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Abstract

In this paper, we consider the autonomous dynamical system linear
or linearized with 2 degrees of freedom. In the system of equations of 4th
degree, the structure generalized forces appear: K(q) - the conservative
forces, N(q) - the non-conservative forces, D(q̇) the dissipative forces,
G(q̇) the gyroscopically forces. In the linear system, these forces from
the different structural combinations can produce the stability or the
instability of the null solution. The theorems of Thomson - Tait - Cetaev
(T-T-C) are known for the configurations (K, D, G). We introduce the
non – conservative forces N , studying the stability with the Routh -
Hurwitz criterion or constructing the Lyapunov function, obtaining some
theorems with practical applications.

1 Introduction

In this section we study the structural influence of the term blocks on the
stability of the null solution for the bi-dimensional system or equations with
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fourth degree, which is a linear or linearized system in first approximation for
the nonlinear system ([2], [4]).
{

ẍ1 + k11x1 + k12x2 + c11ẋ1 + c12ẋ2 + g11ẋ1 + g12ẋ2 + n11x1 + n12x2 = 0
ẍ1 + k21x1 + k22x2 + c21ẋ1 + c22ẋ2 + g21ẋ1 + g22ẋ2 + n21x1 + n22x2 = 0

(1)
In this system the matrix blocks Kx,Cẋ,Gẋ,Nx are representing respectively
the conservative (elastic) forces, the resistance (amortization) forces, the gy-
roscoplically forces and the non - conservative forces. The characteristic poly-
nomial for the Routh - Hurwitz criterion will be ([1], [7]):

P (λ) = det

∣

∣

∣

∣

λ2 + (c11 + g11)λ + k11 + n11 (c12 + g12)λ + k12 + n12

(c21 + g21)λ + k21 + n21 λ2 + (c22 + g22)λ + k22 + n22

∣

∣

∣

∣

= 0.

(2)
The system (1) can be put into the canonical form and making abstraction
of the negative constant factor, the stated forces will be respectively side by
the system (x1, x2): F̄ (k11x1 +k12x2, k21x1 +k22x2), C̄(c11ẋ1 + c12ẋ2, c21ẋ1 +
c22ẋ2), Ḡ(g11ẋ1 + g12ẋ2, g21ẋ1 + g22ẋ2), N̄(n11x1 + n12x2, n21x1 + n22x2).
Regarding this system there are classical contributions of the Lyapunov and
the theorems of Thomson - Tait - Cetaev [4], Merkin [2] and Crandall [4].
Here we distinguish these results and we make other structural contribution
by examples.
From the matricial calculus we know that any squared matrix can be decom-
posed in a sum of a symmetric matrix and an asymmetric one, M = A + B,
where A = 1

2 (M + M ′), B = 1
2 (M − M ′).

From the decomposition theorem, and using the fact that the positional forces
K̄ are conservative with rotK̄ = 0, K̄ = −gradU(q) and rotN̄ 6= 0 and
rotq̇C̄ = 0, C̄ = −gradq̇V (q), rotḠ 6= 0, we have the condition of symmetry
and asymmetry kij = kji, nij = −nji, gij = −gji, cij = cji, i, j = 1, 2.
We have the relations:

{

ẍ + c1ẋ + gẏ + k1x − py = Xs(0)
ÿ + c2ẏ − gẋ + k2y + px = Y s(0).

(3)

The system (3) has the fourth degree, and the characteristic polynomial is:

P (λ) = det

∣

∣

∣

∣

λ2 + λc1 + k1 gλ − p
−gλ + p λ2 + c2λ + k2

∣

∣

∣

∣

= 0, (4)

P (λ) = λ4+λ3(c1+c2)+λ2(k1+k2+c1c2+g2)+λ(c1k2+c2k1+2gp)+k1k2+n2 = 0.
(5)

The system with constant coefficients (1) becomes:
{

ẍ + ax + ky + pẋ + cẏ + gẏ − ny = 0
ÿ + kx + by + cẋ + qẏ − gẋ + nx = 0

. (6)
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The mechanical justification of this configuration is obtained starting from
the Lagrange equations:

d

dt

(

∂T

∂q̇

)

− ∂T

∂q
= Q1(q) + Q2(q̇) + Qs(q, q̇), (7)

where T is the kinetic energy, Q1, Q2 are the generalized forces and Qs is the
generalized force with superior order terms. So, the mentioned decomposition
becomes symbolic for the positional forces and the inertial forces:

