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Idempotent Pre-Generalized
Hypersubstitutions of Type τ = (2, 2) ∗

W. Puninagool and S. Leeratanavalee

Abstract

The concept of idempotent elements plays an important role in semi-
group theory and semiring theory. In this paper we characterize idem-
potent pre-generalized hypersubstitutions of type τ = (2, 2).

1 Introduction

The concept of generalized hypersubstitutions was introduced by S. Leer-
atanavalee and K. Denecke [6]. They used it as a tool to study strong hyper-
identities and used strong hyperidentities to classify varieties into collections
called hypervarieties. Varieties which are closed under arbitrary application
of generalized hypersubstitutions are called strongly solid.

A generalized hypersubstitution is a mapping σ which maps each ni-
ary operation symbol of type τ to a term of this type in Wτ (X) the set of all
terms of type τ built up by operation symbols from {fi|i ∈ I} and variables
from X := {x1, x2, x3, . . .} which does not necessarily preserve the arity. They
denoted the set of all generalized hypersubstitutions of type τ by HypG(τ). To
define the binary operation on HypG(τ), firstly they defined inductively the
concept of superposition of terms Sm : Wτ (X)m+1 → Wτ (X) by the following
steps:

for any term t ∈ Wτ (X),
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(i) if t = xj , 1 ≤ j ≤ m, then
Sm(xj , t1, . . . , tm) := tj where t1, . . . , tm ∈ Wτ (X),

(ii) if t = xj , m < j ∈ IN, then
Sm(xj , t1, . . . , tm) := xj ,

(iii) if t = fi(s1, . . . , sni), then
Sm(t, t1, . . . , tm) := fi(Sm(s1, t1, . . . , tm), . . . , Sm(sni , t1, . . . , tm)).

They extended a generalized hypersubstitution σ to a mapping σ̂ :
Wτ (X) → Wτ (X) inductively defined as follows:

(i) σ̂[x] := x ∈ X ,

(ii) σ̂[fi(t1, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation
symbol fi where σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then they defined a binary operation ◦G on HypG(τ) by σ1◦Gσ2 := σ̂1◦
σ2 where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ).
Let σid be the identity hypersubstitution which maps each ni-ary operation
symbol fi to the term fi(x1, . . . , xni). They proved the following propositions.

Proposition 1.1 ([6]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for ar-
bitrary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)ˆ= σ̂1 ◦ σ̂2.

Proposition 1.2 ([6]) HypG(τ ) = (HypG(τ ); ◦G, σid) is a monoid and the
monoid Hyp(τ) = (Hyp(τ); ◦h, σid) of all arity preserving hypersubstitutions
of type τ forms a submonoid of HypG(τ ).

In this paper we want to characterize idempotent pre-generalized hy-
persubstitutions of type τ = (2, 2).

Firstly, we introduce some notations. For t ∈ W(2,2)(X), we consider :
leftmost(t) := the first variable (from the left) which occurs in t,
rightmost(t) := the last variable which occurs in t,
var(t) := the set of all variables occurring in t,
ops(t) := the set of all operation symbols occurring in t,
op(t) := the number of all operation symbols occurring in t,
firstops(t) := the first operation symbol (from the left) which occurs

in t.
Now we assume that F is a variable over the two-element alphabet

{f, g}. For an arbitrary term t of type τ = (2, 2), we define two semigroup
words Lp(t) and Rp(t) over the alphabet {f, g} inductively as follows :
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(i) if t = F (xi, t2) where t2 ∈ W(2,2)(X), xi ∈ X , then Lp(t) := F ,

(ii) if t = F (t1, xi) where t1 ∈ W(2,2)(X), xi ∈ X , then Rp(t) := F ,

(iii) if t = F (t1, t2) where t1, t2 ∈ W(2,2)(X), then Lp(t) := F (Lp(t1)) and
Rp(t) := F (Rp(t2)).

As an example, let t, t1, t2 ∈ W(2,2)(X) where t1 = f(x1, g(x3, x4)),
t2 = g(f(x1, x2), f(x1, x5)) and t = f(t1, t2), then Lp(t1) = f , Rp(t1) = fg,
Lp(t2) = gf , Rp(t2) = gf , Lp(t) = ff and Rp(t) = fgf .

2 Pre-Generalized Hypersubstitutions

In [2], K. Denecke and Sh. L. Wismath studied M -hyperidentities and M -
solid varieties based on submonoids M of the monoid Hyp(τ). They defined
a number of natural such monoids based on various properties of hypersub-
stitutions. In the similar way, we can define these monoids for generalized
hypersubstitutions of type τ = (2, 2).

Definition 2.1 Let τ = (2, 2) be a type with the binary operation symbols f
and g. Any generalized hypersubstitution σ of type τ = (2, 2) is determined by
the terms t1, t2 in W(2,2)(X) to which its maps the binary operation symbols
f and g, denoted by σt1,t2 .

(i) A generalized hypersubstitution σ of type τ = (2, 2) is called a projection
generalized hypersubstitution if the terms σ(f) and σ(g) are variables,
i.e. {σ(f), σ(g)} ⊆ {xi ∈ X |i ∈ IN}. We denote the set of all pro-
jection generalized hypersubstitutions of type τ = (2, 2) by PG(2, 2), i.e.
PG(2, 2) := {σxi,xj |i, j ∈ IN, xi, xj ∈ X}.

