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On the Cohomology with local coefficients of
Pure Braid Groups

Simona Settepanella

Abstract

The need to calculate local system cohomolgy of the complement of
an hyperplane arrangement arises in various contexts. Nevertheless until
now very few it’s known on the direct computation of such cohomology.
In this paper the author describes all generators of the first homology
group of braid arrangement giving also a complete description of its
first characteristic variety, fulfilling results obtained by D. Cohen and
A. Suciu in [7]. Moreover she gives also a complete description of the first
characteristic variety in the case of the generalized braid arrangement
coming from the dihedral group.

Introduction

Let A = {Hi,...,H,} be a hyperplane arrangement in C!, with comple-
ment

n
M =MA)=C'\ | JH;
j=1
Let A = (A1,...,An) € C” be a collection of weights. Associated to A, we have
a rank one representation p : w1 (M) — C* given by ¢; — t; = exp(—2mi);) for
any meridian loop ¢; about the hyperplane H; of A, and an associated rank
one local system £ on M. The need to calculate the local system cohomology
H*(M; L) arises in various contexts. For instance, such local systems may be
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used to study the Milnor fiber of the non-isolated hypersurface singularity at
the origin obtained by coning the arrangement, see [6, 5]. In mathematical
physics, local systems on complements of arrangements arise in the Aomoto-
Gelfand theory of multivariable hypergeometric integrals [1, 11, 16] and the
representation theory of Lie algebras and quantum groups. These consider-
ations lead to solutions of the Knizhnik-Zamolodchikov differential equation
from conformal field theory, see [20, 23].

In light of these applications, and others, the cohomology H*(M(A), L)
has been the subject of considerable recent interest. Call the local system
L nonresonant if this cohomology is concentrated in dimension n, that is,
H¥(M(A),L) = 0 for k # n. Necessary conditions for vanishing, or non-
resonance, have been determined by a number of authors, including Esnault,
Schectman, and Viehweg [9], Kohno [12], and Schechtman, Terao, and Varchenko
[21].

In 1980, Orlik and Solomon gave a simple combinatorial description of
the k-algebra H*(X, k), for any field k: it is the quotient A = E/I of the
exterior algebra F on classes dual to the meridians, modulo a certain ideal
determined by the intersection poset, see [14, 15].

For each a € A! = k", the Orlik-Solomon algebra can be turned into a
cochain complex (A, a), with i-th term the degree i graded piece of A, and
with differential given by multiplication by a, cf. [24]. The resonance varieties
of A were defined in [10] to be the jumping loci for the cohomology of this
cochain complex:

RY(A) = {a € A* | dimy H'(A,a) > d}. (1)

The characteristic varieties of a space X are the jumping loci for the co-
homology of X with coefficients in rank 1 local systems:

Vi(X) = {t € Hom(m,(X),C*) | dim¢c H'(X,C¢) > d}, (2)

where C¢ denotes the abelian group C, with 71 (X )-module structure given by
the representation t: m(X) — C*.

Now suppose X is the complement of an arrangement of n hyperplanes. By
work of Arapura [2], the irreducible components of the characteristic varieties
of X are algebraic subtori of the character torus Hom(m (X),C*) = (C*),
possibly translated by unitary characters. It turns out that the tangent cone
at the origin to V}(X) coincides with the resonance variety R!(A), see [7,
13, 4]. Consequently, the resonance varieties are unions of linear subspaces;
moreover, the algebraic subtori in the characteristic varieties are determined
by the intersection lattice.

Until now there aren’t a lot of computational results about characteristic
varieties. Author considers the particular case given by the braid arrange-
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ments, i.e. arrangements A(W) obtained complexifying the reflection hyper-
planes related to a finite Coxeter system W.

These arrangements has been studied in a lot of occasion and their local
cohomologies are equivalent to the cohomologies of the pure braid groups or
pure Artin groups.

In this paper the author gives a complete description of generators of the
first homology group with local coefficients of the braid arrangement retrieving,
as consequence, the first characteristic variety of this arrangement. These
results agree with (partial) results obtained by D. Cohen and A. Suciu in [7].

