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ON MODULAR COMPUTATION OF

STANDARD BASIS

Gerhard Pfister

Abstract

In this article I want to report about modular methods to compute
standard bases and the implementation in Singular.

1 Introduction

It is well known that the computation of standard bases in a polynomial ring
over the rational number Q is much more difficult than in a polynomial ring
over a finite field Fp = Z/p. The reason is the enormous growth of the co-
efficients during the computation even if the result may have relatively small
coefficients. To avoid these problems one can try to compute the standard
bases over Fp for one suitable prime p (resp. several suitable primes) and
use Hensel lifting as proposed in [10] (resp. Chinese remainder theorem) as
proposed in [9] to lift the coefficients to Z. Then Farey fractions (cf. [6],
[7]) can be used to obtain the ”correct” coefficients over Q. This approach
has been discussed since a long time (cf. [1],[2],[5],[8],[9],[10]). Here we follow
the approach using Chinese remainder theorem. After the lifting there are two
problems to be solved. It has to be checked whether the lifting of the standard
bases to characteristic zero remains a standard basis and that it generates the
ideal we started with. For the case of Gröbner bases (the monomial ordering
is a global, i.e. a well–ordering) and homogeneous ideals a reasonable solution
can be found for instance in the paper of Arnold (cf. [1]). It turns out that
this method can also be used for standard basis with respect to local orderings.
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The case of mixed orderings or global orderings and non–homogeneous ideals
is more complicated. With the same methods as in the homogeneous resp.
local case one just obtains a standard basis generating an ideal containing the
ideal we started with. For experiments this is already interesting, for proofs
this is not enough.

2 Theoretical background

Let I ⊆ Q[x] be an ideal, x = (x1, . . . , xn), and > be a monomial ordering.
Let I0 = I ∩ Z[x] and Ip = I0Z/p[x] for a prime p. Let L(I) (resp. L(Ip)) be
the minimal generating set of leading monomials of I (resp. Ip). The prime p
is called lucky for I with respect to > if L(I) = L(Ip).

Remark 2.1. Let g1, . . . , gs ∈ Q[x] be a standard basis∗ of IQ[x]> and assume
that the gi are monic and let uij · spoly(gi, gj) =

∑
hijkgk be a standard

representation for suitable uij , hijk ∈ Q[x], uij unit in Q[x]>. Then all primes
not dividing a denominator of the coefficients of the gi, uij and hijk are lucky.
Especially randomly chosen primes are lucky.

The following proposition is the basis to find lucky primes without knowing a
standard basis of IQ[x]>.

Proposition 2.2. Let either I be homogeneous or > be a local ordering. Let
HI (reps. HIp) be the Hilbert function (in case of I being homogeneous) or
the Hilbert–Samuel function (in case of a local ordering) of Q[x]>/IQ[x]>
(resp. Fp[x]>/IpFp[x]>). Then HI(n) ≤ HIp(n) for all n. If HI = HIp and
L(I) = {f1, . . . , fs}, L(Ip) = {m1, . . . , mk} such that fi < fi+1 and mi < mi+1

for all i and f1 = m1, . . . , fl−1 = ml−1 for 1 ≤ l ≤ min{s, k} then ml ≤ fl.

Proof. The proof is not difficult and can be found for the global case in [1].

Corollary 2.3. With the assumptions of proposition 2.2 let J be an ideal with
the following properties:

(1) I ⊂ J

(2) in case of a non–local ordering J is homogeneous

(3) HIp = HJ for some prime p

Then I = J .
∗For definitions and properties cf. [3],
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Proof. HIp(n) = HJ (n) ≤ HI(n) ≤ HIp(n).

Corollary 2.4. Let p, q be two primes. Assume one of the two following
assumptions.

(1) HIp(n) = HIq(n) for n < no and HIp(n0) < HIq (n0).

(2) HI = HIp and L(Ip) = {f1, . . . , fs}, L(Iq) = {m1, . . . , mk} such that
fi < fi+1 and mi < mi+1 for all i and f1 = m1, . . . , fl−1 = ml−1, ml <
fl for 1 ≤ l ≤ min{s, k}.

Then q is not lucky.

Proof. q being lucky would imply L(I) = L(Iq). This implies HI = HIq . This
is not possible because of proposition 2.2.

