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SPATIAL DISCRETIZATION OF AN

IMPULSIVE COHEN-GROSSBERG

NEURAL NETWORK WITH TIME -

VARYING AND DISTRIBUTED DELAYS

AND REACTION - DIFFUSION TERMS

Haydar Akca and Valery Covachev

Abstract

An impulsive Cohen-Grossberg neural network with time-varying
and distributed delays and reaction-diffusion terms is considered.

The reaction-diffusion terms are approximated by divided differ-
ences. For simplicity of notation the spatial domain Ω is assumed to
be a finite closed interval [a, b]. Under suitable conditions in terms of
M−matrices it is proved that the system obtained has a unique equilib-
rium point which is globally exponentially stable

1 Introduction

Since Cohen-Grossberg neural networks were proposed by Cohen and Gross-
berg [2] in 1983, extensive work has been done on this subject due to their
numerous applications in classification of patterns, associative memories, im-
age processing, quadratic optimization, and other areas. In implementation
of neural networks, however, time delays inevitably occur due to the finite
switching speed of neurons and amplifiers.

Most widely studied and used neural networks can be classified as either
continuous or discrete. Recently, there has been a somewhat new category of
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neural networks which are neither purely continuous-time nor purely discrete-
time. This third category of neural networks called impulsive neural networks
displays a combination of characteristics of both the continuous and discrete
systems [4].

It is well known that diffusion effect cannot be avoided in the neural net-
works when electrons are moving in asymmetric electromagnetic fields [8], so
the activations must be considered to vary in space as well as in time. The
papers [6, 7] are devoted to the exponential stability of impulsive Cohen-
Grossberg neural networks with, respectively, time-varying and distributed
delays and reaction-diffusion terms.

In the present paper, we consider an impulsive Cohen-Grossberg neural
network with both time-varying and distributed delays and reaction-diffusion
terms as in [9] which are of a form more general than in [6, 7], and zero
Neumann boundary conditions. For simplicity of notation, the spatial domain
Ω is assumed to be a finite closed interval [a, b]. Under suitable conditions
in terms of M−matrices, it is proved that the system obtained has a unique
equilibrium point which is globally exponentially stable.

2 Model description and preliminaries

We consider the following system of impulsive Cohen-Grossberg neural net-
works with time-varying and distributed delays and reaction-diffusion terms,
and zero Neumann boundary conditions:

∂ui(t, x)

∂t
=

n
∑

k=1

∂

∂xk

(

Dik(t, x)
∂ui(t, x)

∂xk

)

− αi(ui(t, x))



βi(ui(t, x))

−

m
∑

j=1

aijfj(uj(t, x)) −

m
∑

j=1

bijgj(uj(t − τij(t), x)) (1)

−

m
∑

j=1

cij

∫ +∞

0

Kij(s)hj(uj(t − s, x)) ds + Ji



 ,

t > 0, t 6= tk, i = 1,m, x ∈ Ω ⊂ R
n,

∆ui(tk, x) ≡ ui(t
+
k , x)−ui(t

−
k , x) = Iik(ui(tk, x)), i = 1,m, x ∈ Ω, k ∈ N,

∂ui

∂ν

∣

∣

∣

∣

∂Ω

= 0, i = 1,m, ui(s, x) = φi(s, x), s ≤ 0, x ∈ Ω, i = 1,m,

where m ≥ 2 is the number of neurons in the network; Ω is a bounded compact
set with smooth boundary ∂Ω and mes Ω > 0; ∂/∂ν is the outward normal
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derivative; Dik(t, x) > 0 are smooth functions corresponding to the transmis-
sion diffusion operator along the i−th neuron; αi(ui) represent amplification
functions; βi(ui) are appropriately behaving functions which support the sta-
bilizing feedback term −αi(ui)βi(ui) of the i−th neuron; aij , bij , cij denote
the connection weights (or strengths) of the synaptic connections between the
j−th neuron and the i−th neuron; fj(uj), gj(uj), hj(uj) denote the activation
functions of the j−th neuron; Ji denotes external input to the i−th neuron;
τij(t) correspond to the transmission delays and satisfy 0 ≤ τij(t) ≤ τij ; the
delay kernels Kij : [0,+∞) → [0,+∞) are real-valued continuous functions
satisfying