The author concludes this first part with a conjecture about the charac-
teristic varieties of braid arrangement.

Moreover she computes in an original way the homology with local coeffi-
cients (equivalently the first characteristic variety) of the complement of the
arrangement A(Iz(m)). These results agree with the one in [7].

1. First characteristic variety of braid arrangement
1.1. Salvetti’s Complex for reflection arrangements.

Let W be a finite group generated by reflections in the affine space A™(R).
Let A(W) = {H,}jcs be the arrangement in A" defined by the reflection
hyperplanes of W. We need to recall briefly some notations and results from
[17] for the particular case of Coxeter arrangements, i.e. arrangements coming
from Coxeter Systems (W, S) (see [3]). A(W) induces a stratification S =
S(W) of A™ into facets (see [3]). The set S is partially ordered by F > F” iff
F’ C cl(F). We shall indicate by Q = Q(W) the cellular complex which is
dual to S. In a standard way, this can be realized inside A" by baricentrical
subdivision of the facets: inside each codimension j facet F7 of S choose one
point v(F7) and consider the simplexes

J J
S(F, - F9) = D Mw(F%) 1 Y A =1,M € [0,1]}
k=0 k

=0

where Fit+1 < Fik b =0,---,j—1. The dimension j cell e’ (FJ) which is dual
to F” is obtained by taking the union

Us(FO, .. Fi~1 )

over all chains 7 < F/1 < .- < FO. So Q = Ue/(FY), the union being over
all facets of S.
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One can think of the 1 — skeleton Q; as a graph (with vertex-set the 0 —
skeleton Qo) and can define the combinatorial distance between two vertices
v, v’ as the minimum number of edges in an edge-path connecting v and v'.

For each cell e/ of Q one indicates by V(e?) = Qg N e’ the 0-skeleton of
e’. One has that given a vertex v € Qg and a cell €' € Q, there is a unique
vertex w(v, e') € V(e') with the lowest combinatorial distance from v, i.e.:

d(v,w(v,e")) < d(v,v") if v' € V(e) \ {w(v,e")}.

If ¢/ C e then w(v,e’) = w(w(v,e’),e’).

Let now A(W) denote the complezification of A(W), and Y (W) = C"\
UjesHjc the complement of the complexified arrangement. Then Y (W) is
homotopy equivalent to the complex X(W) which is constructed as follows
(see [17]).

Take a cell ¢/ = e/ (F7) = Us(F°,--- | FI=1 FJ) of Q as defined above and
let v € V(e/). Embed each simplex s(FV,--- , F7) into C" by the formula

bue, (O Mv(FF)) =
k=0 ) ) (3)
S XNev(FF) +i Y p(w(v, eF) — v(FF)).
k=0 k=0

It is shown in [17] (see also [18]):
(i) the preceding formula defines an embedding of €’ into Y(W);
(ii) if B = EJ(v,e?) is its image, then varying e/ and v one obtains
a cellular complex
X(W) = UE7

which is homotopy equivalent to Y (W).

The previous result allows us to make cohomological computations over Y (W)
by using the complex X(W).

In [18] (see also [8]) the authors give a new combinatorial description of
the stratification S where the action of W is more explicit. They prove that
if S is the set of reflections with respect to the walls of the fixed base chamber
Co, then a cell in X(W) is of the form E = E(w,T') with ' C S and w € W.
The action of W is written as

o.E(w,T) = E(cw,T), (4)

where the factor o.w is just multiplication in W.



ON THE COHOMOLOGY 215

We prefer at the moment to deal with chain complexes and boundary
operator coming from X (W) instead of cochain and coboundary. Indeed we
will see that, in our case, it is simple to deduce cohomological results from
homological ones.

We define a rank-1 local system on Y (W) with coefficients in an unitary
ring A by assigning an unit 7; = 7(H;) (thought as a multiplicative operator)
to each hyperplane H; € A. Call 7 the collection of 7; and L the correspond-
ing local system. Let C(W, L7) be the free graduated A-module with basis
all E(w,T) (see [17]).

We use the natural identification between the elements of the group and
the vertices of Qg, given by w < w.vg. Here v, € Qq is contained in the fixed
base chamber Cj.