(ii) A generalized hypersubstitution σ of type τ = (2, 2) is called a weak pro-
jection generalized hypersubstitution if the terms σ(f) or σ(g) belongs
to {xi ∈ X |i ∈ IN}. We denote the set of all weak projection generalized
hypersubstitutions of type τ = (2, 2) by WPG(2, 2).

(iii) A generalized hypersubstitution σ of type τ = (2, 2) is called a pre-
generalized hypersubstitution if the terms σ(f) and σ(g) are not be-
long to {xi ∈ X |i ∈ IN}. We denote the set of all pre-generalized hy-
persubstitutions of type τ = (2, 2) by PreG(2, 2), i.e. PreG(2, 2) :=
HypG(2, 2) \ WPG(2, 2).

In [5], S. Leeratanavalee proved already that for any type τ , the set
PG(τ) ∪ {σid} and PreG(τ) are submonoids of HypG(τ). It is easy to see
that WPG(τ) ∪ {σid} is a submonoid of HypG(τ), and PG(τ) ∪ {σid} forms a
submonoid of WPG(τ) ∪ {σid}.
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3 Idempotent Elements of PreG(2, 2)

For any semigroup S, x ∈ S is called an idempotent element of S if xx = x.
It is obvious that every projection generalized hypersubstitution is

idempotent and σid is also idempotent. In [7], the authors characterized
all idempotent generalized hypersubstitutions of type τ = (2) and S. Leer-
atanavalee characterized idempotent generalized hypersubstitutions of the set
WPG(2, 2) ∪ {σid}, see [4].

In this Section, we consider the idempotent elements in PreG(2, 2).
We have the following propositions.

Proposition 3.1 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2). Then σt1,t2 is idempotent if and only if σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2.

Proof. Assume that σt1,t2 is idempotent, i.e. σ2
t1,t2 = σt1,t2 . Then

σ̂t1,t2 [t1] = σ̂t1,t2 [σt1,t2(f)] = σ2
t1,t2(f) = σt1,t2(f) = t1.

Similarly, we get σ̂t1,t2 [t2] = σ̂t1,t2 [σt1,t2(g)] = σ2
t1,t2(g) = σt1,t2(g) = t2.

Conversely, let σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2. Since σ̂t1,t2 [t1] = t1, then

(σt1,t2 ◦G σt1,t2)(f) = σ̂t1,t2 [σt1,t2(f)] = σ̂t1,t2 [t1] = t1 = σt1,t2(f).

Similarly, since σ̂t1,t2 [t2] = t2, then

(σt1,t2 ◦G σt1,t2)(g) = σ̂t1,t2 [σt1,t2(g)] = σ̂t1,t2 [t2] = t2 = σt1,t2(g).

Thus σ2
t1,t2 = σt1,t2 .
Now we assume that t1, t2 ∈ W(2,2)(X) where op(t1) = 1, op(t2) = 1,

σ̂t1,t2 [t1] = t1, firstops(t1) = g and firstops(t2) = f . Then t1 and t2 have the
forms t1 = g(xi, xj), t2 = f(xk, xl) where i, j, k, l ∈ IN and xi, xj , xk, xl ∈ X .
Since

t1 = σ̂t1,t2 [t1] = S2(σt1,t2(g), xi, xj) = S2(t2, xi, xj),

it follows that firstops(t1) = f . This is a contradiction and implies that if
σt1,t2 is idempotent, then the case firstops(t1) = g and firstops(t2) = f is
impossible.

Then we will consider the following cases:
Case 1. firstops(t1) = f and firstops(t2) = f .
Case 2. firstops(t1) = g and firstops(t2) = g.
Case 3. firstops(t1) = f and firstops(t2) = g.

For the three possible cases, we have the following results:

Proposition 3.2 Let t1 = f(xi, xj) and t2 = f(xk, xl) with i, j, k, l ∈ IN
and xi, xj , xk, xl ∈ X. Then σt1,t2 is idempotent if and only if the following
conditions hold:
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(i) If x1 ∈ var(t1), then xi = x1 and if x2 ∈ var(t1), then xj = x2.

(ii) If xi = xj = x1 or xi = xj = x2, then xk = xl.

(iii) If xi = x1 and j > 2, then xl = xj .

(iv) If i > 2 and xj = x2, then xk = xi.

(v) If i, j > 2, then xk = xi and xl = xj .

Proof. Assume that σt1,t2 is idempotent, thus σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =
t2. Then we obtain the equations S2(t1, xi, xj) = t1 and S2(t1, xk, xl) = t2.

(i) Assume that x1 ∈ var(t1). Suppose that xi �= x1. Then we have to
replace x1 in the term t1 by xi and then we conclude that S2(t1, xi, xj) �= t1.
Hence xi = x1. By the same way we can prove that if x2 ∈ var(t1), then
xj = x2.

(ii) Assume that xi = xj = x1. From S2(t1, xk, xl) = t2, thus
S2(f(x1, x1), xk, xl) = f(xk, xl) and then f(xk, xk) = f(xk, xl). Hence xk =
xl. By the same way we can prove that if xi = xj = x2, then xk = xl.

