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On the Cohomology with local coefficients of

Pure Braid Groups

Simona Settepanella

Abstract

The need to calculate local system cohomolgy of the complement of
an hyperplane arrangement arises in various contexts. Nevertheless until
now very few it’s known on the direct computation of such cohomology.
In this paper the author describes all generators of the first homology
group of braid arrangement giving also a complete description of its
first characteristic variety, fulfilling results obtained by D. Cohen and
A. Suciu in [7]. Moreover she gives also a complete description of the first
characteristic variety in the case of the generalized braid arrangement
coming from the dihedral group.

Introduction

Let A = {H1, . . . ,Hn} be a hyperplane arrangement in Cl, with comple-
ment

M = M(A) = Cl \
n⋃

j=1

Hj .

Let λ = (λ1, . . . , λn) ∈ Cn be a collection of weights. Associated to λ, we have
a rank one representation ρ : π1(M) → C∗ given by cj 7→ tj = exp(−2πiλj) for
any meridian loop cj about the hyperplane Hj of A, and an associated rank
one local system L on M . The need to calculate the local system cohomology
H∗(M ;L) arises in various contexts. For instance, such local systems may be
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used to study the Milnor fiber of the non-isolated hypersurface singularity at
the origin obtained by coning the arrangement, see [6, 5]. In mathematical
physics, local systems on complements of arrangements arise in the Aomoto-
Gelfand theory of multivariable hypergeometric integrals [1, 11, 16] and the
representation theory of Lie algebras and quantum groups. These consider-
ations lead to solutions of the Knizhnik-Zamolodchikov differential equation
from conformal field theory, see [20, 23].

In light of these applications, and others, the cohomology H∗(M(A),L)
has been the subject of considerable recent interest. Call the local system
L nonresonant if this cohomology is concentrated in dimension n, that is,
Hk(M(A),L) = 0 for k 6= n. Necessary conditions for vanishing, or non-
resonance, have been determined by a number of authors, including Esnault,
Schectman, and Viehweg [9], Kohno [12], and Schechtman, Terao, and Varchenko
[21].

In 1980, Orlik and Solomon gave a simple combinatorial description of
the k-algebra H∗(X, k), for any field k: it is the quotient A = E/I of the
exterior algebra E on classes dual to the meridians, modulo a certain ideal I
determined by the intersection poset, see [14, 15].

For each a ∈ A1 ∼= kn, the Orlik-Solomon algebra can be turned into a
cochain complex (A, a), with i-th term the degree i graded piece of A, and
with differential given by multiplication by a, cf. [24]. The resonance varieties
of A were defined in [10] to be the jumping loci for the cohomology of this
cochain complex:

Ri
d(A) = {a ∈ A1 | dimk Hi(A, a) ≥ d}. (1)

The characteristic varieties of a space X are the jumping loci for the co-
homology of X with coefficients in rank 1 local systems:

V i
d (X) = {t ∈ Hom(π1(X), C∗) | dimC Hi(X, Ct) ≥ d}, (2)

where Ct denotes the abelian group C, with π1(X)-module structure given by
the representation t : π1(X) → C∗.

Now suppose X is the complement of an arrangement of n hyperplanes. By
work of Arapura [2], the irreducible components of the characteristic varieties
of X are algebraic subtori of the character torus Hom(π1(X), C∗) ∼= (C∗)n,
possibly translated by unitary characters. It turns out that the tangent cone
at the origin to V i

d (X) coincides with the resonance variety Ri
d(A), see [7,

13, 4]. Consequently, the resonance varieties are unions of linear subspaces;
moreover, the algebraic subtori in the characteristic varieties are determined
by the intersection lattice.

Until now there aren’t a lot of computational results about characteristic
varieties. Author considers the particular case given by the braid arrange-
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ments, i.e. arrangements A(W) obtained complexifying the reflection hyper-
planes related to a finite Coxeter system W.

These arrangements has been studied in a lot of occasion and their local
cohomologies are equivalent to the cohomologies of the pure braid groups or
pure Artin groups.

In this paper the author gives a complete description of generators of the
first homology group with local coefficients of the braid arrangement retrieving,
as consequence, the first characteristic variety of this arrangement. These
results agree with (partial) results obtained by D. Cohen and A. Suciu in [7].

The author concludes this first part with a conjecture about the charac-
teristic varieties of braid arrangement.

Moreover she computes in an original way the homology with local coeffi-
cients (equivalently the first characteristic variety) of the complement of the
arrangement A(I2(m)). These results agree with the one in [7].