Then u(w,w’) will denote the “minimal positive path” joining the corre-
sponding vertices v and v" in the 1-skeleton X(W); of X(W) (see [17]).

The local system L= defines for each edge-path ¢ in X(W)q, ¢: w — w’ an
isomorphism ¢, : A — A such that for all d : w — w’ homotopic to ¢, c, = d,
and for all f:w” — w, (¢f)s = i fs.

Then the set {so(w).E(w,T")}pj=k, where so(w) := u(1,w).(1), is a linear
basis of Cy (W, L7).

Let now T = {wsw~!|s € S,w € W}, the set of reflections in W and

=i

= {S(w) = (silv"' ,Siq)|w = Siy "‘Siq S W},

then for each s(w) € W and t € T, we set

1) W(s(w)) = (tiy, - ts,) with t;, = (84, -+ 84, )85, (85, -+ 86,_,) €T

i) W(s(w )):{217"' g}

iit)n(w, t) = (—1)"E@)8 with n(s(w),t) = #{j|1 <j < q and t;;, = t}.
Moreover 1f t € T is the reflection relative to the hyperplane H, then we set
7(t) = 7(H).

We define

Ok (so(w).E(w,T)) =
Sy ()T (w, B)sy(wp).E(wp, T\ {o}). ()

o€l gewh e}

where 7(w,3) = ] 7(t), and u(T,o) =#{i € T}i < o}.
teW(s(w))
n(w,t)=1
Remark that the action (4) is extended to 7(w, ) in the obvious way

o.7(w,B) = 7(ocw, B). (6)
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This boundary map computes H.(X(W), L7). A similar result holds for
cohomology.

Moreover let Wr be the parabolic subgroup of W generated by I' and
W = {w € W|{(ws) > {(w) for all s € T'}. Each w € W can be write as a
product w = whwr with w' € W' and wr € Wr. From (5) it follows:

I(E(w,T)) = w".9(E(wr,T) (7)
where the action (4) is extended to C(W) by linearity.
1.2. Reduced boundary operator for Salvetti’s complex

Given the n-dimensional Salvetti’s complex C(W) associated to the com-
plexified arrangement A(W), we have an homotopically equivalent complex
C(W) obtained by C(W) simply contracting to a point the n-dimensional cell
E(1,S), where 1 € W is the identity and S is the system of generators of W.

This contraction is equivalent to contract to a point all 0-cells of C(W)
and all k-dimensional cells E(w,T) such that w € W',

Then, clearly, the new boundary operator d on this contracted complex
can be obtained by the old one contracting all k-dimensional cells E(w,T), for
k > 0, to 0, i.e. they disappear from the boundary, and all O-cells coincide
with the same 0-cell E(0).

In order to simplify computations, from now on we will deal with this new
contracted complex.

1.8. Generators of the first homology group with local coefficients of the
braid arrangement.

Let W = A,, be the symmetric group, then A(A,) is the braid arrange-
ment. The set of generators of A,, will be S = {s1,...,s,}.

In this paragraph we give a complete description of generators for the first
homology group Hi(Y (Ay), L).

Let us remark that the contracted 1-skeleton C';(A,) will be given by all
1-dimensional cells of the form E(ws;, {s;}) for w € W* and s; € S. While
the boundary of a 1-dimensional cell E(ws;, {s;}) will be:

OB (wsi, {si}) = (1 = Tws,w-1) E(0) (8)

where 7,,5,,-1 is the weight relative to the reflection hyperplane H,,,,—1 re-

lated to reflection ws;w!.
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Then the kernel of 9y can be represented as follow:

Let us define

cijw/ = E(w,{si}) — B(w', {s;}) if Tys,0-1 = Tw’s juw' =1

di’){w/ _ (1 . Tw’sjw’*l)E(w’ {Sz}) — (1 — Twsiwfl)E(w/’ {Sj}) if Tws;w—1 7é Tw! s jw’' =1
(9)

for 1 <1i,5 <n, w,w € Ay and l(ws;) < l(w), (w's;) < l(w’). They verify
the following relations:

e+l = e
O ' / (10)
ZZZ)dZ}{w, = (1 - Tw/sjw,fl)cz;){cUJ” + dﬁ;/]’,w/ if Tws;w' =1 = Tw" spw’ —1

w)(1 - Twlls’“w”_l)dilfw' + (1= Twsiw_l)d{;{iw” =(1- Tw’sj'w'_l)dit’)l,cw//

which are a complete system of relations, i.e. all relations verified by ci’){w,
and d"?

w,w’ "

By (8) all element in the kernel of dy are a combination of ¢>7 , and di’f;w,.

