
An. Şt. Univ. Ovidius Constanţa Vol. 13(2), 2005, 75–82

Cost evaluation in joins’ optimization

Nicoleta Liviana Tudor

Abstract
This article presents an approach of the cost model used in join

optimization. The search space is determined through transformations
on the query blocks, depending on the selection predicate. Different
implementations of the JOIN operator are taken into account for cost
evaluation of the execution plans.

Subject Classification: 168P15.

1 Introduction

A method to optimize the access at the objects of a relational database is
through the optimization of the queries, witch can be heuristical or systemat-
ical.

In systematic optimization, the cost of the execution of one query is sys-
tematically decreased through the estimation of the costs for various execution
plans. The cost concerns the I/O operations (hard disk acces, intermediary
results storage), the CPU operations (memory transfer) but also network data
transfer for client/server databases. The cost functions have as arguments
some metadata that are stocked in the catalog system of the database as well
as the blocking factor, the number of levels of a multilevel index, the number
of blocks of the first level index, the number of distinct values of an indexation
attribute and the cardinality of a selection.

This article suggests an approach of the cost model used in joins’ optimiza-
tion.

The search space associated with the JOIN operator is determined through
transformations that are applied to the join’s blocks and the cost of the exe-
cution plans is evaluated, the one with the lowest cost being chosen. So, for a
given query, there are two problems that arise: witch is the search space and
how to implement the search.

Key Words: Search space; Block transformation; Cost functions; Query tree.

75

76 Nicoleta Liviana Tudor

2 The search space for the JOIN operator

The relational algebra JOIN operator, used for composing relations, is imple-
mented in SQL language as follows:

SELECT c1 [, c2,] FROM R, S[, T] WHERE p [^| v q ...]

where: ci, i ∈ {1, 2, . . .} represents attributes or expressions with at-
tributes; R, S, T - the relations from wich data are extracted; p, q - predicates
that must have the truth value ”true” and are applied to the tuples.

For the search space determination, a query is decomposed in blocks that
are independently represented and optimized.

For a query block, the equivalent transformations are executed, the physical
operators are chosen, and the existent indexes are used or other indexes for
sorting are built.

For the JOIN operator (��), the transformations of the blocks for the
realization of set operations are:

R � �S = S � �R

(R � �S) � �T = R � �(S � �T)

The transitivity can be represented using trees as follows (figure 1):

Figure 1: Tree representation of the transitivity.

When the join operation implies a selection (σ), and the logical predicate is
complex, being a conjunction/ disjunction of predicates (let’s assume that the
p predicate contains only attributes of the relation R and that the predicate
q uses only attributes of the relation S), the transformations of the query’s
blocks [1] can be:

σp(R � �S) ≡ [σp(R)] � �S

σq(R � �S) ≡ R � � [σq(S)]

Cost evaluation 77

If the join operation also contains a projection (π), and x is a subset of
attributes of R, y is a subset of attributes from the relation S and z is the inter-
section of the attributes from R and from S that are used by the p predicate,
then the transformations of the JOIN blocks can be:

πxy [σp(R � �S)] = πxy{σp [πxz(R) � �πzy(S)]}
The search space can be represented as in figure 2:

Figure 2: The search space.

3 The representation of a join

In order to represent a join operation, the tree of the query is used. The
nodes of this tree are the operators resulted from decomposing into elementary
operations and simple predicates; the terminal nodes (the leafs) represent the
relations that are composed.

For exemplification, let us consider two relations with the relational schemas
R(c1, c2, . . . , cn) and S(c′1, c′2, . . . , c′m) and an implementation of the JOIN op-
erator that is based on a conjuction of two predicates:

SELECT R.ci FROM R, S WHERE R.ci = S.c’j AND p(R) AND q(S),

where i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, ci ≡ c′j , p(R) is a predicate with at-
tributes from R and q(s) is a predicate with attributes from S. The join op-
eration uses the projection on the ci attribute of the relation R. So, the tree
associated to this join operation can be represented as in figure 3.a and the
query graph is represented in figure 3.b:

78 Nicoleta Liviana Tudor

a) b)

Figure 3: a) Query tree, b) Query graph.

Through the sorting of the operations in the query tree and the choice of an
algorithm of search in the planes’ space, various execution plans are obtained
and the one with the minimal cost is chosen.