∫ +∞

0

eλsKij(s) ds = kij(λ),

where kij(λ) are continuous functions on [0, δ) for some δ > 0 and kij(0) = 1,
i, j = 1,m; the moments (instants) of impulse effect tk satisfy 0 < t1 < t2 <
· · · < tk → +∞ as k → +∞; ui(t

−
k , x) and ui(t

+
k , x) denote respectively the

left-hand and right-hand limit at tk; Iik is the impulsive perturbation of the
i−th neuron at time tk.

As usual in the theory of impulsive differential equations (and unlike [6, 7]),
at the points of discontinuity tk of the solution t 7→ ui(t, x), we assume that
ui(tk, x) ≡ ui(t

−
k , x). It is clear that, in general, the derivatives ∂u

∂t (tk, x) do
not exist. On the other hand, according to the first equality of (1), there
do exist the limits ∂u

∂t (t∓k , x). According to the above convention, we assume
∂u
∂t (tk, x) ≡ ∂u

∂t (t−k , x).
Throughout the paper we assume that:

A1 The amplification functions αi : R → (0,+∞) are continuous and bounded
in the sense that 0 < αi ≤ αi(u) ≤ αi for u ∈ R, i = 1,m.

A2 The stabilizing functions βi : R → R are continuous and monotone in-

creasing, namely, 0 < βi ≤
βi(u) − βi(v)

u − v
for u, v ∈ R, u 6= v, i = 1,m.

A3 For the activation functions fi(u), gi(u), hi(u) there exist positive con-

stants Fi, Gi,Hi such that Fi = sup
u6=v

∣

∣

∣

∣

fi(u) − fi(v)

u − v

∣

∣

∣

∣

, Gi = sup
u6=v

∣

∣

∣

∣

gi(u) − gi(v)

u − v

∣

∣

∣

∣

,

Hi = sup
u6=v

∣

∣

∣

∣

hi(u) − hi(v)

u − v

∣

∣

∣

∣

for all u, v ∈ R, u 6= v, i = 1,m.

A4 For the impulse functions Iik : R → R, Iik(u) = u + Iik(u) there exist

positive constants γik such that γik = sup
u6=v

∣

∣

∣

∣

Iik(u) − Iik(v)

u − v

∣

∣

∣

∣

for all u, v ∈

R, u 6= v, i = 1,m, k ∈ N.
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Next the reaction-diffusion terms are approximated by divided differences.
For simplicity of notation the spatial domain Ω is assumed to be a finite
closed interval [a, b]. Then for a sufficiently large positive integer N we choose
a discretization step h = (b − a)/N , denote xℓ ≡ a + ℓh (ℓ = −1, N + 1) and
for i = 1,m we write

∂

∂x

(

Di(t, x)
∂ui(t, x)

∂x

)∣

∣

∣

∣

x=xℓ

≈

Di(t, xℓ+1)ui(t, xℓ+1) −
(

Di(t, xℓ+1) + Di(t, xℓ)
)

ui(t, xℓ) + Di(t, xℓ)ui(t, xℓ−1)

h2
.

Further we denote for brevity ui(t, ℓ) ≡ ui(t, xℓ) (ℓ = −1, N + 1), Di(t, ℓ) ≡
Di(t, xℓ) (ℓ = 0, N + 1), Di(t, ℓ+1/2) ≡

(

Di(t, xℓ+1)+Di(t, xℓ)
)

/2 (ℓ = 0, N).
Finally we approximate the zero Neumann boundary conditions by

ui(t,−1) = ui(t, 0), ui(t,N + 1) = ui(t,N), t > 0, i = 1,m.