(iii) Assume that xi = x1 and j > 2. From S2(t1, xk, xl) = t2,
thus S2(f(x1, xj), xk, xl) = f(xk, xl) and then f(xk, xj) = f(xk, xl). Hence
xl = xj .

(iv) Assume that i > 2 and xj = x2. From S2(t1, xk, xl) = t2,
thus S2(f(xi, x2), xk, xl) = f(xk, xl) and then f(xi, xl) = f(xk, xl). Hence
xk = xi.

(v) Assume that i, j > 2. From S2(t1, xk, xl) = t2, thus
S2(f(xi, xj), xk, xl) = f(xk, xl) and then f(xi, xj) = f(xk, xl). Hence xk = xi

and xl = xj .
Conversely, assume that (i), (ii), (iii), (iv) and (v) hold.

Hence σt1,t2 ∈ {σf(x1,x1),f(xk,xk), σf(x1,x2),f(xk,xl), σf(x1,xj),f(xk,xj), σf(x2,x2),f(xk,xk),
σf(xi,x2),f(xi,xl), σf(xi,xj),f(xi,xj)|i, j, k, l ∈ IN, i, j > 2 and xi, xj , xk, xl ∈ X}.
It is easy to check that all these generalized hypersubstituitions are idempo-
tent.

From Proposition 3.2 we obtain a similar result which solves the Case 2.

Proposition 3.3 Let t1 = g(xi, xj) and t2 = g(xk, xl) with i, j, k, l ∈ IN
and xi, xj , xk, xl ∈ X. Then σt1,t2 is idempotent if and only if the following
conditions hold:

(i) If x1 ∈ var(t2), then xk = x1 and if x2 ∈ var(t2), then xl = x2.

(ii) If xk = xl = x1 or xk = xl = x2, then xi = xj .

(iii) If xk = x1 and l > 2, then xj = xl.
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(iv) If k > 2 and xl = x2, then xi = xk.

(v) If k, l > 2, then xi = xk and xj = xl.

Proof. The proof is similar to the proof of Proposition 3.2.
For the Case 3. we have the following result:

Proposition 3.4 Let t1 = f(xi, xj) and t2 = g(xk, xl) with i, j, k, l ∈ IN
and xi, xj , xk, xl ∈ X. Then σt1,t2 is idempotent if and only if the following
conditions hold:

(i) If xi = x2, then xj = x2.

(ii) If xk = x2, then xl = x2.

(iii) If i > 2, then xj �= x1.

(iv) If k > 2, then xl �= x1.

Proof. Assume that σt1,t2 is idempotent, thus σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =
t2. Then we obtain the equations S2(t1, xi, xj) = t1 and S2(t2, xk, xl) = t2.

(i) Assume that xi = x2. From S2(t1, xi, xj) = t1, thus S2(f(x2, xj), x2, xj) =
f(x2, xj). Hence xj = x2.

(ii) The proof is similar to the proof of (i).
(iii) Assume that i > 2 and suppose that xj = x1.

Thus S2(t1, xi, xj) = S2(f(xi, x1), xi, x1) = f(xi, xi) �= f(xi, x1) = t1, which
is a contradiction. Hence xj �= x1.

(iv) The proof is similar to the proof of (iii).
Conversely, assume that (i), (ii), (iii) and (iv) hold.

Hence σt1,t2 ∈ {σf(x1,xj),g(x1,xl), σf(x1,xj),g(x2,x2), σf(x1,xj),g(xk,xm), σf(x2,x2),g(x1,xl),
σf(x2,x2),g(x2,x2), σf(x2,x2),g(xk,xm), σf(xi,xp),g(x1,xl), σf(xi,xp),g(x2,x2), σf(xi,xp),g(xk,xm)

|i, j, k, l, m, p ∈ IN, i, k > 2, m, p �= 1 and xi, xj , xk, xl, xm, xp ∈ X}. It is easy
to check that all these generalized hypersubstituitions are idempotent.

To consider the next cases, we first give the following definitions and
some lemmas.

Definition 3.5 For x1 ∈ X (x2 ∈ X), we define WG
(2,2)({x1}) (WG

(2,2)({x2}))
by WG

(2,2)({x1}) := {t ∈ W(2,2)(X)|x1 ∈ var(t), x2 /∈ var(t)}
(WG

(2,2)({x2}) := {t ∈ W(2,2)(X)|x2 ∈ var(t), x1 /∈ var(t)}).

Definition 3.6 Let t ∈ WG
(2,2)({x1}) or t ∈ WG

(2,2)({x2}). Then we define

(i) t1 := t.
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(ii) tn := S2(t, tn−1, tn−1) if n > 1.

(iii) tnxi
:= S2(tn, xi, xi) if xi ∈ X, n ∈ IN.

For t ∈ W(2,2)(X), we denote the number of symbols occurring in the semi-
group word Lp(t) (Rp(t)) by length(Lp(t)) (length(Rp(t))).

Lemma 3.7 Let t1, t2, t ∈ W(2,2)(X) and xi ∈ X for all i ∈ IN. Then the
following conditions hold:

(i) If t1 = f(x1, t) ∈ WG
(2,2)({x1}), then σ̂t1,t2 [tn1 ] = tn1 and σ̂t1,t2 [t1n

xi
] = t1

n
xi

for all n ∈ IN.