It follows that the kernel of 9 is generated by ¢t and d:vj

ww , with rela-
tions (10).

w

_Another interesting remark will simplify our computations: by (7) elements
wlw can be wrote as a sum of ¢ for t,t" € Wy, 5,3 and W, w’ € Wisissi},

C

,w't!

Moreover, by relation (10) ), we obtain that all c%ﬂt —, can be write as a sum

w’t
of elements ¢*_  such that @ = w'.
wt,w’t
Similarly, from (7) and (10) 1), i44), difw, are equivalents to a sum of gen-
erators of the form d%’tkm, and &Z’fm,, with ¢,t" € Wy, s,y and W € Wsnsi}
for some sy, s € Sy,

Then we can choose as representatives generators of the form %i,m/ and
1,5
wt,wt’ "
Moreover, using (4), it is possible to write the image of d; in terms of
these generators, computing generators of the first homology group and their
relations.
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_ Indeed, with the above notations, let E(w,{s;,s;}) be E(wt,{si,s;}) €
C(W) with j —i > 1, i.e. s; and s; commute. Then, by direct computations,
we obtain:

0 A
_ RN
Oy (E(@t, {s1.51) = § o
WS WSS,
i,J i,i i

WS, WS Cwsi,ﬁsj'si WS, WSiS;

While if s; = 5,41 then:

0, t=1
i,it1
W3, WS 415;8i41"
—eitbi t=s;
WS 41, WS 4158541 i+l
4% st _
WS, WSj415¢ WS, WSj415;8i4+1
i+1,%
WS§S;41,WS;j415;’
o l7,+1,z+1
W41, WS;S;41

t=s;

t = 8iSit+1

1,2 _
i:+_17ﬁsi+1sisi+1
) 7Y P ’Z — . .
al(E(wta {Si> si+1})) - WS;S;41,WS;415;’ t=8i+18i (12)
TﬁsisH_l s;w—1
i+1,1 _
WSi41,Ws4
7,7
d_sziﬁwsi+1 S'i+
7,14+
WS, WS 4157841
K3
)
WS;§8;41,WS;415;
fgirbEL T
WS4 1,WSiSi41
i+1,4
WSj41,WS;415i5i41"

t = 8iSi+15;

2
w,w’

The boundaries (11) and (12) give rise to new relations on cf;{w, and d
in the first homology group.
We will call commutative relations those in (11), non commutative relations
those in (12).

i,J i,
w,w’’? w,w’

Theorem 1 With the above motations all generators of type d

and ¢’ . ¢’ with | 5 —i |> 1, i.e. the commutative case, disappear in

w,w’? “w,w’

Hi(C(Ay), L).

Proof The proof come from the fact that, in the commutative case, all
generators d,’ , which Verify H(ws;) < l(w), l(w's;) < l(w') and ws;w™t #
w'sjw'™" are of the form d o, with i # j, for a fixed W € Wisisi},

Similarly all generators ci;{w, which verify l(ws;) < l(w), l(w's;) < I(w") and
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—1

ws;w™ ! = w's;w' ™!

for a fixed w € Wisissi},

But all these generators are on the image of d; (see (11)) and then are 0 in
homology. This conclude the proof O

are of the form ¢’

ﬁsi ,ESJ' Si

Theorem 2 With the above notations all generators in H,(C(Ay), L) are of
the form d !’ foric{l,...n—1} and w € Wisisit1},

WSi41,WS;