1. First characteristic variety of braid arrangement

1.1. Salvetti’s Complex for reflection arrangements.

Let W be a finite group generated by reflections in the affine space An(R).
Let A(W) = {Hj}j∈J be the arrangement in An defined by the reflection
hyperplanes of W. We need to recall briefly some notations and results from
[17] for the particular case of Coxeter arrangements, i.e. arrangements coming
from Coxeter Systems (W, S) (see [3]). A(W) induces a stratification S =
S(W) of An into facets (see [3]). The set S is partially ordered by F > F ′ iff
F ′ ⊂ cl(F ). We shall indicate by Q = Q(W) the cellular complex which is
dual to S. In a standard way, this can be realized inside An by baricentrical
subdivision of the facets: inside each codimension j facet F j of S choose one
point v(F j) and consider the simplexes

s(F i0 , · · · , F ij ) = {

j
∑

k=0

λkv(F ik) :

j
∑

k=0

λk = 1, λk ∈ [0, 1]}

where F ik+1 < F ik , k = 0, · · · , j−1. The dimension j cell ej(F
j
) which is dual

to F
j

is obtained by taking the union

∪s(F 0, · · · , F j−1, F
j
)

over all chains F
j

< F j1 < · · · < F 0. So Q = ∪ej(F j), the union being over
all facets of S.
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One can think of the 1 − skeleton Q1 as a graph (with vertex-set the 0 −
skeleton Q0) and can define the combinatorial distance between two vertices
v , v ′ as the minimum number of edges in an edge-path connecting v and v ′.

For each cell ej of Q one indicates by V (ej) = Q0 ∩ ej the 0-skeleton of
ej . One has that given a vertex v ∈ Q0 and a cell ei ∈ Q, there is a unique
vertex w(v, ei) ∈ V (ei) with the lowest combinatorial distance from v, i.e.:

d(v, w(v, ei)) < d(v, v′) if v′ ∈ V (ei) \ {w(v, ei)}.

If ej ⊂ ei then w(v, ej) = w(w(v, ei), ej).
Let now A(W) denote the complexification of A(W), and Y(W) = Cn \

∪j∈JHj,C the complement of the complexified arrangement. Then Y(W) is
homotopy equivalent to the complex X(W) which is constructed as follows
(see [17]).

Take a cell ej = ej(F j) = ∪s(F 0, · · · , F j−1, F j) of Q as defined above and
let v ∈ V (ej). Embed each simplex s(F 0, · · · , F j) into Cn by the formula

φv,ej
(

j
∑

k=0

λkv(F k)) =

j
∑

k=0

λkv(F k) + i

j
∑

k=0

λk(w(v, ek) − v(F k)).

(3)

It is shown in [17] (see also [18]):
(i) the preceding formula defines an embedding of ej into Y(W);
(ii) if Ej = Ej(v, ej) is its image, then varying ej and v one obtains
a cellular complex

X(W) = ∪Ej

which is homotopy equivalent to Y(W).
The previous result allows us to make cohomological computations over Y(W)
by using the complex X(W).

In [18] (see also [8]) the authors give a new combinatorial description of
the stratification S where the action of W is more explicit. They prove that
if S is the set of reflections with respect to the walls of the fixed base chamber
C0, then a cell in X(W) is of the form E = E(w,Γ) with Γ ⊂ S and w ∈ W.
The action of W is written as

σ.E(w,Γ) = E(σw,Γ), (4)

where the factor σ.w is just multiplication in W.
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We prefer at the moment to deal with chain complexes and boundary
operator coming from X(W) instead of cochain and coboundary. Indeed we
will see that, in our case, it is simple to deduce cohomological results from
homological ones.

We define a rank-1 local system on Y(W) with coefficients in an unitary
ring A by assigning an unit τj = τ(Hj) (thought as a multiplicative operator)
to each hyperplane Hj ∈ A. Call τ the collection of τj and Lτ the correspond-
ing local system. Let C(W,Lτ ) be the free graduated A-module with basis
all E(w,Γ) (see [17]).

We use the natural identification between the elements of the group and
the vertices of Q0, given by w ↔ w.v0. Here vo ∈ Q0 is contained in the fixed
base chamber C0.

Then u(w,w′) will denote the “minimal positive path” joining the corre-
sponding vertices v and v′ in the 1-skeleton X(W)1 of X(W) (see [17]).

The local system Lτ defines for each edge-path c in X(W)1, c : w → w′ an
isomorphism c∗ : A → A such that for all d : w → w′ homotopic to c, c∗ = d∗
and for all f : w′′ → w, (cf)∗ = c∗f∗.

Then the set {s0(w).E(w,Γ)}|Γ|=k, where s0(w) := u(1, w)∗(1), is a linear
basis of Ck(W,Lτ ).