(ii) If t1 = f(t, x2) ∈ WG
(2,2)({x2}), then σ̂t1,t2 [tn1 ] = tn1 and σ̂t1,t2 [t1n

xi
] = t1

n
xi

for all n ∈ IN.

(iii) If t2 = g(x1, t) ∈ WG
(2,2)({x1}), then σ̂t1,t2 [tn2 ] = tn2 and σ̂t1,t2 [t2n

xi
] = t2

n
xi

for all n ∈ IN.

(iv) If t2 = g(t, x2) ∈ WG
(2,2)({x2}), then σ̂t1,t2 [tn2 ] = tn2 and σ̂t1,t2 [t2n

xi
] = t2

n
xi

for all n ∈ IN.

Proof. (i) Assume that t1 = f(x1, t) ∈ WG
(2,2)({x1}). We first show that

σ̂t1,t2 [tn1 ] = tn1 by induction on n ∈ IN. For n = 1, since t1 ∈ WG
(2,2)({x1}),

thus σ̂t1,t2 [t
1
1] = σ̂t1,t2 [t1] = σ̂t1,t2 [f(x1, t)] = S2(t1, x1, σ̂t1,t2 [t]) = t1 = t11.

Assume that σ̂t1,t2 [t
k−1
1 ] = tk−1

1 . Thus σ̂t1,t2 [tk1 ] = σ̂t1,t2 [S2(t1, tk−1
1 , tk−1

1 )] =
S2(σ̂t1,t2 [t1], σ̂t1,t2 [t

k−1
1 ], σ̂t1,t2 [t

k−1
1 ]) = S2(t1, tk−1

1 , tk−1
1 ) = tk1 . Hence σ̂t1,t2 [tn1 ] =

tn1 for all n ∈ IN. Let n ∈ IN. From σ̂t1,t2 [tn1 ] = tn1 , thus σ̂t1,t2 [t1n
xi

] =
σ̂t1,t2 [S2(tn1 , xi, xi)] = S2(σ̂t1,t2 [tn1 ], xi, xi) = S2(tn1 , xi, xi) = t1

n
xi

.
The proof of (ii), (iii) and (iv) are similar to the proof of (i).
If op(t1) = 1 and op(t2) > 1 or op(t1) > 1 and op(t2) = 1, then we have

Lemma 3.8 Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2).
Then the following conditions hold:

(i) If op(t1) = 1 and op(t2) > 1, then σ̂t1,t2 [t1] = t1 if and only if
t1 ∈ {f(x1, xi), f(x2, x2), f(xj , xk)|i, j, k ∈ IN, j > 2, k �= 1 and xi, xj , xk ∈
X}.

(ii) If op(t1) > 1 and op(t2) = 1, then σ̂t1,t2 [t2] = t2 if and only if
t2 ∈ {g(x1, xi), g(x2, x2), g(xj , xk)|i, j, k ∈ IN, j > 2, k �= 1 and xi, xj , xk ∈
X}.
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Proof. (i) Let op(t1) = 1 and op(t2) > 1 and assume that σ̂t1,t2 [t1] = t1. If
t1 = g(xi, xj) where i, j ∈ IN and xi, xj ∈ X , then σ̂t1,t2 [t1] = S2(t2, xi, xj) �=
t1 because of op(t2) > 1, which is a contradiction. If t1 = f(x2, x1), then
σ̂t1,t2 [t1] = S2(t1, x2, x1) = f(x1, x2) �= t1, which is a contradiction. If
t1 = f(xi, x1) where i ∈ IN, i > 2 and xi ∈ X , then σ̂t1,t2 [t1] = S2(t1, xi, x1) =
f(xi, xi) �= t1, which is a contradiction. If t1 = f(x2, xi) where i ∈ IN, i > 2
and xi ∈ X , then σ̂t1,t2 [t1] = S2(t1, x2, xi) = f(xi, xi) �= t1, which is a contra-
diction. Thus t1 ∈ {f(x1, xi), f(x2, x2), f(xj , xk)|i, j, k ∈ IN, j > 2, k �= 1 and
xi, xj , xk ∈ X}. Conversely, we can check easily that all of generalized hyper-
substitutions σt1,t2 where t1 ∈ {f(x1, xi), f(x2, x2), f(xj , xk)|i, j, k ∈ IN, j >
2, k �= 1 and xi, xj , xk ∈ X} we have σ̂t1,t2 [t1] = t1.

(ii) The proof is similar to the proof of (i).
Lemma 3.8 shows that we have to consider the following cases if op(t1) = 1

or op(t2) = 1:
Case 1. op(t1) = 1 and op(t2) > 1,
Case 1.1 firstops(t2) = f ,
Case 1.2 firstops(t2) = g,

Case 2. op(t1) > 1 and op(t2) = 1,
Case 2.1 firstops(t1) = f ,
Case 2.2 firstops(t1) = g.

It is clear that Case 1.1 and Case 2.2 as well as Case 1.2 and Case 2.1 are
similar. We consider at first the Case 1.2 and obtain:

Proposition 3.9 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2). If op(t1) = 1, op(t2) > 1 and t2 = g(k1, k2) with k1, k2 ∈ W(2,2)(X),
then σt1,t2 is idempotent if and only if t1 ∈ {f(x1, xi), f(x2, x2), f(xj , xk)|i, j, k ∈
IN, j > 2, k �= 1 and xi, xj , xk ∈ X} and the following conditions hold:

(i) x1 /∈ var(t2) or x2 /∈ var(t2).

