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GENERALIZED DERIVATIONS AND

C
∗
-ALGEBRAS

Salah Mecheri

Abstract

Let H be a separable infinite dimensional complex Hilbert space, and
let L(H) denote the algebra of all bounded linear operators on H. Let
A, B ∈ L(H). Define the generalized derivation δA,B : L(H) 7→ L(H)
by

δA,B(X) = AX − XB.

The class of generalized P - symmetric operators is the class of all pairs
of operators A, B ∈ L(H) such that [TA = BT implies A∗T = TB∗, T ∈

C1(H)] (*) (trace class operators), i.e, the pair (A, B) satisfies the Fuglede-
Putnam’s theorem in C1(H). In this paper we present new C∗-algebras
generated by the pair (A, B) satisfying (*). Other related results are
also given.

1 Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denotes the algebra of all bounded linear operators on H. Given A,B ∈ L(H),
we define the generalized derivation

δA,B : L(H) 7→ L(H) by δA,B(X) = AX − XB. Note that δA,A = δA. In
[2] J.Anderson , J.Bunce, J.A.Deddens and J.P.Williams show that, if A is
D− symmetric, ( i.e., ran(δA) = ran(δA∗), where ran(δA) is the closure of the
range, ran(δA), of δA in the norm topology, then AT = TA, T ∈ C1(H) (trace
class operators) implies A∗T = TA∗. In order to generalize these results we
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initiated in [6, 8] the study of a more general class of P -symmetric operators,
namely the class of pairs of operators A,B ∈ L(H) such that BT = TA, T ∈
C1(H) implies A∗T = TB∗. We call such operators generalized P -symmetric
operators. The set of all such pairs is denoted by GFo(H), that is, the pair
(A,B) satisfies the Fuglede-Putnam’s theorem in C1(H). Since the study
of generalized P -symmetric operators comes back to the study of operators

A,B ∈ L(H) such that ran(δA,B)
w∗

is self-adjoint. It is natural to introduce
the following sets

T0(A,B) = {(C,D) ∈ L(H) × L(H) : CL(H) + L(H)D ⊂ ran(δA,B)
w∗}.

I0(A,B) = {(C,D) ∈ L(H)×L(H) : Cran(δA,B)+ran(δA,B)D ⊂ ran(δA,B)
w∗}.

B0(A,B) = {(C,D) ∈ L(H) × L(H) : ran(δC,D) ⊂ ran(δA,B)
w∗}.

It is known [12] that if H is of finite dimension, C = D and A = B, then

T0(A) = {0}, I0(A) = {A}′

andB0(A) = {A}′′

,

where {A}′

is the commutant of A and {A}′′

is the bicommutant of A. In this
paper we will prove that if the pair (A,B) is generalized P -symmetric, then
we have

(i) T0(A,B), I0(A,B) and B0(A,B) are C∗-algebras w∗-closed in L(H) ×
L(H).

(ii) T0(A,B) is a bilateral ideal of I0(A,B).

(iii) ran(δC,D) ⊂ ran(δA,B)
w∗

for all C,D ∈ C∗(A,B), the C∗-algebra gen-
erated by the pair (A,B) of operators such that BT = TA implies A∗T = TB∗

for all T ∈ C1(H). We also prove that if (A,B) is generalized P -symmetric

then A∗ran(δA,B) + ran(δA,B)B∗ ⊂ ran(δA,B)
w∗

.

2 Preliminaries

Definition 2.1. The Trace class operators, denoted by C1(H), is the set of

all compact operators A ∈ L(H), for which the eigenvalues of (TT ∗)
1

2 counted
according to multiplicity, are summable. The ideal C1(H) of L(H) admits a
trace function tr(T ), given by tr(T ) =

∑

n(Ten, en) for any complete ortho-
normal system (en) in H. As a Banach spaces C1(H) can be identified with
the dual of the ideal K of compact operators by means of the linear isometry
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T 7→ fT , where fT = tr(XT ). Moreover L(H) is the dual of C1(H), the ultra
weakly continuous linear functionals on L(H) are those of the form fT for
T ∈ C1(H) and the weakly continuous linear functionals are those of the form
fT with T is of finite rank.

