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Deterministic multivariate model for
simulation of downstream BIVAL automatic

controller in irrigation systems

L. Roşu, A. Bărbulescu, S. Hâncu, A. Dumitru

Abstract

The irrigation canals equipped with automatic controllers of the BI-
VAL type (based on downstream control) are electronic feedback sys-
tems. In this paper we present the mathematical model for the unsteady
flow in irrigation canals. We give an analytical solution for the unsteady
flow equations and for the motion equations of the BIVAL controller.

1 Introduction

Providing irrigation canals with automatic controllers leads to the performance
increasing for the following reasons: timely supply of required flow rate at
any point of the network, accurate measurements of distributed flow rate,
water saving, energy saving, the decreasing of personnel needed in the system
exploitation and an increasing efficiency of irrigation system.

A major problem encountered in automatic controlled irrigation canals is
to ensure their performance according to the chosen solution.

The importance of solving this problem for the engineering practice is
explained by the abundant research done to improve the exploitation perfor-
mance of existing automatic systems and to diversify the hydraulic calculation
methods employed in solving of two important problems: the measurement of
water transport capacity and the insurance of hydraulic stability of the net-
work canals during the exploitation.
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The majority of the mathematical simulation models are based on the
numerical or analytical solution of the nonlinear equations with partial deriv-
atives of hyperbolic type (Saint - Venant equations) that govern the unsteady
flow in the canals equipped with the automatic regulators.

In addition to the dynamics and continuity equations of Saint-Venant,
there are also some conditions, that describe the hydraulics of the different
construction equipments used for canals, the hydraulics of the derivations and
of the water distributions points to the clients. The equations of the automatic
controllers specific to the chosen solution are also given.

2 The description of the downstream BIVAL automatic
controller

The mathematical model describes the behavior of the unsteady flow of water
in irrigations canals equipped with electronic controllers of BIVAL type which
directly adjust the water level in canal.

The controller’s work is based on upstream commands provided by two
water level transducers, one placed downstream and the other upstream the
pool (Figure 1).

The downstream BIVAL controller helps to deliver the water ”based on
request” and, as a consequence, the downstream consumer requested rate of
flows charts are known.

The design or the exploitation assessment of a pool equipped with such a
controller consists in finding the following elements:

- the downstream water level variation chart, Zav(t);
- the rate of flow variation chart at the gate section located upstream the

pool, Qam(t);
- the upstream water level variation chart, Zam(t);
- the variation of the upstream gate opening, a(t).
The water elevation Zi, is given by

Zi = kZam + (1 − k)Zav, (2.1)

where:
Zam is the water elevation in the upstream transducer section,
Zav - the water elevation in the downstream transducer section,
k ∈[0, 1] - the weight coefficient.
Based on the value of the weight coefficient k, there are few exploitation

situations:
- if k = 1, then L1 = L and Zi = Zam; the controlling section becomes the

section where the upstream transducer is located (the adjustment is based on
the input coming from downstream the gate),
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Figure 1: The installation scheme

- if k = 0, then L2 = L and Zi = Zav; the controlling section becomes the
section where the downstream transducer is located (the adjustment is based
on the input coming from upstream the gate),

- if k ∈ (0, 1), the controlling section will be located inside the pool between
the two transducers.

The hydraulic parameters corresponding to the beginning of the process
are:

ZA = constant - the water elevation in the supply reservoir located up-
stream the pool,

Z0, am - the upstream water elevation (measured by the upstream trans-
ducer)

Z0,av - the downstream water elevation (measured by the downstream
transducer),

Q0 - the rate of flow,
h0 - the water depth in canal,
a0 - the initial gate opening,
∆h0 - the hydraulic head of the gate:

∆h0 = ZA − Z0, am (2.2)
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The flow rate under the gate at the moment ti is given by the equation:

Q(ti)
am = cd · Bs · (a0 + ∆a(ti)) ·

√
2g

(
ZA − Z0,am − ζ

(ti)
am

)
, (2.3)

where:
cd is the flow rate coefficient of the gate,
Bs is the gate’s width.
The rate of flow under the gate at the initial time is:

Q0 = cd · Bs · a0 ·
√

2g · ∆h0 = cd · Bs · a0 ·
√

2g (ZA − Z0,am). (2.4)

The correction value ∆a(ti) which must be made to the gate opening at
the moment ti, as a consequence of the consumption variation, can be found
from (2.3), taking into account (2.4):

∆a(ti) =
1
2
· a0

∆h0
· ζ(ti)

am +
q
(ti)
am

Q0
· a0, (2.5)

where:
ζ
(ti)
am is the water level oscillations in the upstream section of the pool,

q
(ti)
am is the the level oscillations in the upstream section of the pool.