Q̄1(q) = F̄ (q) + N̄(q); Q̄2(q̇) = C̄(q̇) + Ḡ(q̇), (8)

where
F̄ = −gradU(q), C̄(q̇) = −gradq̇V (q̇),

with:
- U(q) - the potential energy,
- U(q̇)−

∑ ∑

cij q̇iq̇j - the dissipationfunction of with negative mechanical
work,

- N̄(q) - the conservative forces,
- Ḡ =

∑ ∑

gij q̇iq̇j (gij = −gji), with null mechanical work,
The system is completely dissipative if U(q̇) is a quadratique form posi-

tively defined and

d

dt
(T + U) = −2H.

Theorem 1 If Q̄1 = −gradU(q) + N(q), then the expression of the Q1 is:

Q1 = K(q) + N(q).

Theorem 2 If Q̄(q̇) = −gradH(q̇) + D̄(q̇), then the expression of Q2 is:

Q2 = G(q̇) + D(q̇).

Based on the structure of forces K(q), N(q),D(q̇), G(q̇), we analyze the sta-
bility, making some combinations of these forces, and we obtain a series of
theorems.

Thomson - Tait - Cetaev (T-T-C)has defined some theorems for the system
K,D,G. The applications are for: the gyroscopes, bearings on the fluid sup-
port, the double pendulum, the electron in the magnetic field, the car equation
and other examples from different domains making analogies for the system
of the fourth degree.

In the next theorems we denote by:
- Σ - the system (ex. Σ(K,D) - the system composed by K and D),
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- S - the stable case,
- A.S - the asymptotic case,
- I - the unstable case,

using directly the characteristic polynomial (5) (H-R) or the Lyapunov func-
tion for (6).

2 The study of the stability of the dynamical systems

To start with, we consider the stability of the equilibrium position in the point
of minimum of the potential energy (the Theorem Lagrange-Dirichlet) with
slight oscillations around this position. We denote with K0(q) the case of the
cyclical coordinates in the plane phases, when a uniform movement related
with these is obtained. Using the equations of Routh - Hurwitz - the case
Lagrange - Poisson, for the solid with a fixed point (the gyroscop) we study
the stability of the uniform movements.

Theorem 3 If −∂U
∂q

= K0(q), the dynamical system
∑

(K0(q)) is dynamically

stable around q0 = 0. (Ex.: the mathematical pendulum in the gravitation
field.)

S(K0) ⇒ S(
∑

K0).

Observation 1 If K0 is stable, then S(
∑

K0, G) is stable.

Observation 2 If K0 is unstable, then S(
∑

K0, G) is unstable.

Theorem 4 (T-T-C) In the conservative system, if the potential energy has
an isolated minimum, then the system is simply stable around the minimal
point: if K0 is stable, then S(

∑

K0) implies S(
∑

(K0 + (G,D))) around the
zero point.

Theorem 5 (T-T-C) If we have an isolated potential simply stable system
then, by attaching to the system the dissipative forces, the the simple stability
is kept. If the dissipation is total then the system becomes asymptotically
stable: if K0 is stable, S(

∑

K0) ⇒
∑

(K0 + (G,Dc))A.S., Dc is completely
dissipative, and in this case the system is assymptotically stable.

Theorem 6 (T-T-C) If the dissipative forces is applied, then the instability is
kept, in an instable potential regime in the neighborhood of a maximum point
of the potential energy, when this energy is negative: if K0 is unstable, then
∑

(K0 + G + Dc) is unstable: I(K0) ⇒ I
∑

(K0 + G + Dc).

The theorems 3–6 are verified directly applying the Routh - Hurwitz criterion
for the system (13).
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Theorem 7 If G is stable, then G has a stable uniform movement (stability
about q̇). Ex.: the case Lagrange - Poisson, the Routh method, when the
rotation angle is given and the precession angle cyclically implies the uniform
movement.

Theorem 8 If detG 6= 0, the stability is conserved with respect to the coordi-
nates and the speeds.

Corollary 1 If during the stable movement detG = 0, then the stability is
lost with respect to the coordinates, but with the speeds.

Corollary 2 If the system is non linear under the acting on G and stable,
with detG 6= 0, then the stability of the non linear system is not implicated.

Theorem 9 (T-T-C) The system
∑

(G + Dc)A.S. is conserved for the coor-
dinates and speeds and for the non linear systems.