Let now T = {wsw−1|s ∈ S,w ∈ W}, the set of reflections in W and

W = {s(w) = (si1 , · · · , siq
)|w = si1 · · · siq

∈ W},

then for each s(w) ∈ W and t ∈ T , we set

i) Ψ(s(w)) = (ti1 , · · · , tiq
) with tij

= (si1 · · · sij−1
)sij

(si1 · · · sij−1
)−1 ∈ T

ii) Ψ(s(w)) = {ti1 , · · · , tiq
}

iii)η(w, t) = (−1)n(s(w),t) with n(s(w), t) = ♯{j|1 ≤ j ≤ q and tij
= t}.

Moreover if t ∈ T is the reflection relative to the hyperplane H, then we set
τ(t) = τ(H).

We define

∂k(s0(w).E(w,Γ)) =
∑

σ∈Γ

∑

β∈W
Γ\{σ}
Γ

(−1)l(β)+µ(Γ,σ)τ(w, β)s0(wβ).E(wβ,Γ \ {σ}). (5)

where τ(w, β) =
∏

t∈Ψ(s(w))
η(w,t)=1

τ(t), and µ(Γ, σ) = ♯{i ∈ Γ|i ≤ σ}.

Remark that the action (4) is extended to τ(w, β) in the obvious way

σ.τ(w, β) = τ(σw, β). (6)
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This boundary map computes H∗(X(W),Lτ ). A similar result holds for
cohomology.

Moreover let WΓ be the parabolic subgroup of W generated by Γ and
WΓ = {w ∈ W|ℓ(ws) > ℓ(w) for all s ∈ Γ}. Each w ∈ W can be write as a
product w = wΓwΓ with wΓ ∈ WΓ and wΓ ∈ WΓ. From (5) it follows:

∂(E(w,Γ)) = wΓ.∂(E(wΓ,Γ)) (7)

where the action (4) is extended to C(W) by linearity.

1.2. Reduced boundary operator for Salvetti’s complex

Given the n-dimensional Salvetti’s complex C(W) associated to the com-
plexified arrangement A(W), we have an homotopically equivalent complex
C(W) obtained by C(W) simply contracting to a point the n-dimensional cell
E(1, S), where 1 ∈ W is the identity and S is the system of generators of W.

This contraction is equivalent to contract to a point all 0-cells of C(W)
and all k-dimensional cells E(w,Γ) such that w ∈ WΓ.

Then, clearly, the new boundary operator ∂ on this contracted complex
can be obtained by the old one contracting all k-dimensional cells E(w,Γ), for
k > 0, to 0, i.e. they disappear from the boundary, and all 0-cells coincide
with the same 0-cell E(∅).

In order to simplify computations, from now on we will deal with this new
contracted complex.

1.3. Generators of the first homology group with local coefficients of the
braid arrangement.

Let W = An be the symmetric group, then A(An) is the braid arrange-
ment. The set of generators of An will be S = {s1, . . . , sn}.

In this paragraph we give a complete description of generators for the first
homology group H1(Y(An),L).

Let us remark that the contracted 1-skeleton C1(An) will be given by all
1-dimensional cells of the form E(wsi, {si}) for w ∈ W si and si ∈ S. While
the boundary of a 1-dimensional cell E(wsi, {si}) will be:

∂E(wsi, {si}) = (1 − τwsiw−1)E(∅) (8)

where τwsiw−1 is the weight relative to the reflection hyperplane Hwsiw−1 re-
lated to reflection wsiw

−1.
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Then the kernel of ∂0 can be represented as follow:

Let us define

ci,j
w,w′ = E(w, {si}) − E(w′, {sj}) if τwsiw−1 = τw′sjw′−1

di,j
w,w′ = (1 − τw′sjw′−1)E(w, {si}) − (1 − τwsiw−1)E(w′, {sj}) if τwsiw−1 6= τw′sjw′−1

(9)

for 1 ≤ i, j ≤ n, w,w′ ∈ An and l(wsi) < l(w), l(w′sj) < l(w′). They verify
the following relations:

i)ci,j
w,w′ + cj,k

w′,w′′ = ci,k
w,w′′

ii)di,j
w,w′ = −dj,i

w′,w

iii)di,j
w,w′ = (1 − τw′sjw′−1)ci,k

w,w′′ + dk,j
w′′,w′ if τwsiw′−1 = τw′′skw′′−1

iv)(1 − τw′′skw′′−1)di,j
w,w′ + (1 − τwsiw−1)dj,k

w′,w′′ = (1 − τw′sjw′−1)di,k
w,w′′

(10)

which are a complete system of relations, i.e. all relations verified by ci,j
w,w′

and di,j
w,w′ .