(ii) If x1 /∈ var(t2) and x2 ∈ var(t2), then t2 = g(k1, x2).

(iii) If x2 /∈ var(t2) and x1 ∈ var(t2), then t2 = g(x1, k2).

Proof. Assume that σt1,t2 is idempotent. Since σ̂t1,t2 [t1] = t1, thus by Lemma
3.8 we have t1 ∈ {f(x1, xi), f(x2, x2), f(xj , xk)|i, j, k ∈ IN, j > 2, k �= 1 and
xi, xj , xk ∈ X}. Suppose that x1, x2 ∈ var(t2). Since σ̂t1,t2 [t2] = t2, thus
we obtain the equation t2 = S2(t2, σ̂t1,t2 [k1], σ̂t1,t2 [k2]). Since op(t2) > 1,
thus k1 /∈ X or k2 /∈ X . This implies that σ̂t1,t2 [k1] /∈ X or σ̂t1,t2 [k2] /∈ X .
Since x1, x2 ∈ var(t2) and σ̂t1,t2 [k1] /∈ X or σ̂t1,t2 [k2] /∈ X , thus op(t2) <
op(S2(t2, σ̂t1,t2 [k1], σ̂t1,t2 [k2])) which contradicts to t2 = S2(t2, σ̂t1,t2 [k1], σ̂t1,t2 [k2]).
Hence x1 /∈ var(t2) or x2 /∈ var(t2). If x1 /∈ var(t2) and x2 ∈ var(t2), then
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from t2 = S2(t2, σ̂t1,t2 [k1], σ̂t1,t2 [k2]) there follows t2 = g(k1, x2). Similarly, for
x2 /∈ var(t2) and x1 ∈ var(t2) we have t2 = g(x1, k2).

Conversely, we can check that all these generalized hypersubstitutions
which satisfy the conditions of being idempotent by using Lemma 3.7.

From Proposition 3.9 we obtain a similar result which solves the Case 2.1.

Proposition 3.10 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2). If op(t1) > 1, op(t2) = 1 and t1 = f(k1, k2) with k1, k2 ∈ W(2,2)(X),
then σt1,t2 is idempotent if and only if t2 ∈ {g(x1, xi), g(x2, x2), g(xj , xk)|i, j, k ∈
IN, j > 2, k �= 1 and xi, xj , xk ∈ X} and the following conditions hold:

(i) x1 /∈ var(t1) or x2 /∈ var(t1).

(ii) If x1 /∈ var(t1) and x2 ∈ var(t1), then t1 = f(k1, x2).

(iii) If x2 /∈ var(t1) and x1 ∈ var(t1), then t2 = f(x1, k2).

Proof. The proof is similar to the proof of Proposition 3.9.
For the Cases 1.1 and 2.2 we obtain the following necessary condition for

the idempotency of σt1,t2 :

Lemma 3.11 Let σt1,t2 be an idempotent generalized hypersubstitution of type
τ = (2, 2) and op(t1) = 1, op(t2) > 1 and t2 = f(k1, k2) with k1, k2 ∈
W(2,2)(X). Then the following conditions hold:

(i) If x1 ∈ var(t1), then firstops(k1) = f or k1 ∈ X.

(ii) If x2 ∈ var(t1), then firstops(k2) = f or k2 ∈ X.

Proof. (i) Assume that x1 ∈ var(t1). Since σ̂t1,t2 [t2] = t2, thus we obtain the
equation t2 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2]). Suppose that k1 = g(k3, k4) for some
k3, k4 ∈ W(2,2)(X), thus σ̂t1,t2 [k1] = S2(t2, σ̂t1,t2 [k3], σ̂t1,t2 [k4]). From t2 =
S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2]), thus t2 = S2(t1, S2(t2, σ̂t1,t2 [k3], σ̂t1,t2 [k4]), σ̂t1,t2 [k2]).
Since x1 ∈ var(t1), thus op(t2) < op(S2(t1, S2(t2, σ̂t1,t2 [k3], σ̂t1,t2 [k4]), σ̂t1,t2 [k2])),
which contradicts the relation t2 = S2(t1, S2(t2, σ̂t1,t2 [k3], σ̂t1,t2 [k4]), σ̂t1,t2 [k2]).
Hence firstops(k1) = f or k1 ∈ X .

(ii) The proof is similar to the proof of (i).

Lemma 3.12 Let σt1,t2 be an idempotent generalized hypersubstitution of type
τ = (2, 2) and op(t1) > 1, op(t2) = 1 and t1 = g(k1, k2) with k1, k2 ∈
W(2,2)(X). Then the following conditions hold:

(i) If x1 ∈ var(t2), then firstops(k1) = g or k1 ∈ X.
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(ii) If x2 ∈ var(t2), then firstops(k2) = g or k2 ∈ X.

Proof. The proof is similar to the proof of Lemma 3.11.
For the Cases 1.1 and 2.2 we have the following results:

Proposition 3.13 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2). If op(t1) = 1, op(t2) > 1 and t2 = f(k1, k2) with k1, k2 ∈ W(2,2)(X),
then σt1,t2 is idempotent if and only if t1 ∈ {f(x1, xi), f(x2, x2), f(xj , x2)|i, j ∈
IN, j > 2 and xi, xj ∈ X} and the following conditions hold:

(i) If t1 = f(x1, x2), then ops(t2) = {f}.