Theorem 10 If non - potential forces act, then the system is unstable:
∑

(N) ⇒
I(

∑

(N)). (see the Application 1)

Theorem 11 The system
∑

(N + Dc) is unstable.

Theorem 12 1. If the system (K +N) is stable, then
∑

(K +N) is perturbed
(can be stable and unstable).

2. If the system (K +G) is stable or unstable, then the system (K +G+N)
is perturbed (can be stable and unstable).

Theorem 13 The dissipative forces can influenced on the stability
∑

(K+N):
- if

∑

(K + N) is unstable, then
∑

(D + K + N) can be stabilized;
- if

∑

(K + N) is stable, then
∑

(K + D + N) can be destabilized.

Theorem 14 If in the system K the two equations of second degree have equal
frequencies and the system

∑

(K + N) is linear, then the stability is perturbed
no matter of the nonlinear terms.

Theorem 15 If (G + N) is unstable then
∑

(G + N + D) is stable.

The theorem T-T-C does not apply always if the non potential forces (N) [2]
do not appear.

Application 1 A system which has only the non potential forces is always
unstable.

Such a system is represented by the equations:

ẍ + py = 0

ÿ − px = 0. (9)
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The characteristic equation is λ4+p2 = 0, with the solutions λ = ±
√

2/2(1±i)p
having the roots with the real part positive, so we have the instability of the
system.

Application 2 When the systems act by the conservative and non poten-
tial forces, the equations are:

ẍ + k1x + py = 0,

ÿ + k2y − px = 0. (10)

The characteristic equation λ4 +(k1 +k2)λ
2 +k1k2 +p2 = 0 must have the real

and negative roots in λ2. The stability domains are presented in the figures
below:

Figure 1: The domains of stability

Application 3 Introducing the dissipative forces in a system that acts by
the conservative and non potential forces, we have (Fig. 1):

ẍ + c1ẋ + k1x + py = 0,

ÿ + c2ẏ + k2y − px = 0. (11)

The characteristic equation is:

λ4 + (c1 + c2)λ
3 + (k1 + k2 + c1c2)λ

2 + (k1c2 + k2c1)λ + k1k2 + p2 = 0.

Application 4 For the gyroscopic pendulum with 2 degrees of freedom
x, y and 2 types of amortization [1] we have one linear stationary amortization
(csẋ, csẏ) and one rotational amortization, (cr(ẋ + ωy), cr(ẏ − ωx), with the
equations:

I0ẍ + (cs + cr)ẋ + Jωẏ + crωy − axδ = 0,
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I0ÿ + (bs + br)ẏ − Jωẋ + crωx − ayδ = 0,

with:
- I0 the polar inertial momentum,
- J the axial inertial momentum,
- ω the rotation speed,
- δ = ±1.
We note that the conservative forces are: F̄ (−aδx, aδy), the amortization

forces (bs + br)ẋ, (bs + br)ẏ), Ḡ(Jωẏ,−Jωẋ), N̄(crωy, crωx).
From the Theorem of Thomson - Tait - Cetaev [3] it results that the move-

ment will be unstable, being composed by a stable and an unstable movement.
The example of Crandall [3] shows that at the fast speed the movement

is stable by using these amortizations, depends on the critical coefficient ro
cs

cr

and the critical speed of amortization is ωc = ωp(1+ r). On the other side, we
notice the presence of the forces N̄ , which introduce the unstable zones and a
stable zone from Merkin, which do not conserve the theorem (T-T-C).

Application 5 The cylindrical bearing with the rotor in the viscous fluid,
with the center C(x, y) [8].

The equations of stability of the rotor centre (K,G,N) are [7]:

{

ẍ + bẋ + ω2x − py = X
ÿ + bẏ + ω2y + px = Y.

(12)

Here we have the forces: K(ω2x, ω2y), G(b, b), N(−p, p), where N represents
the aerodynamically forces produced by the rotor in the viscous fluid; the
characteristic polynomial is:

P (λ) = λ4 + 2bλ3 + (2k2 + b2)λ2 + 2bk2λ + p2 + k4 = 0. (13)

If p = 0 then the stability domain is in the first quadrant. If p 6= 0 then
the stability disappears, so the non - potential forces (p 6= 0) can make the
stability or can extend the stability (outside the first quadrant) (fig.1) [2].