The following procedure finds in a given list unlucky primes.

proc deleteUnluckyPrimes(list T,list L)
{
int j,k;
intvec hl,hc;
ideal cT,lT;

lT=lead(T[size(T)]);
attrib(lT,"isSB",1);
hl=hilb(lT,1);
for (j=1;j<size(T);j++)
{

cT=lead(T[j]);
attrib(cT,"isSB",1);
hc=hilb(cT,1);
if(hl==hc)
{

for(k=1;k<=size(lT);k++)
{

if(lT[k]<cT[k]){lT=cT;break;}
if(lT[k]>cT[k]){break;}

}
}
else
{
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if(hc<hl){lT=cT;hl=hilb(lT,1);}
}

}
j=1;
attrib(lT,"isSB",1);
while(j<=size(T))
{

cT=lead(T[j]);
attrib(cT,"isSB",1);
if((size(reduce(cT,lT))!=0)||(size(reduce(lT,cT))!=0))
{

T=delete(T,j);
L=delete(L,j);
j--;

}
j++;

}
return(list(T,L,lT));

}

Remark 2.5. Let HPIp resp. HPIq be the Hilbert–Poincaré series corre-

sponding to HIp resp. HIq . Then HPIp(t) =
QIp (t)

(1−t)n and HPIq

QIq (t)

(1−t)n for

suitable polynomials† QIp , QIq ∈ Z[t]. Let QIp =
sp∑

i=0

vit
i and QIq =

sp∑
i=0

wit
i.

Then vn = wn for n < no and vn0 < qn0 hold iff HIp(n) = HIq (n) for n < n0

and HIp(n0) < HIq (n0). This implies that unlucky primes can be detected
comparing the vectors of coefficients of the Hilbert series lexicographically.

Now we may assume that p1, . . . , pr are different lucky primes for I with
respect to >. Let Gp1 , . . . , Gpr be standard basis of Ip1 , . . . , Ipr with the
following properties:

(1) Gpi is minimal for all i.

(2) the elements of Gpi are monic for all i.

(3) Gpi is uniquely determined by a fixed algorithm to compute it‡.

†They are also called the first Hilbert series and can be computed in Singular using the
comment hilb(I, 1).

‡In case of a global ordering one may choose a reduced Gröbner basis. In the local case
reduced standard bases exist only for zero–dimensional ideals. Therefore we need to fix an
algorithm to obtain uniqueness.
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(4) Let Gpi = {f (pi)
1 , . . . , f

(pi)
l } then lead (f (pi)

k ) < lead(f (pi)
k+1).

Using Chinese remainder theorem and Farey§ fractions we obtain G =
{f1, . . . , fl} with the following properties:

(1) fi ∈ Q[x] and monic.

(2) There is an integer d such that dfi ∈ Z[x] for all i and pk � d for all k.

(3) dfi mod pkZ[x] = (d mod pk) · f (pk)
i

Proposition 2.6. For a random choice of p1, . . . , pr with r big enough G is
a standard basis of IQ[x]>.

Proof. Let G = {f1, . . . , fl} ⊆ Q[x] be a standard basis of IQ[x]> having the
properties (1)...(4) similar to the Gpi and let uij · spoly(fi, fj) =

∑
hijkfk

be standard representations as in Remark 2.1. We may assume that there is
d ∈ Z not divisible by p1, . . . , pr such that duij , dhijk, dfi are in Z[x]. Choose a
bound m for the absolute value of the nominators and denominators occurring
in the coefficients of f1, . . . , fl. Enlarging the set of primes we may assume
that 2m2 < p1 · . . . ·pr. Then the coefficients of the fi are m–th Farey fractions
and they map injectively to Z/p1 · . . . · pr = Fp1 × . . . × Fpr .

The standard representations of the spoly(fi, fj) induce standard repre-
sentations of the spoly’s of fi mod pk and fj mod pk and therefore {fi

mod pk}i=1,...,l is a standard basis of Ipk
Fpk

[x]> having the properties (1)...(4).
This set mus be Gpk

.

Remark 2.7. There is no efficient bound of the nominators and denominators
of a minimal standard basis known in terms of generators of an ideal. Therefore
the number of primes needed has to be found by trial and error. We use the
fact that Buchberger’s algorithm applied to a system of polynomials which is
already a standard basis is usually less expensive than applied to a system of
generators which is not a standard basis.