By (8) all element in the kernel of ∂0 are a combination of ci,j
w,w′ and di,j

w,w′ .

It follows that the kernel of ∂0 is generated by ci,j
w,w′ and di,j

w,w′ with rela-
tions (10).

Another interesting remark will simplify our computations: by (7) elements
ci,j
w,w′ can be wrote as a sum of ci,j

wt,w′t′
for t, t′ ∈ W{si,sj} and w,w′ ∈ W {si,sj}.

Moreover, by relation (10) i), we obtain that all ci,j

wt,w′t′
can be write as a sum

of elements ch,k

wt,w′t′
such that w = w′.

Similarly, from (7) and (10) ii), iii), di,j
w,w′ are equivalents to a sum of gen-

erators of the form dh,k
wt,wt′ and ch,k

wt,wt′ , with t, t′ ∈ W{sh,sk} and w ∈ W {sh,sk}

for some sh, sk ∈ Sn.

Then we can choose as representatives generators of the form ci,j
wt,wt′ and

di,j
wt,wt′ .

Moreover, using (4), it is possible to write the image of ∂1 in terms of
these generators, computing generators of the first homology group and their
relations.
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Indeed, with the above notations, let E(w, {si, sj}) be E(wt, {si, sj}) ∈
C(W) with j − i > 1, i.e. si and sj commute. Then, by direct computations,
we obtain:

∂1(E(wt, {si, sj})) =







0 t = 1

ci,i
wsi,wsjsi

t = si

−cj,j
wsj ,wsisj

t = sj

di,j
wsi,wsj

− ci,i
wsi,wsjsi

+ cj,j
wsj ,wsisj

t = sisj

(11)

While if sj = si+1 then:

∂1(E(wt, {si, si+1})) =







0, t = 1

c
i,i+1

wsi,wsi+1sisi+1
, t = si

−c
i+1,i

wsi+1,wsi+1sisi+1
, t = si+1

d
i,i

wsi,wsi+1si
− c

i,i+1

wsi,wsi+1sisi+1
−

c
i+1,i

wsisi+1,wsi+1si
, t = sisi+1

−d
i+1,i+1

wsi+1,wsisi+1
+

c
i+1,i

wsi+1,wsi+1sisi+1
−

c
i+1,i

wsisi+1,wsi+1si
, t = si+1si

τwsisi+1siw−1

d
i+1,i

wsi+1,wsi
−

d
i,i

wsi,wsi+1si
+

c
i,i+1

wsi,wsi+1sisi+1
+

c
i+1,i

wsisi+1,wsi+1si

+d
i+1,i+1

wsi+1,wsisi+1
−

c
i+1,i

wsi+1,wsi+1sisi+1
, t = sisi+1si

(12)

The boundaries (11) and (12) give rise to new relations on ci,j
w,w′ and di,j

w,w′

in the first homology group.
We will call commutative relations those in (11), non commutative relations
those in (12).

Theorem 1 With the above notations all generators of type di,j
w,w′ , di,i

w,w′

and ci,j
w,w′ , ci,i

w,w′ with | j − i |> 1, i.e. the commutative case, disappear in
H1(C(An),L).

Proof The proof come from the fact that, in the commutative case, all
generators di,j

w,w′ which verify l(wsi) < l(w), l(w′sj) < l(w′) and wsiw
−1 6=

w′sjw
′−1 are of the form di,j

wsi,wsj
with i 6= j, for a fixed w ∈ W {si,sj}.

Similarly all generators ci,j
w,w′ which verify l(wsi) < l(w), l(w′sj) < l(w′) and
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wsiw
−1 = w′sjw

′−1 are of the form ci,i
wsi,wsjsi

for a fixed w ∈ W {si,sj}.

But all these generators are on the image of ∂1 (see (11)) and then are 0 in
homology. This conclude the proof �

Theorem 2 With the above notations all generators in H1(C(An),L) are of
the form di+1,i

wsi+1,wsi
for i ∈ {1, . . . n − 1} and w ∈ W {si,si+1}.

Proof By theorem 1 we have to deal only with generators coming from
the 1-boundary of the non commutative case (12). As in the proof of the-
orem 1 we have that, in the commutative case, all generators ci,j

w,w′ which

verify l(wsi) < l(w), l(w′sj) < l(w′) and wsiw
−1 = w′sjw

′−1 are of the form

ci,i+1
wsi,wsi+1sisi+1

, ci+1,i
wsi+1,wsi+1sisi+1

or ci+1,i
wsisi+1,wsi+1si

. The first two are in the

image of ∂1 (see (12)) and then are 0 in the homology.
Similarly all generators di,j

w,w′ which verify l(wsi) < l(w), l(w′sj) < l(w′) and

wsiw
−1 6= w′sjw

′−1 are of the form di,i
wsi,wsi+1si

, di+1,i+1
wsi+1,wsisi+1

or di+1,i
wsi+1,wsi

.