(ii) If t1 = f(x1, xi) with i �= 2, then t2 = t1xk

length(Lp(t2)) where xk =
leftmost(t2).

(iii) If t1 = f(xj , x2) with j �= 1, then t2 = t1xk

length(Rp(t2)) where xk =
rightmost(t2).

Proof. Assume that σt1,t2 is idempotent, thus σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =
t2. Then we obtain the equation t2 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2]). Suppose that
t1 = f(xi, xj) where xi, xj ∈ X and i, j > 2. Thus
t2 = S2(f(xi, xj), σ̂t1,t2 [k1], σ̂t1,t2 [k2]) = f(xi, xj), which contradicts to op(t2) >
1. Hence t1 �= f(xi, xj) where xi, xj ∈ X and i, j > 2. Since t1 �= f(xi, xj)
where xi, xj ∈ X and i, j > 2 and by Lemma 3.8, thus
t1 ∈ {f(x1, xi), f(x2, x2), f(xj , x2)|i, j ∈ IN, j > 2 and xi, xj ∈ X}.

(i) Assume that t1 = f(x1, x2). From t2 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2]),
we get t2 = f(σ̂t1,t2 [k1], σ̂t1,t2 [k2]). We consider the following three possible
cases:

Case (1) k1 /∈ X, k2 ∈ X ,
Case (2) k1 ∈ X, k2 /∈ X ,
Case (3) k1, k2 /∈ X .

Case (1) From t2 = f(σ̂t1,t2 [k1], σ̂t1,t2 [k2]) there follows t2 = f(σ̂t1,t2 [k1], k2).
Then by Lemma 3.11 implies firstops(k1) = f . We will show by induction
on the complexity of k1 occurring in t2 = f(k1, k2), that ops(σ̂t1,t2 [k1]) = {f}.
If k1 = f(xi, xj) where xi, xj ∈ X , then σ̂t1,t2 [k1] = S2(f(x1x2), xi, xj) =
f(xi, xj). Hence ops(σ̂t1,t2 [k1]) = {f}. Let k1 = f(k3, k4) where k3, k4 ∈
W(2,2)(X) and assume that ops(σ̂t1,t2 [k3]) = {f} and ops(σ̂t1,t2 [k4]) = {f}.
Then ops(σ̂t1,t2 [k1]) = ops(f(σ̂t1,t2 [k3], σ̂t1,t2 [k4])). Hence ops(t2) = {f}.

In the second case we obtain the result in a similar way.
Case (3) By Lemma 3.11 we have firstops(k1) = f and firstops(k2) = f .

Then using t2 = f(σ̂t1,t2 [k1], σ̂t1,t2 [k2]) by induction on the complexities of k1

and k2, respectively, we can show that ops(t2) = {f}.
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(ii) Assume that t1 = f(x1, x1). From t2 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2])
we have t2 = f(σ̂t1,t2 [k1], σ̂t1,t2 [k1]). By Lemma 3.11, we get firstops(k1) = f
or k1 ∈ X . The last case is impossible since op(t2) > 1. Then we can show
that ops(t2) = {f}. Let k1 = f(k3, k4) where k3, k4 ∈ W(2,2)(X) we get t2 =
f(f(σ̂t1,t2 [k3], σ̂t1,t2 [k3]), f(σ̂t1,t2 [k3], σ̂t1,t2 [k3])). Now we set k3 = f(k5, k6)
where k5, k6 ∈ W(2,2)(X) and obtain
t2 = f(f(f(σ̂t1,t2 [k5], σ̂t1,t2 [k5]), f(σ̂t1,t2 [k5], σ̂t1,t2 [k5])), f(f(σ̂t1,t2 [k5], σ̂t1,t2 [k5]),
f(σ̂t1,t2 [k5], σ̂t1,t2 [k5]))).

This procedure stops with a variable and then we have t2 = t1xk

length(Lp(t2))

where xk = leftmost(t2). Similarly, for t1 = f(x1, xi) where xi ∈ X with i > 2
we have t2 = t1xk

length(Lp(t2)) where xk = leftmost(t2).
(iii) The proof is similar to the proof of (ii).

Conversely, we can check that all these generalized hypersubstitutions
which satisfy the conditions are idempotent by using Lemma 3.7.

From Proposition 3.13 we obtain a similar result which solves the Case 2.2.

Proposition 3.14 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2). If op(t1) > 1, op(t2) = 1 and t1 = g(k1, k2) with k1, k2 ∈ W(2,2)(X),
then σt1,t2 is idempotent if and only if t2 ∈ {g(x1, xi), g(x2, x2), g(xj , x2)|i, j ∈
IN, j > 2 and xi, xj ∈ X} and the following conditions hold:

(i) If t2 = g(x1, x2), then ops(t1) = {g}.

(ii) If t2 = g(x1, xi) with i �= 2, then t1 = t2xk

length(Lp(t1)) where xk =
leftmost(t1).

(iii) If t2 = g(xj , x2) with j �= 1, then t1 = t2xk

length(Rp(t1)) where xk =
rightmost(t1).