Proof By theorem 1 we have to deal only with generators coming from
the 1-boundary of the non commutative case (12). As in the proof of the-
orem 1 we have that, in the commutative case, all generators ¢/ , which

verify [(ws;) < l(w), l(w's;) < l(w') and ws;w™! = w'sjw'~" are of the form
i+l i1, i+l .
%Suﬁsulsiswl’ %Si+17ﬁsi+18i8i+1 or %3i5i+1;m5i+13'i' The first two are in the

image of 01 (see (12)) and then are 0 in the homology.
Similarly all generators d;’ , which verify l(ws;) < l(w), l(w's;) < l(w') and

w,w

I ro -1 i i+1,i+1 i+1,i
wsiw ™" # w's;w'™ " are of the form d;,, 7\ s Q) wsisiny OF Qs s,

By the above considerations on the ¢/ , and by (12) we have that the first

w,w
i+1,i

two elements are in the image of 0;, while the generator Cilis, 5141, Wsi 4150 is
equal, in H1(C(Ay), L), to Tﬁsisiﬂs@ad:{ifl ws, This conclude the proof

g

Clearly these generators are not free. Then we have to study all relations
for the d-f coming from (10).

WSi41,WS;

Example 1 In Aa, with generators S = {s1, s2}, we obtain that Hy(A(Az), L7)

is generated by di;?,, with the only relation (1 — Ty, Ts,Te, sy, )d8 2, =0 -

In this case the only generator dL2,  has to satisfies relation (10) iv),i.e.

81,82
2,1 1,1 2,1 _
(1 - TSlszsl)ds;,sl + (]- - Tsz)ds;,@sl - (1 - TSl)dS;,SQSl =0.
We have that dbl, = 421 and, by relation (10) iii), d2), . =
e have a 51,8081 — Tsi1s2s1Us) s, ANA, 0Y TeELQLION 1), A5} s0s1 —
2 1 - 1 p—
~ToyTsrs2s1 sy s, - Then we obtain (1 — Tq, T, Ty sy, )5 %5, = 0.

The boundary of an element E(w"wr,T") of the Salvetti’s complex strongly
depends on wr. Then the 2-boundary depends on Wy, .3, i.e. on the multi-
plicity m(s;, s;) which is the minimum integer such that si:s;n(s“sj)

[3])-

Then in A,, we have only two kind of relations, the ones coming from the

=1 (see
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boundary of copies of Ag, i.e. (12), and the others coming from the commu-
tative case m(s;, s;) = 2, i.e. (11).

In order to better understand the computations below it is important to
recall some basic facts on the Coxeter group A, which correspond to the
symmetric group S,,4+1 on n + 1 integers.

The generators S = {s1,...,s,} of A, correspond to transpositions s; =
(¢,7+ 1) and reflection hyperplanes correspond to elements w € A,, such that
w? =1, i.e. to transpositions (i,7) = $iSi+1 ... 8j—15;8j—1.--8i+185i.
Hyperplanes corresponding to commutative reflections are perpendicular.

In A, we have (Zﬁ) copies of Ay obtained considering all possible subsets
{i1,...yig4+1} C {1,...,n + 1}. The generators will be elements of order 2
which correspond to the k transpositions (4;,4,41).

Moreover each element of the symmetric group S, 41 acts on Ay in the obvious
way and, by (4) and (6), this action can be extended to generators dg;ljl s
and their relations. While (7) allows us to conclude that, if we have a relation
R on generators in Hy(C(Ay,), £) then these generators will verify all relation
coming from R by symmetries.

Example 2 By above considerations, we can notice that in A(As) we have
(é) copies of A(Az) which give rise to the same relations of A(Az2) and 16
new non commutative relations:

By theorem 2 we obtain four generators d}u’zhwm forw e Ag{sl’SZ}. By direct

computations we have two kind of relations. The first one:
(1 - 7-83)(7—315251 - T‘S25352)d;12,52 =0 (13)

coming from (10) iv) applied to the commutative case, i.e. the case in which
index i and k in (10) iv) verify | i — k |> 1. In this case by theorem 1 the
second element of the equality di;kw,, is 0.
The second one: 7

(1 = Toy Toa Ts1 5051 )i, = 0. (14)

51,52

coming from (10) iv) applied to the non commutative case.
Applying symmetries to these relations we obtain that in H1(C(Ags), L) we
have twelve relations of the form (13) and height of the form (14).