Thus we obtain the following spatial discretization of system (1)

∂ui(t, ℓ)

∂t
=

Di(t, ℓ + 1)ui(t, ℓ + 1) − 2Di(t, ℓ + 1/2)ui(t, ℓ) + Di(t, ℓ)ui(t, ℓ − 1)

h2

−αi(ui(t, ℓ))



βi(ui(t, ℓ)) −

m
∑

j=1

aijfj(uj(t, ℓ)) (2)

−

m
∑

j=1

bijgj(uj(t − τij(t), ℓ)) −

m
∑

j=1

cij

∫ +∞

0

Kij(s)hj(uj(t − s, ℓ)) ds + Ji



 ,

t > 0, t 6= tk, i = 1,m, ℓ = 0, N,

ui(t,−1) = ui(t, 0), ui(t,N + 1) = ui(t,N), t > 0, i = 1,m,

∆ui(tk, ℓ) = Iik(ui(tk, ℓ)), i = 1,m, ℓ = 0, N, k ∈ N,

ui(s, ℓ) = φi(s, ℓ), s ≤ 0, ℓ = 0, N, i = 1,m,

which can be regarded as a neural network with m(N + 1) neurons.
The components of an equilibrium point u∗ = (u∗

1, . . . , u
∗
m) of system (2)

(or (1)) are governed by the algebraic sytem

βi(u
∗
i ) −

m
∑

j=1

(

aijfj(u
∗
j ) + bijgj(u

∗
j ) + cijhj(u

∗
j )

)

+ Ji = 0, i = 1,m. (3)
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and satisfy the equalities

Iik(u∗
i ) = 0, i = 1,m, k ∈ N. (4)

We assume that

A5 The impulse functions Iik satisfy the equalities (4) for any solution u∗ of
system (3).

Denote

‖ui(t, ·)‖ =

(

N
∑

ℓ=0

(

ui(t, ℓ)
)2

h

)1/2

.

Definition 1 An equilibrium point u∗ = (u∗
1, . . . , u

∗
m) of system (2) is said to

be globally exponentially stable if there exist constants λ > 0 and M ≥ 1 such
that for any solution u(t, ℓ) = (u1(t, ℓ), . . . , um(t, ℓ))T of system (2) we have

m
∑

i=1

‖ui(t, ·) − u∗‖ ≤ M sup
s≤0

m
∑

i=1

‖φi(s, ·) − u∗‖e−λt for all t ≥ 0.

Definition 2 [1] A real matrix A = (aij)m×m is said to be an M−matrix
if aij ≤ 0 for i, j = 1,m, i 6= j and all successive principle minors of A are
positive.

Lemma 1 [1] Let A = (aij)m×m be a real matrix with non-positive off-diagonal

elements. Then A is an M−matrix if and only if one of the following condi-

tions holds:

(1) There exists a vector ξ = (ξ1, ξ2, . . . , ξm)T with ξi > 0 such that every

component of ξT A is positive — that is,
m
∑

i=1

ξiaij > 0, j = 1,m.

(2) There exists a vector ξ = (ξ1, ξ2, . . . , ξm)T with ξi > 0 such that every

component of Aξ is positive — that is,
m
∑

j=1

aijξj > 0, i = 1,m.

For more details about M−matrices the reader is referred to [3, 5].
Now let us introduce the following matrices:

α = diag(α1, . . . , αm), α = diag(α1, . . . , αm), β = diag(β1, . . . , βm),
F = diag(F1, . . . , Fm), G = diag(G1, . . . , Gm), H = diag(H1, . . . ,Hm),

|A| = (|aij |)m×m, |B| = (|bij |)m×m, |C| = (|cij |)m×m.

Lemma 2 [6, 7] Let the assumptions A1–A3 and A5 hold and suppose that

A = αβ − α
(

|A|F + |B|G + |C|H
)

is an M−matrix. Then system (2) has a

unique equilibrium point.
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Proof. Since A is an M−matrix, and α−1α ≤ E (E is the identity matrix),
then β −

(

|A|F + |B|G + |C|H
)

is also an M−matrix. From [10, Corollary 2]
it is easy to deduce that system (2) without impulses (Iik ≡ 0) has a unique
equilibrium point. By A5 it is also an equilibrium point of system (2). ¤

3 Main results

Theorem 1 Let the system (2) satisfy assumptions A1–A5. If the following

conditions hold:

(a) There exists a vector ξ = (ξ1, . . . , ξm)T > 0 and a number λ > 0 such

that

m
∑

j=1

{

(λ − αi)δij + αi

[

|aij |Fj + |bij |Gje
λτij + |cij |Hjkij(λ)

]}

ξj < 0, i = 1,m,

(5)
where δii = 1, δij = 0 for j 6= i;

(b) η = sup
k∈N

{

ln ηk

tk − tk−1

}

< λ, where ηk = max
i=1,m

{1, γik}, k ∈ N, t0 = 0,

then the system (2) has a unique equilibrium point which is globally expo-

nentially stable with convergence rate λ − η.

Proof. First let us note that the condition (5) holds if and only if A is an
M−matrix. In fact, if A is an M−matrix, from Lemma 1 there exists a vector
ξ > 0 such that

[

−αβ + α(|A|F + |B|G + |C|H)
]

ξ < 0. By continuity, there
exists λ > 0 such that (5) holds.

Conversely, if (5) holds for some λ0 > 0, then it still holds for all λ ∈ [0, λ0].
For λ = 0, from Lemma 1, we deduce that A is an M−matrix.

Thus the condition (5), by virtue of Lemma 2, ensures the existence of a
unique equilibrium point u∗ = (u∗

1, . . . , u
∗
m)T for system (2). For any other

solution u(t, ℓ) = (u1(t, ℓ), . . . , um(t, ℓ))T of the system (2), denote

wi(t, ℓ) = ui(t, ℓ) − u∗
i , i = 1,m, ℓ = −1, N + 1.

Thus the system (2) is transformed into

∂wi(t, ℓ)

∂t
=

=
Di(t, ℓ + 1)wi(t, ℓ + 1) − 2Di(t, ℓ + 1/2)wi(t, ℓ) + Di(t, ℓ)wi(t, ℓ − 1)

h2
−
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−α̃i(wi(t, ℓ))



β̃i(wi(t, ℓ)) −

m
∑

j=1

aij f̃j(wj(t, ℓ))− (6)

−

m
∑

j=1

bij g̃j(wj(t − τij(t), ℓ)) −

m
∑

j=1

cij

∫ +∞

0

Kij(s)h̃j(wj(t − s, ℓ)) ds



 ,

wi(t,−1) = wi(t, 0), wi(t,N + 1) = wi(t,N).

∆wi(tk, ℓ) = Ĩik(wi(tk, ℓ)),

where

α̃i(wi) = αi(wi + u∗
i ), β̃i(wi) = βi(wi + u∗

i ) − βi(u
∗
i ),

f̃j(wj) = fj(wj + u∗
j ) − fj(u

∗
j ), g̃j(wj) = gj(wj + u∗

j ) − gj(u
∗
j ),

h̃j(wj) = hj(wj + u∗
j ) − hj(u

∗
j ), Ĩik(wi) = Iik(wi + u∗

i ).

We multiply the i−th differential equation in (6) by wi(t, ℓ)h and sum up for
ℓ = 0, N :

1

2

d

dt

N
∑

ℓ=0

(

wi(t, ℓ)
)2

h =

N
∑

ℓ=0

{

Di(t, ℓ+1)wi(t, ℓ+1)−2Di(t, ℓ+1/2)wi(t, ℓ)+Di(t, ℓ)wi(t, ℓ−1)
}

wi(t, ℓ)h−1−

−

N
∑

ℓ=0

α̃i(wi(t, ℓ))β̃i(wi(t, ℓ))wi(t, ℓ)h+

N
∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)

m
∑

j=1

aij f̃j(wj(t, ℓ))h+

+

N
∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)

m
∑

j=1

bij g̃j(wj(t − τij(t), ℓ))h+

+
N

∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)
m

∑

j=1

cij

∫ +∞

0

Kij(s)h̃j(wj(t − s, ℓ)) ds h.