By the above considerations on the ci,j
w,w′ and by (12) we have that the first

two elements are in the image of ∂1, while the generator ci+1,i
wsisi+1,wsi+1si

is

equal, in H1(C(An),L), to τwsisi+1siw−1di+1,i
wsi+1,wsi

. This conclude the proof
�

Clearly these generators are not free. Then we have to study all relations
for the di+1,i

wsi+1,wsi
coming from (10).

Example 1 In A2, with generators S = {s1, s2}, we obtain that H1(A(A2),Lτ )
is generated by d1,2

s1,s2
with the only relation (1 − τs1

τs2
τs1s2s1

)d1,2
s1,s2

= 0 :

In this case the only generator d1,2
s1,s2

has to satisfies relation (10) iv),i.e.

(1 − τs1s2s1
)d2,1

s2,s1
+ (1 − τs2

)d1,1
s1,s2s1

− (1 − τs1
)d2,1

s2,s2s1
= 0.

We have that d1,1
s1,s2s1

= τs1s2s1
d2,1

s2,s1
and, by relation (10) iii), d2,1

s2,s2s1
=

−τs2
τs1s2s1

d2,1
s2,s1

. Then we obtain (1 − τs1
τs2

τs1s2s1
)d1,2

s1,s2
= 0.

The boundary of an element E(wΓwΓ,Γ) of the Salvetti’s complex strongly
depends on wΓ. Then the 2-boundary depends on W{si,sj}, i.e. on the multi-

plicity m(si, sj) which is the minimum integer such that sis
m(si,sj)
j = 1 (see

[3]).
Then in An we have only two kind of relations, the ones coming from the
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boundary of copies of A2, i.e. (12), and the others coming from the commu-
tative case m(si, sj) = 2, i.e. (11).

In order to better understand the computations below it is important to
recall some basic facts on the Coxeter group An which correspond to the
symmetric group Sn+1 on n + 1 integers.
The generators S = {s1, . . . , sn} of An correspond to transpositions si =
(i, i + 1) and reflection hyperplanes correspond to elements w ∈ An such that
w2 = 1, i.e. to transpositions (i, j) = sisi+1 . . . sj−1sjsj−1...si+1si.
Hyperplanes corresponding to commutative reflections are perpendicular.
In An we have

(
n+1
k+1

)
copies of Ak obtained considering all possible subsets

{i1, . . . , ik+1} ⊂ {1, . . . , n + 1}. The generators will be elements of order 2
which correspond to the k transpositions (ij , ij+1).
Moreover each element of the symmetric group Sn+1 acts on An in the obvious
way and, by (4) and (6), this action can be extended to generators di+1,i

wsi+1,wsi

and their relations. While (7) allows us to conclude that, if we have a relation
R on generators in H1(C(An),L) then these generators will verify all relation
coming from R by symmetries.

Example 2 By above considerations, we can notice that in A(A3) we have
(
4
3

)
copies of A(A2) which give rise to the same relations of A(A2) and 16

new non commutative relations:

By theorem 2 we obtain four generators d1,2
ws1,ws2

for w ∈ A3
{s1,s2}. By direct

computations we have two kind of relations. The first one:

(1 − τs3
)(τs1s2s1

− τs2s3s2
)d1,2

s1,s2
= 0 (13)

coming from (10) iv) applied to the commutative case, i.e. the case in which
index i and k in (10) iv) verify | i − k |> 1. In this case by theorem 1 the

second element of the equality di,k
w,w′′ is 0.

The second one:

(1 − τs1
τs2

τs1s2s1
)d1,2

s1,s2
= 0. (14)

coming from (10) iv) applied to the non commutative case.
Applying symmetries to these relations we obtain that in H1(C(A3),L) we
have twelve relations of the form (13) and height of the form (14).

The interesting case is A4. Indeed by theorem 1 we know that if | j−i |> 1
then di,j

wt,wt′ ∈ Im∂1, i.e. it is 0 in homology. It follows that (10) iv) applied

to indices i = 1, j = 2, k = 4 gives rise to ♯A4
{s1,s2,s4} = 10 new relations of
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the form:

(1 − τws4w−1)d1,2
ws1,ws2

= 0 (15)

for w ∈ A4
{s1,s2,s4}.