4 Evaluation of costs

Let R and S be two relations with the corresponding relational schemas R(c1, c2, . . . , cn),
S(c′1, c

′
2, . . . , c

′
n) and the equi - junction of the relations R and S:

JOIN (R, S; R.ci = S.c’j),

where i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, ci ≡ c′j .
Let’s note sj - the selectivity of the join operation (the percent of records

that satisfy the condition of the join, being computed as a ration between
the number of tuples of the join and the number of tuples of the cartesian
product), |R| or |S| - the number of records of the R relation, and S relation
respectively, bR - the number of blocks from the R relation, bS - the number
of blocks of the S relation, fblocR - the factor of blocking of the table result.
Then:

sj =
|R|X |cS|
|RXS| =

|R|X |cS|
|R| ∗ |S| ,

where c is the predicate R.ci = S.c’j.
If the ci attribute is a key of the R relation, then |R|X |cS| <= |S| →

sj <= 1/|R|. If the c’j attribute is a key of the S relation, then |R|X |cS| <=
|R| → sj <= 1/|S|. So 0 <= sj <= 1.

Cost evaluation 79

In order to estimate the size of the join file, different implementations of
the JOIN operator are taken into account.

The implementation Nested loops of the JOIN operator uses iterative im-
bricate structures:

for r in R
for s in S
if r. ci = s. c’j then
select (r,s)
endif
repeat
repeat

The cost function for the processing of these instructions is:

C = bR + (bR ∗ bS) +
sj ∗ |R| ∗ |S|

fblocR
,

where bR ∗ bS is the cost of the execution of the two iterative structures for’
and (sj ∗ |R| ∗ |S|)/fblocR is the cost of storing the results.

The JOIN operator can use an index for the c’j attribute of the S relation,
the algorithm being:

for r in R
uses index structure from S
get all s from S for s. c’j = r. ci
repeat

The cost function when using an index for the c’j attribute (the S relation)
is:

C = bR + |R| ∗ (x + cs) +
sj ∗ |R| ∗ |S|

fblocR
,

where x is the number of levels of a multilevel index and cs is the cardinality
of the selection (the average number of records that satisfy the equality of
the selection - for the key: cs = 1; for the attributes that are not keys: cs
is the number of records of the relation / the number of distinct values of an
indexation attribute).

The implementation of the JOIN operator that is based on sorting on the
same attributes (the R table is sorted on the ci attribute and the S table on
the c′j attribute) can be algorithmically expressed as follows:

i = 0; j = 0
while i<=nR and j<=nS
// nR (nS respectively) = number of tuples from R (S respectively)

80 Nicoleta Liviana Tudor

if R(i). ci < S(j). c’j then
i=i+1
else

if R(i). ci > S(j). c’j then
j=j+1
else
select tuples (R(i), S(j))
makes other tuples with R(i) increasing j
creates other tuples with S(j) increasing i
endif
endif
repeat

a) b)

Figure 4: a) Plan with index, b) SORT - JOIN.

The cost function in the case of sorting is:

C = bR + b + S +
sj ∗ |R| ∗ |S|

fblocR
.

If an index is used for an attribute from S, then the execution plan of
the join operation that is used as example in the precedent paragraph can be
represented as depicted in figure 4a. For the implementation that is based on
sorting, the join plan is presented in figure 4b.

Cost evaluation 81

5 Conclusions

This article presents an approach of the cost model used in join operation
optimizations. The search space is determined through transformations on
the query blocks, depending on the selection predicate. The generation of
the execution plan of queries permits the interpretation of the statistics and
estimated costs. References

References

[1] Ramakrishnan, Gehrke, Molina Garcia, Chaudhuri Surajit, Query Optimization, Tech-
nical report, Hewlett-Packard Laboratories, Palo Alto, 1995.

[2] Holowczak Richard, Database Management Systems II, Baruch College, New York,
2001.

[3] Chaudhuri Surajit, Shim Kyuseok, An Overview of Cost-based Optimization of
Queries with Aggregates, In Proceedings of the 5th International Conference on Ex-
tending Database Technology, France, 1996.

Petroleum-Gas University of Ploiesti,
Department of Computer Science,
Romania
e-mail: tudorlivia@yahoo.com

82 Nicoleta Liviana Tudor