By virtue of the equalities wi(t,−1) = wi(t, 0), wi(t,N + 1) = wi(t,N), we
have

N
∑

ℓ=0

{

Di(t, ℓ + 1)wi(t, ℓ + 1)−2Di(t, ℓ+1/2)wi(t, ℓ)+Di(t, ℓ)wi(t, ℓ − 1)
}

wi(t, ℓ) =

= −

N
∑

ℓ=0

Di(t, ℓ + 1)
(

wi(t, ℓ + 1) − wi(t, ℓ)
)2

≤ 0.
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Next we have

N
∑

ℓ=0

α̃i(wi(t, ℓ))β̃i(wi(t, ℓ))wi(t, ℓ)h ≥ αiβi

N
∑

ℓ=0

(

wi(t, ℓ)
)2

h = αiβi‖wi(t, ·)‖
2;

N
∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)
m

∑

j=1

aij f̃j(wj(t, ℓ))h ≤

≤ αi

m
∑

j=1

|aij |

N
∑

ℓ=0

|wi(t, ℓ)|Fj |wj(t, ℓ)|h ≤

≤ αi

m
∑

j=1

|aij |Fj

(

N
∑

ℓ=0

(

wi(t, ℓ)
)2

h

)1/2

×

(

N
∑

ℓ=0

(

wj(t, ℓ)
)2

h

)1/2

=

= αi

m
∑

j=1

|aij |Fj‖wi(t, ·)‖ ‖wj(t, ·)‖.

Similarly,

N
∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)

m
∑

j=1

bij g̃j(wj(t − τij(t), ℓ))h ≤

≤ αi

m
∑

j=1

|bij |Gj‖wi(t, ·)‖ ‖wj(t − τij(t), ·)‖

and

N
∑

ℓ=0

α̃i(wi(t, ℓ))wi(t, ℓ)
m

∑

j=1

cij

∫ +∞

0

Kij(s)h̃j(wj(t − s, ℓ)) ds h ≤

≤ αi

m
∑

j=1

|cij |Hj‖wi(t, ·)‖

∫ +∞

0

Kij(s)‖wj(t − s, ·)‖ ds.

Combining the above inequalities, we obtain

1

2

d

dt
‖wi(t, ·)‖

2 ≤ −αiβi‖wi(t, ·)‖
2 + αi

m
∑

j=1







|aij |Fj‖wi(t, ·)‖ ‖wj(t, ·)‖ +

+ |bij |Gj‖wi(t, ·)‖ ‖wj(t−τij(t), ·)‖ + |cij |Hj‖wi(t, ·)‖

+∞
∫

0

Kij(s)‖wj(t−s, ·)‖ ds






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or

D+‖wi(t, ·)‖ ≤ −αiβi‖wi(t, ·)‖ + αi

m
∑

j=1

{

|aij |Fj‖wj(t, ·)‖ + (7)

+ |bij |Gj‖wj(t − τij(t), ·)‖ + |cij |Hj

∫ +∞

0

Kij(s)‖wj(t − s, ·)‖ ds

}

,

where D+ denotes the upper left Dini derivative.

If we introduce the notation

vi(t) = ‖wi(t, ·)‖, pij = −αiβiδij + αi|aij |Fj , qij = αi|bij |Gj , rij = αi|cij |Hj ,

then (7) takes the form

D+vi(t) ≤

m
∑

j=1

{

pijvj(t) + qijvj(t − τij(t)) + rij

∫ +∞

0

Kij(s)vj(t − s) ds

}

.

(8)

Lemma 3 Let a < b < +∞. Suppose that v(t) =
(

v1(t), . . . , vm(t)
)T

∈

C
(

(a, b], Rm
)

satisfies (8) and vi(s) are piecewise continuous on (−∞, b] with

possible discontinuities at a finite number of points at which they are contin-

uous from the left.

If vi(t) ≤ κξie
−λ(t−a), κ ≥ 0, t ∈ (−∞, a], and vi(a

+) ≤ κξi, i = 1,m,

where λ > 0 and ξ = (ξ1, . . . , ξm)T ≥ 0 satisfy

m
∑

j=1

[

λδij + pij + qije
λτij + rijkij(λ)

]

ξj < 0, (9)

then vi(t) ≤ κξie
−λ(t−a) for t ∈ (a, b], i = 1,m.