Moreover generators of H1(C(A4),L) have to satisfy relations of the form (13)
and (14). By direct computations it follows that all the above relations are
satisfied iff at list four weights τws4w−1 relative to different hyperplanes are
equal to 1 and the remaining weights satisfy (13) and (14).
By direct computations (using symmetries) we have that this is possible iff
the remaining weights are related to a copy of A3 in A4 (i.e. they are weights
of reflections hyperplanes in a copy of A3) or to disjoint copies of A2 in A4.
Then all relations involving generators of H1(C(A4),L) comes from rela-
tions involving generators inside copies of H1(C(A3),L) and H1(C(A2),L)
in H1(C(A4),L). In order to better understand how to immerge copies of
H1(C(Ak),L) inside H1(C(An),L) for k < n see [22].

Theorem 3 With the above notations, all relations for generators in H1(C(An),L)
are obtained by symmetries from relations of the form (13), (14) and (15).

Proof The proof follows noticing that in A(An) for n > 4 all 3-uples of
hyperplanes which are not in the same copy of A(A4) are perpendiculars, i.e.
related to commutative reflections.
Then there aren’t new relations except the ones of the form (13), (14) and
(15) �

1.4. The first characteristic variety of braid arrangement

As seen in the introduction, the characteristic varieties of a space X are
the jumping loci for the cohomology of X with coefficients in rank 1 local
systems:

V i
d (X) = {t ∈ Hom(π1(X), C∗) | dimC Hi(X, Ct) ≥ d}, (16)

where Ct denotes the abelian group C, with π1(X)-module structure given by
the representation t : π1(X) → C∗.

Here X is the complement Y(An) of the braid arrangement An and L is
the rank one local system.

In [7] D. Cohen and A. Suciu compute the first central characteristic subva-
riety of the braid arrangement, i.e. the subvariety consisting of all irreducible
components of the characteristic variety V 1 passing through 1. We can now
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complete their work.

Let us remark that, with the notations used in (5), the coboundary operator
on the Salvetti’s complex for Coxeter arrangements is defined as:

dk(s0(w).E(w,Γ)) =
∑

σ∈S\Γ

∑

β∈WΓ
Γ∪{σ}

(−1)l(β)+µ(Γ,σ)τ(w, β)s0(wβ).E(wβ,Γ ∪ {σ}).

As simple consequence the coboundary matrix on C(W) is simply the
transpose of the boundary matrix on C(W). It follows that all relations be-
tween weights which change the dimension of the first homology group, will
change also the dimension of the first cohomology one.

Let W = An be the symmetric group and A(An) the braid arrangement.
Given τ ∈ (C∗)n(n+1)/2 collection of unit τj = τ(Hj) for each Hj ∈ A(An),
a 3-uple (τi1 , τi2 , τi3) is of type A2 if the sub-arrangement {Hi1 ,Hi2 ,Hi3} ⊂
A(An) is a copy of A(A2); a 6-uple is of type A3 if it is related to a sub-
arrangement which is a copy of A3.
Let us define for all σ ∈ An

(1 − σ.τs3
)(σ.τs1s2s1

− σ.τs2s3s2
) = 0 (17)

(1 − σ.τs1
σ.τs2

σ.τs1s2s1
) = 0 (18)

where the action of σ is defined in (6).

Theorem 4 A collection of unit τ ∈ (C∗)n(n+1)/2 is in the first characteristic
variety of the braid arrangement An iff one of the following assertion is true:

i) there are one or more disjoint 3-uples of type A2 which verify relations
(18) and all other entries are 1;

ii) there are one or more disjoint 6-uples of type A3 which verify relations
(18), (17) and all other entries are 1;

iii) there are one or more disjoint 6-uples of type A3 and 3-uples of type
A2 which verify, respectively, relations (18), (17) and relations (18) and all
other entries are 1.

Proof The proof comes directly from theorem 3 �
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Remark 1 An interesting remark is that all computations in this section are
related to the multiplicity m(si, sj) of generators in the Coxeter group W.
Then they can be performed for all Coxeter group in a similar way. We leave
such computations to the interested reader.

Conjecture: In [22] the author considers the cohomology of the comple-
ment of braid arrangements with coefficients in the module R = Q[τ, τ−1]
proving that these cohomologies stabilize, with respect to the natural inclu-
sion, at some number of copies of the trivial R-module Q. In particular:

Denote by ϕi the cyclotomic polynomial having as roots the primitive i-
roots of 1 and let

{ϕi} := Q[τ, τ−1]/(ϕi) = Q[τ ]/(ϕi)

be the cyclotomic field of i-roots of 1, thought as R-module, then

Hk(Y(An), Rτ ) ≃ {ϕ1}
ak,n

for all k ≤ q + 1 and n ≥ 3q + 1.