Definition 2.2. Given A ∈ L(H), the inner derivation

δA : L(H) → L(H)

is defined by
δA,B(X) = AX − XA, (X ∈ L(H)).

Definition 2.3. Let A and B be two operators in L(H). Then the generalized
derivation

δA,B : L(H) → L(H)

is defined by
δA,B(X) = AX − XB, (X ∈ L(H)).

Definition 2.4. Let A ∈ L(H). Then A is called D-symmetric if

ran(δA) = ran(δA∗).

Definition 2.5. Let A,B ∈ L(H). The pair (A,B) is called generalized D-
symmetric pair of operators if

ran(δA,B) = ran(δB∗,A∗).

The set of all such pairs is denoted by GS(H). Here ran(δA,B) is the closure
of the range, ran(δA,B), of δA,B in the norm topology.

Definition 2.6. Let A ∈ L(H). If
AT = TA implies A∗T = TA∗, ∀T ∈ C1(H), then A is called P -symmetric.

Definition 2.7. Let A,B ∈ L(H), the pair (A,B) of operators such that
BT = TA implies A∗T = TB∗ for all T ∈ C1(H) is called a generalized P -
symmetric pair of operators. The set of all such pairs is denoted by GFo(H),
that is, the pair (A,B) satisfies the Fuglede-Putnam’s theorem in C1(H).

Let B be a Banach space and let S be a subspace of B. Denote by B
′

the
set of all linear functionals, and set

B∗ =
{

f ∈ B
′

: f is bounded (norm-continuous)
}

,

Ann(S) = {f ∈ B∗ : f(s) = 0 for all s ∈ S} .

In [6] the author proved the following theorem.

Theorem 2.1. Let A,B ∈ L(H). Then (A,B) ∈ GF0(H) ⇔ ran(δA,B)
w∗

=

ran(δB∗,A∗)
w∗

.
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3 Main Results

In the following theorem we will present some properties of T0(A,B), I0(A,B)
and B0(A,B).

Theorem 3.1. Let A,B ∈ L(H). If the pair (A,B) is generalized P -symmetric,
then we have

(i) T0(A,B), I0(A,B) and B0(A,B) are C∗-algebras w∗-closed in L(H)×
L(H).

(ii) T0(A,B) is a bilateral ideal of I0(A,B).

(iii) ran(δC,D) ⊂ ran(δA,B)
w∗

for all C,D ∈ C∗(A,B), the C∗-algebra
generated by the pair (A,B) ∈ GF0(H).

Proof. (i) Let (C,D) ∈ T0(A,B). Since C∗L(H) = [L(H)C]∗ ⊆ ran(δA,B)
w∗

,

it follows that C∗L(H) ⊆ ran(δA,B)
w∗

. By the same arguments as above we

prove that L(H)D∗ ⊆ ran(δA,B)
w∗

, that is, (C∗,D∗) ∈ T0(A,B). If C,D ∈
L(H), then the linear maps LCX = CX and RDX = XD are w∗-continuous.
Consequently T0(A,B) is w∗-closed in L(H)×L(H). By the same arguments
as above we prove that I0(A,B) and B0(A,B) are C∗-algebras w∗-closed in
L(H) × L(H).

(ii) If (C,D) ∈ I0(A,B) and (E,F ) ∈ T0(A,B), then for all X ∈ L(H)

we have X(CE) = (XC)E ∈ ran(δA,B)
w∗

E ⊂ ran(δA,B)
w∗

. We have also

(DF )X = D(FX) ∈ ran(δA,B)
w∗

. This shows that T0(A,B) is an ideal at
right. Since T0(A,B) is a C∗-algebra, it follows that T0(A,B) is a bilateral
ideal of I0(A,B).

(iii) Assume that (C,D) ∈ B0(A,B). Since B0(A,B) is a C∗-algebra
containing the pair (A,B) and (I, I), it contains C∗(A,B).