Proof. The proof is similar to the proof of Proposition 3.13.
Now we assume that op(t1) > 1 and op(t2) > 1. We can prove that if

σt1,t2 is idempotent, then the case firstops(t1) = g and firstops(t2) = f is
impossible.

Then we will consider the following cases:
Case 1. firstops(t1) = f and firstops(t2) = f .
Case 2. firstops(t1) = g and firstops(t2) = g.
Case 3. firstops(t1) = f and firstops(t2) = g.

We obtain the following necessary condition for the idempotency of σt1,t2 :

Lemma 3.15 Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2)
and op(t1) > 1, op(t2) > 1. If σt1,t2 is idempotent, then x1 /∈ var(t1) or
x2 /∈ var(t1) and x1 /∈ var(t2) or x2 /∈ var(t2).
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Proof. Assume that σt1,t2 is idempotent, thus σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =
t2. We consider into three cases :

Case 1. In this case we have t1 = f(k1, k2) and t2 = f(k3, k4) where
k1, k2, k3, k4 ∈ W(2,2)(X). If x1, x2 ∈ var(t1) from op(t1) > 1, op(t2) > 1,
then we obtain op(t1) = op(S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2])) > op(t1). This is a
contradiction. Thus x1 /∈ var(t1) or x2 /∈ var(t1).

In the case x1, x2 /∈ var(t1) we have t2 = S2(t1, σ̂t1,t2 [k3], σ̂t1,t2 [k4]) = t1.
Thus x1 /∈ var(t2) and x2 /∈ var(t2).

In the case t1 ∈ WG
(2,2)({x1}) we have t2 = S2(t1, σ̂t1,t2 [k3], σ̂t1,t2 [k4]).

Clearly, firstops(k3) = f and k3 = f(k5, k6) where k5, k6 ∈ W(2,2)(X). This
gives t2 = S2(t1, S2(t1, σ̂t1,t2 [k5], σ̂t1,t2 [k6]), σ̂t1,t2 [k4]). Continuing in this way,
we get t2 = t1

length(Lp(t2))
leftmost(t2) . Therefore x1 /∈ var(t2) or x2 /∈ var(t2). For t1 ∈

WG
(2,2)({x2}), we have t2 = t1

length(Rp(t2))
rightmost(t2) and x1 /∈ var(t2) or x2 /∈ var(t2).

Case 2. can be proved in a similar way.
Case 3. In this case t1 and t2 have the form t1 = f(k1, k2) and t2 =

g(k3, k4) where k1, k2, k3, k4 ∈ W(2,2)(X) and if x1, x2 ∈ var(t1), then op(t1) <
op(S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2])). Therefore x1 /∈ var(t1) or x2 /∈ var(t1). In the
same way we can show that x1 /∈ var(t2) or x2 /∈ var(t2).

For the three possible cases of the first operation symbol in t1 and t2 we
have the following results:

Proposition 3.16 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2), op(t1) > 1, op(t2) > 1 and t1 = f(k1, k2), t2 = f(k3, k4) with
k1, k2, k3, k4 ∈ W(2,2)(X), then σt1,t2 is idempotent if and only if x1 /∈ var(t1)
or x2 /∈ var(t1) and x1 /∈ var(t2) or x2 /∈ var(t2) and the following conditions
hold:

(i) If t1, t2 ∈ WG
(2,2)({x1}), then t1 = f(x1, k2) where x2 /∈ var(k2) and

t2 = t
length(Lp(t2))
1 .

(ii) If t1, t2 ∈ WG
(2,2)({x2}), then t1 = f(k1, x2) where x1 /∈ var(k1) and

t2 = t
length(Rp(t2))
1 .

(iii) If t1 ∈ WG
(2,2)({x1}), t2 ∈ WG

(2,2)({x2}), then t1 = f(x1, k2) where x2 /∈
var(k2) and t2 = t1x2

length(Lp(t2)).

(iv) If t1 ∈ WG
(2,2)({x2}), t2 ∈ WG

(2,2)({x1}), then t1 = f(k1, x2) where x1 /∈
var(k1) and t2 = t1x1

length(Rp(t2)).

(v) If t1 ∈ WG
(2,2)({x1}) and x1, x2 /∈ var(t2), then t1 = f(x1, k2) where

x2 /∈ var(k2) and t2 = t1xk

length(Lp(t2)) where xk = leftmost(t2).
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(vi) If t1 ∈ WG
(2,2)({x2}) and x1, x2 /∈ var(t2), then t1 = f(k1, x2) where

x1 /∈ var(k1) and t2 = t1xk

length(Rp(t2)) where xk = rightmost(t2).

(vii) If x1, x2 /∈ var(t1), then t2 = t1.

Proof. Assume that σt1,t2 is idempotent, thus σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =
t2. By Lemma 3.15, we get x1 /∈ var(t1) or x2 /∈ var(t1) and x1 /∈ var(t2) or
x2 /∈ var(t2).