The interesting case is A4. Indeed by theorem 1 we know that if | j—i [> 1
then d’? ., € Imdy, i.e. it is 0 in homology. It follows that (10) 4v) applied

wt,wt’

to indices i = 1,j = 2,k = 4 gives rise to #A41°1°2%4} = 10 new relations of
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the form:
(1 - 7-11):3411)*1)(’{172 =0 (15)

ws1,ws2

for w € Agls15251}

Moreover generators of Hy(C(Ay4), £) have to satisfy relations of the form (13)
and (14). By direct computations it follows that all the above relations are
satisfied iff at list four weights 7,,,—1 relative to different hyperplanes are
equal to 1 and the remaining weights satisfy (13) and (14).

By direct computations (using symmetries) we have that this is possible iff
the remaining weights are related to a copy of Az in Ay (i.e. they are weights
of reflections hyperplanes in a copy of Ag) or to disjoint copies of Ag in Ay.
Then all relations involving generators of Hy(C(A4),L) comes from rela-
tions involving generators inside copies of Hy(C(As), L) and H1(C(Az), L)
in H1(C(A4),L). In order to better understand how to immerge copies of
H;(C(Ay), £) inside H1(C(An), L) for k < n see [22].

Theorem 3 With the above notations, all relations for generators in Hi(C(Ay), L)
are obtained by symmetries from relations of the form (13), (14) and (15).

Proof The proof follows noticing that in A(A,) for n > 4 all 3-uples of
hyperplanes which are not in the same copy of A(A4) are perpendiculars, i.e.
related to commutative reflections.

Then there aren’t new relations except the ones of the form (13), (14) and
(15) O

1.4. The first characteristic variety of braid arrangement

As seen in the introduction, the characteristic varieties of a space X are
the jumping loci for the cohomology of X with coefficients in rank 1 local
systems:

Vi(X) = {t € Hom(m (X),C*) | dim¢ H*(X,Cy) > d}, (16)

where Cy denotes the abelian group C, with 71 (X )-module structure given by
the representation t: m1(X) — C*.

Here X is the complement Y (A,) of the braid arrangement A,, and L is
the rank one local system.

In [7] D. Cohen and A. Suciu compute the first central characteristic subva-
riety of the braid arrangement, i.e. the subvariety consisting of all irreducible
components of the characteristic variety V' passing through 1. We can now
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complete their work.

Let us remark that, with the notations used in (5), the coboundary operator
on the Salvetti’s complex for Coxeter arrangements is defined as:

di(so(w).E(w,T)) =
Z Z (=1)!O+rT) 7 (w, B)so(wB).E(wB, T U {o}).

oc€S\I BEWT ¢ 4

As simple consequence the coboundary matrix on C(W) is simply the
transpose of the boundary matrix on C(W). It follows that all relations be-
tween weights which change the dimension of the first homology group, will
change also the dimension of the first cohomology one.

Let W = A,, be the symmetric group and A(A,,) the braid arrangement.
Given 7 € (C*)"("*1/2 collection of unit 7; = 7(H,) for each H; € A(A,),
a 3-uple (7i,,Ti,, Tiy) is of type Ag if the sub-arrangement {H;,, H;,, H;,} C
A(A,) is a copy of A(Az2); a 6-uple is of type Ag if it is related to a sub-
arrangement which is a copy of Ag.

Let us define for all 0 € A,

(1 = 0.7, ) (0.Tsy 555, — O-Tspszss) =0 (17)

(1 = 0.75,0.T5,0.Tsy 505,) =0 (18)

where the action of o is defined in (6).

Theorem 4 A collection of unit 7 € (C*)*("*1)/2 js in the first characteristic
variety of the braid arrangement Ay, iff one of the following assertion is true:

i) there are one or more disjoint 3-uples of type Ao which verify relations
(18) and all other entries are 1;

it) there are one or more disjoint 6-uples of type As which verify relations
(18), (17) and all other entries are 1;

iii) there are one or more disjoint 6-uples of type As and 3-uples of type
Ao which wverify, respectively, relations (18), (17) and relations (18) and all
other entries are 1.