Our conjecture is that there is an analogous of this theorem also for coho-
mologies in a generic rank 1 local system L. More precisely the characteristic
variety V k(Y(An)) is completely determinate by the characteristic varieties
V k(Y(Am)) for m < n when n > 3k. Theorem 4 proves that this conjecture
is true at list for the first characteristic variety.
This conjecture motivated also studied in [19].

2. Case I2(m), m ≥ 2

Let Z be Z[τ, τ−1], we begin with the following

Theorem 5

H1(I2(m), Zτ ) = Z/(ϕ1)

H2(I2(m), Zτ ) = Z/(ϕ1) ⊕i|m [Z/(ϕi)]
m−2

All other cohomologies are 0

In order to give a proof of our claim we find more convenient (as we did in
the previous chapters) to use the boundary operator instead of co-boundary.
Of course, these are given by the transposed matrices.

Recall that rkC0(I2(m)) = rkC2(I2(m)) = 2m and rkC1(I2(m)) = 4m.
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It is very easy to see that

H0(I2(m), Zτ ) = 0 and H0(I2(m), Zτ ) = Z/(ϕ1).

It follows in particular that the 1-boundary ∂1 of C∗(I2(m)) is equivalent,
up to integral base-changes, to the diagonal matrix

D1 = diag([1]2m−1, ϕ1) (19)

where [a]n =

n−times
︷ ︸︸ ︷
a, · · · , a.

Theorem 5 clearly follows from 19 end next proposition 1.

Proposition 1 There are bases for C2(I2(m)) and C1(I2(m)) such that ∂2 is
equivalent to the diagonal matrix

D2 = diag([1]m+1, ϕ1, [
∏

i|m

ϕi]
m−2)

We start by introducing some useful notations:

• wj = prodj(s1, s2) =

j−times
︷ ︸︸ ︷
s1s2s1 · · · si, i=1 if j is odd i=2 otherwise.

• {fj = E(wj ,Γ)}0≤j≤2m−1 with | Γ |= 2 a basis for C2(I2(m))

• {ei
j = E(wj ,Γi)} i = 1, 2

0 ≤ j ≤ 2m − 1

with Γi = {si} a basis for C1(I2(m)).

Then we define, for 0 ≤ j ≤ 2m − 1

aj =

{
e1
j if j is odd or 0

e2
j if j is even and j 6= 0

bj =

{
e2
j if j is odd or 0

e1
j if j is even and j 6= 0

Notice that the aj ’s and bj ’s take each 1 cell of the complex once.

Example 3 In the case of I2(3) = A2 we have the following picture:

We construct a new basis for C1(I2(m)) as follows:

εj =







aj , if 0 ≤ j ≤ m

(bj − bj−1τ) − (aj−m − aj−m+1τ)τj−m,

if m + 1 ≤ j ≤ 2m − 1
(aj−m+3 − aj−m+4) − (aj−2m+2 − aj−2m+3τ)τj−2m+2,

if 2m ≤ j ≤ 3m − 3
(bj−2m+3τ − bj−2m+4) − (bj−3m+4 − bj−3m+3)τ

j−3m+4,

if 3m − 2 ≤ j ≤ 4m − 5
am+1 + a0, if j = 4m − 4
bm +

∑m
i=1

ai − τ
∑m

i=2
ai, if j = 4m − 3

b0 + [a0 −
∑2m−1

i=m+1
bi + τ

∑2m−2

i=m
bi], if j = 4m − 2

bm−1 − [a0 −
∑m−1

i=1
ai + τ

∑m
i=2

ai]}, if j = 4m − 1.

(20)
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Figure 1: case I2(3)

Our aim is to prove that:

Lemma 1 With respect to the basis 20 the matrix of ∂2(I2(m)) becomes:

D2 =















Am+1 B(m+1,m−1)

0(m−1,m+1) Dm−1(1 − τm)
0(m−2,m+1) 0(m−2,1)Dm−2(1 − τm)
0(m−2,m+1) 0(m−2,1)Dm−2(1 − τm)

0(1,m+1) (1 − τm−1) · · · (1 − τ)
0(1,m+1) (1 − τm−1) · · · (1 − τ)
0(1,m+1) (1 − τm−1) · · · (1 − τ)
0(1,m+1) 0(1,m−1)















where Dh(1− τm) is a h ∗ h diagonal matrix with entries (1− τm) and Am+1

is triangular with pivots −1.