Remark 3.1. In [8] the author proved that

Ann(ran(δA,B)) = Ann(ran(EA,B))∩Ann(K(H))⊕ker(δB,A)∩C1(H). (2.1)

Note that ran(δA,B)
w∗

is self-adjoint if and only if

Ann(ran(δA,B)) ∩ L(H)′w∗

is also self-adjoint. By using (2.1) we obtain in particular

Ann(ran(δA,B)) ∩ L(H)′w∗ ≃ ker δB,A ∩ C1(H),

where L(H)
′w∗

is the set of the ultra-weakly continuous linear functionals on

L(H)
′

. Thus (A,B) ∈ GF0(H) if and only if ran(δA,B)
w∗

is self-adjoint.
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Theorem 3.2. Let A,B ∈ L(H). If (A,B) is generalized P -symmetric, then

B∗ran(δA,B) + ran(δA,B)A∗ ⊂ ran(δA,B)
w∗

.

Proof. Assume that (A,B) is generalized P -symmetric. Then it follows from
Theorem 2.1 that:

ran(δA,B)
w∗

= ran(δB∗,A∗)
w∗

. But since
B∗δB∗,A∗(X) = δB∗,A∗(B∗X) and δB∗,A∗(X)A∗ = δB∗,A∗(XA∗), we de-

duce that:
B∗ran(δA,B) ⊂ B∗ran(δA,B)

w∗

= B∗ran(δB∗,A∗)
w∗ ⊆ ran(δB∗,A∗)

w∗

=

ran(δA,B)
w∗

.
By the same arguments shown above we can prove that:

ran(δA,B)A∗ ⊂ ran(δA,B)
w∗

. This completes the proof.

In [5] we proved that the direct sum of D-symmetric operators is also D-
symmetric if σ(A) ∩ σ(B) = φ. By a slight modification in the proof of [5,
Theorem 2.4] we can prove the following theorem.

Theorem 3.3. Let A and B be two P -symmetric operators such that σ(A) ∩
σ(B) = φ. Then A ⊕ B is also P -symmetric.

Note that the condition given in the previous theorem is necessary for A⊕B

to be P -symmetric as we will show in the following example.

Example 3.1. (i) Let ∆ = {z ∈ C : |z| ≤ 1} and H1 = L2(∆). Define
M ∈ L(H) as follows :

M : H1 → H1, s.t., f → Mf

That is
∀z ∈ ∆,Mf(z) = zf(z)

(ii) Let H2 be a separable complex Hilbert space, and let (en)n ∈ N be an
orthonormal basis of H2. Consider the unilateral shift S : H2 → H2, which is
defined by

Sen = en+1,∀n ∈ N.

Note that both S and M are normal and hence they are P -symmetric operators.
(iii)Define τ : H2 → H1 to be :

τen(z) = znχD,

where D = {z ∈ C : |z| ≤ α < 1}, and α is fixed. We claim that τ is a trace
class operator, because

‖τen(z)‖2 = ‖znχD‖2 =

∫ ∫

D

|zn|2rdrdθ =

∫ ∫

D

r2n+1e2inθdrdθ = 2π(
(α2n+2

2n + 2
).
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Since |α| < 1,

‖τ‖ ≤
∞
∑

n=1

‖τen‖ ≤
√

2π
αn+1

√
2n + 2

< ∞.

Hence τ is a trace class operator.
(iv) Let

A =

(

M 0
0 S

)

and

T =

(

0 τ

0 0

)

.

Since τ is of trace class, T is also of trace class. Note that AT = TA, but if
T ∗A = AT ∗, then τ∗M = Sτ∗. But the equation SX = XM implies X = 0
[11]. This contradicts our hypothesis Thus A = M ⊕ S is not P -symmetric.

The previous example is used in [2] to show that the direct sum of two
D-symmetric operators is not in general D-symmetric.

In [5] we proved that the set Ds = {T +K : T is D-symmetric, K compact
} is norm-dense in L(H). By a slight modification in the proof of [5, Theorem
2.7] we can prove that the set Ps = {T + K : T is P -symmetric, K compact
} is also norm-dense L(H).

Remark 3.2. It is known that the operator A,B ∈ B(H) satisfy the Fuglede-
Putnam’s theorem if AX = XB, X ∈ B(H) implies A∗X = XB∗. Thus our
results are generalizations of Fuglede-Putnam’s theorem in C1(H). Recall [3]
that if A is normal or isometric, then A is p-symmetric.
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