In Singular¶ the following algorithm is implemented.

modstd (S)
§The set Fm := {a

b
∈ Q | gcd(a, b) = gcd(b, N) = 1} and fN := QN → Z/N the

canonical map defined by fN (a
b
) = (a mod N)(b mod N)−1. It is not difficult to see that

if 2m2 < N the restriction of fN to QN ∩ Fm is injective. For given q ∈ fN (QN ∩ Fm)
a variant of the Euclidian algorithm computes the uniquely determined a

b
∈ Fn such that

fN (a
b
) = q.

¶The corresponding algorithms are implemented in the library modstd.lib.
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Input S ⊆ Z[x] a finite set of polynomials

Output G ⊆ Q[x] a minimal standard basis of 〈S〉Q[x]>, > a fixed ordering

(1) L = ∅ , T = ∅ (list of primes, list of standard bases)
M = ∅ , K = ∅ (result, test set)

(2) while #L < 5 do

• insert randomly chosen primes to L such that #L = 5

• For p ∈ L compute a standard basis Mp of SFp[x]> satisfying the
properties described before and insert it to T .

• delete unlucky primes in L and the corresponding standard bases
in T .

(3) Use Chinese remainder theorem and Farey fractions to lift the standard
bases Mp for p in L to a system M of polynomials of Q[x].

(4) while M 	= K

• choose randomly a prime p with p /∈ L

• insert p to L and compute the corresponding standard basis Mp of
SFp[x]> and insert it to T

• delete unlucky primes in L and the corresponding standard bases
in T .

• if more than one prime was deleted go to (2)

• if no prime was deleted M = K go to (3).

(5) Use Buchberger’s algorithm to compute a standard basis of M satisfying
the properties described before. If it is different from M go to (1).

(6) Reduce the input S with respect to M . If the result is different from 0
then K := ∅ go to (4)

(7) return (M).

Remark 2.8. If the ordering > is not local or if the ideal generated by the
polynomials in S is not homogeneous then the test in (6) of the algorithm just
implies 〈S〉Q[x]> ⊆ 〈M〉Q[x]> because Corollary 2.3 does not hold in general.
To obtain equality one could lift together with the standard bases Mp of T
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also the relations‖ expressing 〈S〉Fp[x]> = 〈Mp〉Fp[x]>. Experiments showed
that this is much more expensive.

3 Examples

We will consider here only examples for local orderings and zero–dimensional
ideals. In this case usually the reduced standard basis is relatively simple
compared to polynomials occurring during the computations. Therefore the
modular method including the verification is very efficient.

The examples are obtained studying singularities during the computation of
Milnor numbers and Tjurina numbers.

We consider the ring Q[x, y, z] with the local ordering ds defined by the matrix⎛
⎝
−1 −1 −1
0 0 −1
0 −1 0

⎞
⎠.

Example 1

f = x6 + y8 + z10 + x5 + x3y2 + x2yz2 + xy(y2 + x)2

I = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉

Example 2

f = xyz(x + y + z)2 + (x + y + z)3 + x10 + y10 + z10

I = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉

Example 3

f = x25 + y25 + z15 + x7y4 + x4y4z3 + x3y5(y2 + x)2

I = 〈f, ∂f
∂x , ∂f

∂y , ∂f
∂z 〉

Example 4

f = x16 + y15 + z12 + x6y3 + x3y3z3 + x2y4(y2 + x)2

I = 〈∂f
∂x , ∂f

∂y , ∂f
∂z 〉

‖In Singular the command liftstd (I, M) computes a standard basis {g1, . . . , gs} of

the ideal I = 〈f1, . . . , fm〉 together with a matrix M such that

� g1

...
gs

�
= M

�
� f1

.

..
fm

�
�.
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Timings (in seconds):

modStd std memory used for std
1 3 258 1.3 GB
2 41 - 14 GB
3 5 11211 2.1 GB
4 10 35 5.6 MB

The examples are computed with Singular 3-0-3 on a Linux PC with AMD
Athlon (tm) 64 Processor 2800+ with 1.8 GHz. modStd is the modular stan-
dard basis computation including verification, std is the usual standard basis
computation implemented in Singular. In the second example the compu-
tation was stopped after 3 hours.
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Symbolic Computation, 6(1987), 287–304.

Department of Mathematics
University of Kaiserslautern
P.O. Box 3049 67653 Kaiserslautern
Germany
E-mail: pfister@mathematik.uni-kl.de



138 G. Pfister