Proof The proof comes directly from theorem 3 (]
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Remark 1 An interesting remark is that all computations in this section are
related to the multiplicity m(s;,s;) of generators in the Coxeter group W.
Then they can be performed for all Coxeter group in a similar way. We leave
such computations to the interested reader.

Conjecture: In [22] the author considers the cohomology of the comple-
ment of braid arrangements with coefficients in the module R = Q[r,77}]
proving that these cohomologies stabilize, with respect to the natural inclu-
sion, at some number of copies of the trivial R-module Q. In particular:

Denote by ¢; the cyclotomic polynomial having as roots the primitive i-
roots of 1 and let

{wi} = Qlr, 71/ (:) = Ql7)/(¢2)
be the cyclotomic field of i-roots of 1, thought as R-module, then
Hk(Y(An)v Rr) = {1}

forall k <g+1and n>3q+1.

Our conjecture is that there is an analogous of this theorem also for coho-
mologies in a generic rank 1 local system £. More precisely the characteristic
variety V¥(Y(Ay,)) is completely determinate by the characteristic varieties
VE(Y(Aum)) for m < n when n > 3k. Theorem 4 proves that this conjecture
is true at list for the first characteristic variety.
This conjecture motivated also studied in [19].

2. CaskE Ix(m), m > 2
Let Z be Z[r, 7], we begin with the following

Theorem 5

T
&
3
&
I

Z/ (1) ®ijm 12/ (0i)]" 2

All other cohomologies are 0

In order to give a proof of our claim we find more convenient (as we did in
the previous chapters) to use the boundary operator instead of co-boundary.
Of course, these are given by the transposed matrices.

Recall that rkCo(Iz(m)) = rkCa(I2(m)) = 2m and rkCy (Ia(m)) = 4m.
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It is very easy to see that
H°(12(m), Z,) = 0 and Ho(I2(m), Z,) = Z/(¢1).

It follows in particular that the 1-boundary 9; of C,(I2(m)) is equivalent,
up to integral base-changes, to the diagonal matrix

Dy = diag([11*™71, ¢1) (19)

n—times
where [a]” =@, - ,a.
Theorem 5 clearly follows from 19 end next proposition 1.

Proposition 1 There are bases for Ca(Ia(m)) and C1(I2(m)) such that Os is
equivalent to the diagonal matriz

Dy = diag([1]™ o1, [[[ il ™2)

i|m
We start by introducing some useful notations:
j—times
o w; = prod;(s1, sy) = 515351 -~ 5, i=1 if j is odd i=2 otherwise.
o {fi = E(w;,T")}o<j<om—1 with | I' |= 2 a basis for Ca(I2(m))
o {ef=E(w;, I}, _ 1.2 with T'; = {s;} a basis for C; (Iz(m)).
0<j<2m-1
Then we define, for 0 < j <2m — 1
a_:{e} ifjisoddor(). b_:{e? ifjisoddor()'
J e? if jis even and j # 0 J e; if jis even and j # 0
Notice that the a;’s and b;’s take each 1 cell of the complex once.

Example 3 In the case of I3(3) = Ag we have the following picture:

We construct a new basis for C(I2(m)) as follows:

aj, f0<j<m _

(bj = bj—17) = (@j—m — QGj—my17)T? ",

ifm+1<j5j<2m-—-1

(aj—m+3 — aj—m+4) — (@j—2m+2 — Gj—2m+3T)

if2m < j < 3m-—3 _

€ = (bj—2m+3T — bj—2m+a) — (bj—3mt4 — bj—3m3)7I 73M T4 (20)
if3m—2<j<4m-5

am+1+ao, if j=4m —4

b+ it a; — Ty it oay, ifj=4m —3

bo+ [ao — Yim b by + T bl if = 4m — 2

bm—1—lao — ZI":EI a;i +Ty a5}, ifj=4m—1.

j—2m+2
T m+’
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Figure 1: case I5(3)