3 The description of the mathematical model

The unsteady flow in the irrigation canals is generated by the rate of flow
variations at the water plugs and by the gate maneuvering and is characterized
by transverse wave propagation.

To every kind of wave, conceived as physical phenomenon a flow rate waves
and a level waves correspond. They are functions of space (s) and time (t),
which have perturbed values.

3.1 The fundamental equations of unsteady water flow

The fundamental equations of unsteady water flow in open canals are the
Saint-Venant equations: the dynamic equation and the continuity equation.
They form a system of nonlinear equations with variable coefficients, which
belongs to the hyperbolic differential equations family:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂Z

∂s
+

1
g

· ∂V

∂t
+

1
g

· V · ∂V
∂s

+
Q2

K2 = 0

∂A

∂t
+

∂Q

∂s
= 0

(3.1)
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In these two equations the following hydraulic parameters are functions of
space (s) and time (t):

- Z = Z(s, t) - the free water elevation,
- Q = Q(s, t) - the flow rate in the flow section,
- V = V (s, t) - the flow velocity,
- J = J(s, t) - the hydraulic slope of the stream (J = Q2/K2),
- A = A(s, t) - the flow cross section area,
- K = A · C · √R - the flow rate coefficient,
- C = Ry/n - the Chezy resistance coefficient,
- n - the roughness coefficient,
- y - exponent (in Manning’s relation, y = 1/6)
- g - the gravity acceleration.

Remark. The general solutions of the equations (3.1) will be denoted by
q(s, t) and ζ(s, t).

3.2 The linearized equations of the unsteady flow

Among the different forms of the wave functions, a special interest presents
the function which varies exponentially with the phase and corresponds to the
harmonic plane waves.

Although the harmonic plane wave is an idealized concept, since in nature
there are no such waves, it is a good model approach for our study. First of
all, because any perturbation - no matter how complicated - can be described,
using the Fourier integral, as a sum of elementary perturbations and the prop-
agation of each elementary perturbation can be described by an harmonic
wave. Secondly, in the conditions of the linear form of the motion equations,
the wave functions of the harmonic waves, being written in exponential form,
are easy to use in computations and the reconstruction of the original wave
can be obtained by superposition the elementary waves (harmonics).

Using this concept and taking into account that in practical engineering
problems (for design or exploitation of automatic controlled open canals) the
variation charts of the flows rate consumption and of the water level are de-
scribed by periodical functions, the next step is to make an harmonic analyze
of the flow rate function, Q(t) and of the level function, Z(t), in order to
substitute them by finite sums of simple harmonics.

Remark 1. If we fix a calculus section, then Q(s, t) will be denoted by
Q(t).

On the other hand, using the main hypothesis of small oscillation the-
ory (all hydraulic parameters of the oscillatory motion are small and conse-
quently their squared values and their products are small in comparison to all
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the parameters containing as factor a perturbation parameter), the non lin-
ear Saint-Venant equations with variable coefficients are transformed in linear
equations of second order with constant coefficients (the initial state of motion
was assumed to be permanent).

Remark 2. The linear equations of the motion and their solutions q(t)
and ζ(t) are presented bellow for two situations:

-the flow direction is the same with the s axis (Figure 2):

∂2ζ

∂t2
− (

c2 − V 2
0

) ∂2ζ

∂s2
+ 2V0 · ∂

2ζ

∂s∂t
+ α

∂ζ

∂t
+ β

∂ζ

∂s
= 0, (3.2)

B0 · ∂ζ
∂t

+
∂q

∂s
= 0. (3.3)

Figure 2: The positive flow direction

-the flow direction is opposite to the s axis (Figure 3):

∂2ζ

∂t2
− (

c2 − V 2
0

) ∂2ζ

∂s2
− 2V0 · ∂

2ζ

∂s∂t
+ α

∂ζ

∂t
+ β

∂ζ

∂s
= 0, (3.4)