Application 6 The gyroscope with two plans ([1], [2]).
The stability is kept by the horizontal plan with α angle and by the vertical

plan with β angle, for the system.

{

Jα̈ + bα̇ − Hβ̇ − pβ = 0; (DGN)

Jβ̈ + bβ̇ + Hα̇ + pα = 0;D(b, b);G(H,−H);N(p,−p).
(14)

Using the Hurwitz criterion of stability we have:

∆3 = a1a2a3 − a2
0a

2
3 − a2

1a4 > 0;∆2 > 0,∆1 > 0, α, β, p,H > 0,
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∆3 = 4pJ(H2 + b2)(bH − pJ) > 0.

For b = 0 the system in unstable, ∆3 < 0 and for b 6= 0, b > pJ
H

, the system is
asymptotically stable.

Application 7 The double pendulum with elastic articulations and a non
conservative force (K,N) ([3]-[5]).

The governing equation are:

{

a11ϕ̈1 + a12ϕ̈2 + l1ϕ1 − l2ϕ2 = 0
a21ϕ̈1 + a22ϕ̈2 − c1ϕ1 − c2ϕ2 = 0

(15)

For the asymptotical stability, the characteristic polynomial aλ4 + bλ2 + c = 0
satisfies the conditions: b > 0, δ = b2 − 4ac > 0.

Application 8 The automobile with automatic decompression [4].

Figure 2: The stability of the automobile

The governing equations are:

mẍ + (k1 + k2)x + (k1a − k2b)y = 0,

mρ2ÿ + (k1a − k2b)x + (k1a
2 + k2b

2)y = 0, (16)

where ρ is the inertial radius.

To make the decompression of the two equations and to have a noiseless
automobile, we take: k1a − k2b = 0. This implies that ρ2 =

√
ab (Fig. 2).

In the Figures 2c and 2d the movements in caper and gallop are decom-
posed.
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Finally we present the indeterminate coefficients method, building Lya-
punov function for systems of forth degree. The characteristic polynomial
is:

λ4 + dλ3 + cλ2 + bλ + a = 0. (17)

The H-R criterion for the A.S. of the null solutions gives: d > 0, c > 0, a >
0, bcd − b2 − d2 > 0.

Next we construct the Lyapunov function (V ) for the system of 4th degree.
We find some functions of four variables under the quadratic form:

V =

4
∑

i,j=1

Vijxiyj ,W =

4
∑

i,j=1

Wijxiyj , V̇ = 2W, (18)

where Vij are unknown and Wij are known.
Using the method of undetermined coefficients, V is obtained in the system

having four equations with the unknowns Vij . In the algebraic linear system
we have the determinant D, we can choose W = 2Dy2 and the identification
V̇ = 2Dy2.

It is noticed that D = H1H2H3a, where H1 = d > 0, h2 = dc − b > 0,
H3 = bcd − a2d − b2.

The attached the system is:

ẋ = y

ẏ = z

ż = u

u̇ = −ax − by − cz − du.

Here we identify V̇ = 2Dy2, so we have:

V =
ac

2
x2+adxy+

c2 − 2a

2
y2+2axz+cdyz+

d2 + c

2
z2+u2+cyu+dzu+

bd

2
y2

(19)
V̇ = ady2 − bcy2 − 2byu − du2. (20)

For the nonlinear system we take the case when the term by is replaced by
ϕ(y), ϕ(0) = 0:

V = E + db
y2

2
(21)

V = E + d

∫ y

0

ϕ(y)dy. (22)

We consider the case of a system with two degrees of freedom, under the
matricial form:

MẌ + CẊ + KX = 0, (23)
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where M is the mass matrix, C is the absorption matrix, K is the potential
elastic matrix.

m1ẋ1c11ẋ1 + c12ẋ2 + k11x1 + k12x2 = 0

m2ẋ2 + c21ẋ1 + c22x2 + k21x1 + k22x2 = 0. (24)

Passing at the system of fourth degree, we get:

ẋ = u, ẏ = v. (25)

The characteristic polynomial p = P (r) is:

P (r) = det

∣

∣

∣

∣

m1r
2 + c11r + k11 c12r + k12

c21r + k21 m2r
2 + c22r + k22

∣

∣

∣

∣

. (26)

By developing in series, we obtain the polynomial of 4th degree for which we
apply the above theory to find the function V .

Others applications of this kind, regarding the stability study of the dy-
namical systems and their automatic regulation appeared in [5]-[9].
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