In order to prove this lemma we will use induction. We need the following:

Lemma 2 The matrix ∂
(m+1)
2 := ∂2(I2(m + 1)) is obtained by adding to the

matrix ∂
(m)
2 := ∂2(I2(m)) two columns and four rows and multipling by τ the

entries (∂
(m)
2 )i,j for m ≤ j ≤ 2m − 1 and 1 ≤ i ≤ 2m − 2, i = 4m − 1, 4m.

Proof. Geometrically, A(I2(m + 1)) is obtained by adding an hyperplane
to A(I2(m)). This is equivalent to add the columns relative to the 2-cells fm−1

and f2m at places m and 2m + 1, and the rows relative to the 1-cells bm−1,
am, b2m and a2m+1 at palces 2m − 1, 2m, 4m + 1 and 4m + 2.
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By an easy computation we can see that

(∂
(m+1)
2 )2m−1 = [

m
︷ ︸︸ ︷

1 · · · 1

m+1
︷ ︸︸ ︷

0 · · · 0 τ ]

(∂
(m+1)
2 )4m+2 = [−1 − τ − τ2 · · · − τm−1

m+1
︷ ︸︸ ︷

0 · · · 0−1]

(∂
(m+1)
2 )2m = [

m
︷ ︸︸ ︷

0 · · · 0−1

m
︷ ︸︸ ︷

−τ · · · − τ 0]

(∂
(m+1)
2 )4m+1 = [

m
︷ ︸︸ ︷

0 · · · 0 τm−1τm−1τm−2τm−3 · · · τ10].

(21)

and the m-th and 2m + 1-th columns of ∂
(m+1)
2 equal respectively the m-th

and τ times 2m-th columns of ∂
(m)
2 in the positions not involving the new rows

added.

Proof of lemma 1. It is a simple computation to verify the first step of
induction, i.e. the case m = 2.

From lemma 2 and its proof it follows by induction that the rows relative
to [εj(I2(m + 1))]0≤j≤m+1 give rise to a triangular matrix with pivots −1.

In order to compute the rows relative to [εj(I2(m + 1))]m+2≤j≤2m+1 we
notice that:

(bj − bj−1τ) : [

j−m−1
︷ ︸︸ ︷

0 · · · 0 τ j−m−1

2m+2−j
︷ ︸︸ ︷

0 · · · 0

j−m−2
︷ ︸︸ ︷

0 · · · 0 1

2m+1−j
︷ ︸︸ ︷

0 · · · 0 ]

(aj−m − aj−m+1τ) : [

j−m−1
︷ ︸︸ ︷

0 · · · 0 1

2m+2−j
︷ ︸︸ ︷

0 · · · 0

j−m−2
︷ ︸︸ ︷

0 · · · 0 −τ2m+2−j

2m+1−j
︷ ︸︸ ︷

0 · · · 0 ].

Then we have:

εj(I2(m + 1)) : [

j
︷ ︸︸ ︷

0 · · · 0 1 − τm+1

2m+1−j
︷ ︸︸ ︷

0 · · · 0 ]

for m + 2 ≤ j ≤ 2m + 1.
In the same way one computes the rows relative to [εj(I2(m+1))]2m+2≤j≤4m+3.
This completes the proof of lemma 1.

Remark 2 Let us consider any rank-1 local system over Y(I2(m)) with weights
τ1, · · · , τm or, more generally, a local system defined over Z[τ1, τ

−1
1 , · · · , τm, τ−1

m ].
Then the previous discussion can be easily extended to this case. One obtains
a matrix analog to D2, containing the parameters τ1, · · · , τm. By furthers

elementary transformations the matrix of ∂
(m)
2 becames
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



Im+1 0m+1,m−1

0(1,m+1) (1 − τ1τ3 · · · τm)(1 − τ1τ4 · · · τm) · · · (1 − τ1τm)(1 − τm)
0(m−1,m+1) Dm−1(1 −

∏m
i=1 τi)





where Im+1 is the identity.

Proof of proposition 1. We consider the indipendent rows of the matrix
D2 : the first 2m rows and the (4m − 3)-th.

With elementary transformations for the columns, we can reduce the first
m + 1 rows in a diagonal form with entries 1.

The proof ends if we observe that (1 − τ) divides (1 − τk) for k ≥ 1, then
with further elementary transformations the matrix

[
Dm−1(1 − τm)

(1 − τm−1) · · · (1 − τ)

]

becomes 








1 − τ O · · · 0
0 (1 − τm) · · · 0
...

...
. . .

...
0 0 · · · (1 − τm)
0 0 · · · 0










that is the claim
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