B0 · ∂ζ
∂t

+
∂q

∂s
= 0. (3.5)

In the above equations, c is the celerity, B0 is the canal width at the free
water level, α and β are coefficients depending on the geometry of the canal
and its hydraulic parameters. The subscript zero is given to the reference
(initial) values of the parameters.
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Figure 3: The negative flow direction

3.3 The general solutions of the unsteady flow equations

To find the general solutions of the motion equations, we determine ζ from
the equations (3.2), (3.4) and q from the equations (3.3) and (3.5), namely:

- When the flow direction is the same as the s axis direction, the general
solution of the dynamics equation is:

ζ(s, t) = a1 · ep1s · cos(ωt+ q1s+ ϕ1) + a2 · ep2s · cos(ωt+ q2s+ ϕ2). (3.6)

Similarly, the general solution of the continuity equation is:

q (s, t) = B0 · ω · a1 · ep1s

ρ1
sin(ωt+ q1s+ ϕ1 − ψ1)+

+B0 · ω · a2 · ep1s

ρ2
sin(ωt+ q2s+ ϕ2 − ψ2). (3.7)

- When the flow direction is opposite to the s axis, the general solution of
the dynamics equation is:

ζ(s, t) = a1 · e−p2s · cos(ωt− q2s+ ϕ1) + a2 · e−p1s · cos(ωt− q1s+ ϕ2). (3.8)

Similarly, the general solution representing the rate of flow, Q(s, t), is:

q (s, t) = −B0 · ω · a1 · e−p2s

ρ2
sin(ωt− q2s+ ϕ1 − ψ2)+

−B0 · ω · a2 · ep1s

ρ1
sin(ωt− q1s+ ϕ2 − ψ1). (3.9)
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In the equations (3.6) - (3.9), a1, a2, ϕ1, ϕ2 are integration constants which
can be found using the initial boundary conditions and the boundary condi-
tions related to the BIVAL controller. ω is the oscillation frequency, concor-
dantly with the flow rate period and the level functions. The terms p1, p2, q1,
q2, ψ1, ψ2, ρ1, ρ2 are parameters depending on the geometry and hydraulics
of the canal.

3.4 The solutions determination for the motion equations of the
BIVAL controller

For the BIVAL type controller, the general solutions for the unsteady flow are
easier to use if a convenient reference system is chosen such that the ordinate
axe passes through the point P dividing the pool of length L in two calculation
sections as follows:

- section I of length L1, between P and the downstream end of the pool,
for which the s axis has the same direction as the flow ( L1 = kL),

- section II of length L2, between P and the upstream end of the pool, for
which the s axis has opposite direction to the flow ( L1 = (1 − k)L.)

To simplify the calculations it was assumed that at the point P the water
elevation remains constant for small rate of flow variations. The assumption is
reasonable for the linearized equations of the motion. The matching condition
of the two calculation sections is expressed using q0(t) and ζ0(t) functions at
the point P where s = 0 .

Keeping the same notations used till now to avoid any further confusion,
the pair of functions representing the harmonic oscillations for the level ζ(t)
and the rate of flow q(t) in a given section are denoted as follows:

- for the section s = 0 (at the point P ): ζ0(t) and q0(t),
- for the section downstream the pool: ζL(t) = ζav(t) and qL(t) = qav(t),
- for the section upstream the pool: ζkL(t) = ζam(t) and qkL(t) = qam(t).
The general solutions given in ((3.6) and (3.7)) or ((3.8) and (3.9)) are

used to find the integration constants, considering the boundary conditions
for the two calculation sections:

a) The calculation section I has the following boundary conditions:
- ζ0(t) = 0, that expresses the matching condition,
- the function qL(t), that expresses the downstream consumption variation

.
The unknown functions are:
-L(t), that describes the harmonic oscillations of the water level down-

stream the pool (at the consumer),
- q0(t), that describes the rate of the flow oscillations at the point P.
b) The calculation section II has the following boundary conditions:
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- ζ0(t) = 0,
- the function q0(t), which was found in the previous calculation phase.
The unknown functions are:
- ζLk(t), describing the harmonic oscillations at the upstream controlled

gate section (in the adopted sens for the s axis orientation, the upstream
section of the pool corresponds to the downstream section of the pool for
section II),

- ζLk(t), describing the variations of the upstream delivered rate of the flow
which becomes the flow rate through the gate

Referring to the whole pool, the boundary conditions for section II are the
matching conditions at the point P . The condition imposed at P , ζ0(t) = 0,
makes Euler-Fourier coefficients to become zero for the harmonics of the zero
order and also for those terms containing them.