(i) Assume that t1, t2 ∈ WG
(2,2)({x1}). From σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] =

t2, we obtain the equations t1 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k1]) and
t2 = S2(t1, σ̂t1,t2 [k3], σ̂t1,t2 [k3]). Since x1 ∈ var(t1) and
t1 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k1]), thus σ̂t1,t2 [k1] = x1. Since op(t1) > 1, op(t2) >
1, thus k1 = x1. So t1 = f(x1, k2) where x2 /∈ var(k2). From
t2 = S2(t1, σ̂t1,t2 [k3], σ̂t1,t2 [k3]), we get that firstops(k3) = f and from k3 =
f(k5, k6), with k5, k5 ∈ W(2,2)(X), we obtain
t2 = S2(t1, S2(t1, σ̂t1,t2 [k5], σ̂t1,t2 [k5]), S2(t1, σ̂t1,t2 [k5], σ̂t1,t2 [k5])). This pro-
cedure stops after finitely many steps with the leftmost(t2). Hence t2 =
t1

length(Lp(t2))
leftmost(t2) . But the leftmost(t2) must be x1. Hence t2 = t

length(Lp(t2))
1 .

The cases (ii), (iii), (iv), (v) and (vi) can be proved in the same manner.
(vii) Assume that x1, x2 /∈ var(t1). From σ̂t1,t2 [t2] = t2, thus t2 =

S2(t1, σ̂t1,t2 [k3], σ̂t1,t2 [k4]) = t1.
Conversely, we can check that all these generalized hypersubstitutions

which satisfy the conditions are idempotent by using Lemma 3.7.
If firstops(t1) = firstops(t2) = g we have a similar result:

Proposition 3.17 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2), op(t1) > 1, op(t2) > 1 and t1 = g(k1, k2), t2 = g(k3, k4) with
k1, k2, k3, k4 ∈ W(2,2)(X), then σt1,t2 is idempotent if and only if x1 /∈ var(t1)
or x2 /∈ var(t1) and x1 /∈ var(t2) or x2 /∈ var(t2) and the following conditions
hold:

(i) If t1, t2 ∈ WG
(2,2)({x1}), then t2 = g(x1, k4) where x2 /∈ var(k4) and

t1 = t
length(Lp(t1))
2 .

(ii) If t1, t2 ∈ WG
(2,2)({x2}), then t2 = g(k3, x2) where x1 /∈ var(k3) and

t1 = t
length(Rp(t1))
2 .

(iii) If t1 ∈ WG
(2,2)({x1}), t2 ∈ WG

(2,2)({x2}), then t2 = g(k3, x2) where x1 /∈
var(k3) and t1 = t2x1

length(Rp(t1)).

(iv) If t1 ∈ WG
(2,2)({x2}), t2 ∈ WG

(2,2)({x1}), then t2 = g(x1, k4) where x2 /∈
var(k4) and t1 = t2x2

length(Lp(t1)).
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(v) If t2 ∈ WG
(2,2)({x1}) and x1, x2 /∈ var(t1), then t2 = g(x1, k4) where

x2 /∈ var(k4) and t1 = t2xk

length(Lp(t1)) where xk = leftmost(t1).

(vi) If t2 ∈ WG
(2,2)({x2}) and x1, x2 /∈ var(t1), then t2 = g(k3, x2) where

x1 /∈ var(k3) and t1 = t2xk

length(Rp(t1)) where xk = rightmost(t1).

(vii) If x1, x2 /∈ var(t2), then t1 = t2.

Proof. The proof is similar to the proof of Proposition 3.16.
In the last case we have:

Proposition 3.18 Let σt1,t2 be a generalized hypersubstitution of type τ =
(2, 2), op(t1) > 1, op(t2) > 1 and t1 = f(k1, k2), t2 = g(k3, k4) with
k1, k2, k3, k4 ∈ W(2,2)(X), then σt1,t2 is idempotent if and only if x1 /∈ var(t1)
or x2 /∈ var(t1) and x1 /∈ var(t2) or x2 /∈ var(t2) and the following conditions
hold:

(i) If t1 ∈ WG
(2,2)({x1}), then t1 = f(x1, k2) where x2 /∈ var(k2).

(ii) If t1 ∈ WG
(2,2)({x2}), then t1 = f(k1, x2) where x1 /∈ var(k1).

(iii) If t2 ∈ WG
(2,2)({x1}), then t2 = g(x1, k4) where x2 /∈ var(k4).

(iv) If t2 ∈ WG
(2,2)({x2}), then t2 = g(k3, x2) where x1 /∈ var(k3).

Proof. Assume that σt1,t2 is idempotent. By Lemma 3.15, we get x1 /∈ var(t1)
or x2 /∈ var(t1) and x1 /∈ var(t2) or x2 /∈ var(t2). Since σ̂t1,t2 [t1] = t1 and
σ̂t1,t2 [t2] = t2, thus we obtain the equations t1 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2])
and t2 = S2(t2, σ̂t1,t2 [k3], σ̂t1,t2 [k4]).

(i) Assume that t1 ∈ WG
(2,2)({x1}). From t1 = S2(t1, σ̂t1,t2 [k1], σ̂t1,t2 [k2]),

we get σ̂t1,t2 [k1] = x1. Since op(t1) > 1, op(t2) > 1, thus k1 = x1. Hence
t1 = f(x1, k2) where x2 /∈ var(k2). The cases (ii), (iii) and (iv) can be proved
in the same manner.

Conversely, we can check that all these generalized hypersubstitutions
which satisfy the conditions are idempotent by using Lemma 3.7.
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