Our aim is to prove that:

Lemma 1 With respect to the basis 20 the matriz of O2(I2(m)) becomes:
Am+l B(m+1,m71)

O(mfl,m+1) Dm—l(l - Tm)
Om—2,m+1) Om—2,1)Dm—2(1 —7™)
D, Om-2,m+1) Om—2,1)Dm—2(1 —7™)
O(1,m+1) (=711 —-7)
O(1,m+1) (1—7m" 1) (1-1)
0(1,m+1) (1T—rm1h--(1-7)
O(1,m+1) O1,m—1)

where Dy (1 —7™) is a hx h diagonal matriz with entries (1 —7™) and At
18 triangular with pivots —1.

In order to prove this lemma we will use induction. We need the following:

Lemma 2 The matriz 0, (mt1) . 9, (I2(m + 1)) is obtained by adding to the
matrix 8§m) = 02 (I2(m)) two columns and four rows and multipling by T the
entries (8§m))i,j form<j<2m—-1and1<i<2m—2,i=4m —1,4m.

Proof. Geometrically, A(Iz(m + 1)) is obtained by adding an hyperplane
to A(I2(m)). This is equivalent to add the columns relative to the 2-cells fp,—1
and fy,, at places m and 2m + 1, and the rows relative to the 1-cells b,,_1,
Gy bom and agy,+1 at palces 2m — 1, 2m, 4m + 1 and 4m + 2.
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By an easy computation we can see that

m m—+1
—~N=
(8§m+1))2m71: ]_]_007—]
m—+1
—~
@O Nz = [1—7 =72 =710 0 1] 21
. n (21)
m
(6§ +1))2m:[0...0_1_7-..._7—0}

(8§m+1))4m+1 = me_le_le_QTm_3 ---710].

and the m-th and 2m + 1-th columns of 8§m+1) equal respectively the m-th

and 7 times 2m-th columns of a§m> in the positions not involving the new rows
added.

Proof of lemma 1. It is a simple computation to verify the first step of
induction, i.e. the case m = 2.

From lemma 2 and its proof it follows by induction that the rows relative
to [gj(I2(m + 1))]o<j<m+1 give rise to a triangular matrix with pivots —1.

In order to compute the rows relative to [g;(I2(m + 1))|mt2<j<om+1 We
notice that:

j—m—1 2m+2—j j—m—2 2m+1—j
~— T,
(b —bj_17):[0---0 7 0--00---010---0]

j—m—1 2m+42—3575j—m—2 2m+1—j
~ N 2m42—; —~
(@j—m — @j—mt17) : [0---01 0---0 0---0 —7 70---0].

Then we have:
J 2m—+1—j
—~
gi(Ia(m+1)):[0---01 —7"F1 0...0]

form+2<j<2m+1.
In the same way one computes the rows relative to [e;(I2(m+1))]2mt2<j<am+3-
This completes the proof of lemma 1.

Remark 2 Let us consider any rank-1 local system overY (Ia(m)) with weights

T1, "+ s Tm 0T, more generally, a local system defined over Z|ry, Tfl, e T Tk
Then the previous discussion can be easily extended to this case. One obtains
a matriz analog to Do, containing the parameters Ty,--- ,Tpm. By furthers

elementary transformations the matriz of 8§m) becames
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Im+1 0m+1,m—1
O(1,m+1) (I—mn7g-Tm)(L=m17g Tim) - (L = 117 (1 — 7o)
0(m—1,m+1) Dmfl(]- - HZI Ti)

where I, 11 is the identity.

Proof of proposition 1. We consider the indipendent rows of the matrix
Dy : the first 2m rows and the (4m — 3)-th.

With elementary transformations for the columns, we can reduce the first
m ~+ 1 rows in a diagonal form with entries 1.

The proof ends if we observe that (1 — 7) divides (1 — 7%) for & > 1, then
with further elementary transformations the matrix

Dm,1(1 — ’Tm)
1—7mY.. (1-71)
becomes
1—7 0] 0
0 (I—=7m) - 0
0 0 (1—7m)
0 0 0

that is the claim
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