Proof of Lemma 3. Let ε be an arbitrary positive number. Denote Vi(t) =
(κ + ε)ξie

−λ(t−a). We shall prove that vi(t) ≤ Vi(t), t ∈ (a, b], i = 1,m.

Denote t∗ = sup{B |B ∈ (a, b), vi(t) ≤ Vi(t), t ∈ [a,B], i = 1,m}. If
t∗ = b, the assertion is proved. Otherwise, t∗ ∈ (a, b), vi(t) ≤ Vi(t), t ∈ [a, t∗],
i = 1,m and there exists i0 ∈ {1, . . . ,m} such that vi0(t

∗) = Vi0(t
∗) and
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D+vi0(t
∗) ≥ V̇i0(t

∗). Further on, we have

D+vi0(t
∗) ≤

≤

m
∑

j=1

[

pi0jvj(t
∗) + qi0jvj(t

∗ − τi0j(t
∗)) + ri0j

∫ +∞

0

Ki0j(s)vj(t
∗ − s) ds

]

≤

≤

m
∑

j=1

[

pi0j(κ + ε)ξje
−λ(t∗−a) + qi0j(κ + ε)ξje

−λ(t∗−τi0j(t
∗)−a) +

+ ri0j

∫ +∞

0

Ki0j(s)(κ + ε)ξje
−λ(t∗−s−a) ds

]

≤

≤ (κ + ε)e−λ(t∗−a)
m

∑

j=1

[

pi0j + qi0je
λτi0j + ri0jki0j(λ)

]

ξj .

From (9), it follows that

m
∑

j=1

[

pi0j + qi0je
λτi0j + ri0jki0j(λ)

]

ξj < −λξi0 < 0,

thus
D+vi0(t

∗) < −(κ + ε)e−λ(t∗−a)λξi0 = V̇i0(t
∗),

which is a contradiction.
Thus we proved that vi(t) ≤ (κ + ε)ξie

−λ(t−a), t ∈ (a, b], i = 1,m. Now
the assertion of the lemma follows for ε → 0. ¤

Let ξ and λ be as in (5), then (9) is satisfied. If we denote

κ = sup
s≤0

m
∑

i=1

‖φi(s, ·) − u∗
i ‖/ min

i=1,m
{ξi},

it is easy to see that vi(t) ≤ κξie
−λt for t ∈ (−∞, t0], t0 = 0.

From Lemma 3 it follows that vi(t) ≤ κξie
−λt for t ∈ (t0, t1].

Now suppose that

vi(t) ≤ κη0η1 · · · ηk−1ξie
−λt for t ∈ (tk−1, tk], (10)

where η0 = 1. Then

vi(t
+
k ) ≤ γikvi(tk) ≤ ηkvi(tk) ≤ κη0η1 · · · ηk−1ξie

−λtk .

Since ηk ≥ 1, from (10), it follows that

vi(t) ≤ κη0η1 · · · ηk−1ηkξie
−λtke−λ(t−tk) for t ≤ tk.
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From Lemma 3, it follows that

vi(t) ≤ κη0η1 · · · ηk−1ηkξie
−λtke−λ(t−tk) =

= κη0η1 · · · ηk−1ηkξie
−λt for t ∈ (tk, tk+1].

Thus we have proved (10) by induction.
By condition (b) of Theorem 1, we have ηk ≤ eη(tk−tk−1). Then

η0η1 · · · ηk−1 ≤ eηt1eη(t2−t1) · · · eη(tk−1−tk−2) = eηtk−1 ≤ eηt for t ∈ (tk−1, tk].

Now (10) implies ‖ui(t, ·) − u∗
i ‖ ≤ κξie

−(λ−η)t for t ≥ 0, i = 1,m. Hence

m
∑

i=1

‖ui(t, ·) − u∗‖ ≤ M sup
s≤0

m
∑

i=1

‖φi(s, ·) − u∗‖e−(λ−η)t, for all t ≥ 0

with M =

(

m
∑

i=1

ξi

)

/ min
i=1,m

{ξi} > 1. ¤
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