The integration constants a1, a2, ϕ1, ϕ2 found in this way have the follow-
ing expressions:

a1 =
ρ1 · ρ2 ·W0

B0 · ω ·DoP
, a2 = a1, (3.10)

ϕ1 = arcsin
(

ρ2 · P0 − ρ1 · R0

W0

)

ϕ2 = arccos
(

ρ2 ·M0 − ρ2 ·N0

W0

) ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1 = arcsin
(

ρ1 ·R0 − ρ2 · P0

W0

)

ϕ2 = arccos
(

ρ2 ·N0 − ρ2 ·M0

W0

)

(3.11)
In the equations (3.10) and (3.11) the terms M0, N0, P0, R0,W0, D0 con-

tain the harmonics coefficients which are referring to the delivered rate of the
flow upstream the pool and the damping factors for the oscillation propagation
along the pool.

After the determination of integration constants a1, a2, ϕ1,ϕ2, by har-
monic synthesis for the harmonics of j order, the unknown functions (repre-
senting the level oscillations upstream the pool ζam(t) and the rate of flow
oscillations qam(t)) can also be found. The correction value which must be
made to the gate opening, ∆a(t), representing the gate command element, is
obtained using the relation (2.5).

If q(ti)
av is a flow rate perturbation downstream the pool occurring at a

moment ti, due to the variation of flow rate consumption, then the hydraulic
parameters at the moment ti are:

-for the pool upstream section the gate section):

Q(ti)
av = Q0 + q(ti)

av (the delivered rate of flow), (3.12)

Zam = Z0, am + ζ(ti)
am (the water elevation)
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or
h(ti)

am = h0 + ζ(ti)
am (the water height), (3.13)

a(ti) = a0 + ∆a(ti) (the gate opening), (3.14)

where:
- q(ti)

am is the perturbation of the flow delivered rate in the pool upstream
section,

- ζ(ti)
am - the level oscillations in the pool upstream section,

- ∆a(ti) - the correction that must be made to the gate opening.
- for the pool downstream section (the consumer section):

Q(ti)
av = Q0 + q(ti)

av (the consumed rate of flow), (3.15)

Zav = Z0, av + ζ(ti)
av (the water elevation)

h(ti)
av = h0 + ζ(ti)

av (the water height), (3.16)

where:
- q(ti)

av is the perturbation of the flow consumed rate in the pool downstream
section,

- ζ(ti)
av - the level oscillations in the pool downstream section.

The relations (3.12) - (3.16) allow to the design and assessment of the
irrigation canals equipped with BIVAL type controllers. They also allow to
find the variation charts for the delivered and consumed flow rate, the variation
chart of water level in a canal and the variation chart of gate opening.

4 Conclusions

Sometimes, in the research literature is mentioned that solving the non lin-
ear Saint-Venant equation system for unsteady flow by direct integration can
not be done unless one considers particular cases which present no practical
interest.

The present paper contradicts such a statement, offering an answer on how
to conceive and use an analytical model for the design of the automatic irri-
gation canals, not for a particular case, but for practical important situations.

Knowing the large use of automatic controllers (with upstream, down-
stream or BIVAL command) on large capacity canals, the problem becomes
important both for theoretical research and practical exploitation situations.

In this paper was described a model for the automatic system of the BIVAL
controller and canal.

The model was obtained by analytical integration of linearized equations
based on the hypothesis of small oscillation theory and the properties of the
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Fourier transforms. This is a dynamical model, its hydraulic parameters (the
water level Z, the rate of flow Q, the gate opening a) are functions of time, the
variables input generate output variables and thus, it describes the system’s
behavior in time.

Since the described physical phenomenon is governed by well defined equa-
tions and the perturbations induced in system can be determined, the model
is deterministic and multivariate.

Its purpose is to predict the behavior of the system under the perturbation
factors and to help in the decision taking process.

The modeling basic principles have been accomplished by: the accurate
simulation of the physical phenomenon, flexibility, adaptability to exploitation
situations, a clear concept. The physical parameters can be easily determined
and the system can be solved by automatic computation.
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