vertical concentration gradient may be approxi-
mated reasonably well by

[

∂c

∂z

]

z=zk

=
ck+1 − ck

1
2 (dk + dk+1)

(30)

and the approximate equivalent value of αk is then given by

αk ≈ 2DV

dk + dk+1
(31)

If the single layer is subdivided into N layers of equal thickness d = H/N , the
transfer coefficients are

αk ≈ DV

d
, k = 1, 2, . . . , N − 1. (32)
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By this means, vertical dispersion can be quantified using a multi-layer model.
Figure 2 shows results obtained after a time t = 0.8, for a “vertical sheet”

release within the layer that is nearest to the line at (x, z) = (0, .275), for
comparison with Figure 1, where the analytic solution for the single-layer
model was used. The multilayer model was calculated for cases where N =
20, 10 and 5, with the contour lines being smooth interpolations of the ck values
within each of the layers. For the 20- and 10-layer cases, the patterns were
almost indistinguishable from Figure 1. Even with only 5 sublayers (release in
Layer 2) shown in Figure 2, the results are close to that from the single-layer
model.

Figure 2: Concentration contours after t = 0.8 from a sheet release into Layer
2 of a multi-layered model with 5 layers. Other parameters are as in Figure 1.

5.2 Instantaneous areally-uniform source

Suppose a pollutant is released across all layers in a thin “sheet” perpendicular
to the fluid flow. In that case, we may take fk(x, t) = qδ(x)δ(t), representing
a uniform mass release q [kg m−2] per unit aquifer cross-sectional area in all

layers at x = 0, at time t = 0. Then f̂k = qδ(t), and

ĝ(ω, t) = P−1(ω)f̂ = P−1(ω)Lqδ(t) = Gδ(t). (33)

where L is an N × 1 column vector whose elements are all 1. The species
concentration in each layer may be found by using:

ck(x, t) =
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)





t
∫

0

eλj(t−τ)Gj(ω)δ(τ)dτ



dω

=
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)eλjtGj(ω)dω
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which gives a direct evaluation of the concentration at any given time t >
0 merely by performing a quadrature to perform the FT inversion (a FFT
algorithm may be suitable).

5.3 Instantaneous uniformly-spread source

In the case where, at t = 0, the species is released uniformly within Layer k
in the region ak ≤ x ≤ bk , the source function for that layer is

fk(x, t) =
Qk

dk(bk − ak)
[H(x − ak) −H(x − bk)]δ(t), (34)

representing a mass release per unit aquifer width in the layer of Qk [kg m−1]
spread uniformly over ak ≤ x ≤ bk, zk−1 ≤ z ≤ zk. Then:

f̂k(ω, t) =
Qk

dk(bk − ak)

i

ω
(e−ibkω − e−iakω)δ(t) = F̂k(ω)δ(t) (35)

and

ĝ(ω, t) = P−1(ω)f̂(ω, t) = P−1(ω)F (ω)δ(t) = G(ω)δ(t). (36)

Then, as previously,

ck(x, t) =
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)





t
∫

0

eλj(t−τ)Gj(ω)δ(τ)dτ



dω

=
1

2π

∞
∫

−∞

eiωx

N
∑

j=1

Pkj(ω)eλjtGj(ω)dω (37)

Space allows only one example; that chosen is for three layers of equal
thickness. The layer and release data are shown in Table 1. These are for
illustration only and are deliberately chosen not to represent real data. Pollu-
tant is released at t = 0 as a distributed source within each layer over various
spatial intervals, and the “snapshot” in Figure 3 shows the concentrations at
time t = 2000 s.

The initial release regions within each layer are delineated by dashed lines,
while the concentrations at t = 2000 are shown by continuous lines. The
effect of different flow speeds within the layers is seen, as are the changes in
concentration in each layer due to that/those in adjacent layers. Because the
process is dispersive, the concentrations become smaller as time proceeds.
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Table 1: Parameters for example of spatial releases in the three-layer system.
Layer k 1 2 3

dk [m] 1.0 1.0 1.0
φ [-] 0.1 0.2 0.1
uk [m s−1] 50 × 10−6 400 × 10−6 100 × 10−6

Dk [m2 s−1] 1 × 10−6 1 × 10−6 1 × 10−6

γk [s−1] 0 0 0
αk [m s−1] 1 × 10−3 1 × 10−3 -
Qk [kg m−1] 0.2 1 0.4
ak [m] 0 1 .4
bk [m] 0.2 2 .8

Figure 3: Concentration profiles in three adjacent layers a short time after
extended spatial releases (between the dashed lines) in each layer. See Table
1 for parameters.

6 Summary

This paper describes some simple mathematical models that can be used to
compute the dispersion of chemical species as they are advected by a fluid
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flowing within a permeable matrix. The groundwater systems have (near-
horizontal) layered structures and the linear advection-dispersion equations
that model the transport have coefficients that depend mainly on depth.

The parameters that contribute to the coefficients in the partial differential
equations are assumed constant within each layer, but can be different in each
of the various layers. Anisotropy in permeability and in the dispersive length
scales, as well as removal of the chemical by adsorption onto the matrix surface
and movement into and/or out of dead-end pores, were all included. The
resulting linear constant-coefficient pde’s are coupled by mass flux continuity
requirements at the layer interfaces. Full or partial analytic solutions for
the species concentration were found, by using integral transforms, Green’s
functions and other techniques, thereby saving computational effort.

The modelling device of images was used to provide an analytical solution
for species released into a homogeneous layer. For a multi-layered system,
Fourier transforms allowed conversion to a dynamical system that was partly
solved analytically using standard techniques. The layered system was also
used as an approximate realization of an aquifer with properties that vary
smoothly with depth. Space allowed only a small sample of examples. How-
ever, the computational algorithms for the general case may be readily deduced
from the formulae given.
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