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A note on conformal mappings onto mutually
non-overlapping domains

Yaroslav Zabolotnyi and Iryna Denega

Abstract

In the paper, an approach is proposed that allowed to establish new
upper estimates for products of inner radii of mutually non-overlapping
domains.

1 Preliminaries

Let N, R be the sets of natural and real numbers, respectively, C be the
complex plane, C = C

⋃
{∞} be its one point compactification, U be the open

unit disk in C, R+ = (0,∞).
Let B ⊂ C be a simply connected domain and a point a ∈ B. According to

the Riemann mapping theorem, there is a univalent and conformal mapping
f of the domain B onto the unit disk W with center at the origin for which
f(a) = 0, f ′(a) = 1. The radius of the circle W is called a conformal radius
of the domain B at a point a and is denoted by R(B, a). The concept of
conformal radius can be introduced also in the following equivalent way: let
the mapping ϕ perform a conformal and univalent mapping of the unit disk
U onto the domain B such that ϕ(0) = a, then the concept of the conformal
radius of a simply connected domain B ⊂ C with respect to a point a ∈ B is
defined as

R(B, a) = |ϕ′(0)|.

Key Words: conformal and an inner radius of the domain; mutually non-overlapping
domains; the Green function; transfinite diameter.
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For the case of multiply connected domains, the concept of the conformal
radius is analogous to the concept of an inner radius.

Green’s function gB(z, a) of the domain B with a pole at the point a ∈ B
is a real function that is harmonic in z in B\{a} and tends to zero when z
approaches the boundary B. This function has a correct asymptotic expansion

gB(z, a) = − ln |z − a|+ δ + o(1), o(1)→ 0, z → a,

in a certain vicinity of the point a. If a =∞ the correct expansion looks like

gB(z,∞) = ln |z|+ δ + o(1), o(1)→ 0, z →∞.

The inner radius r(B, a) of the domain B with respect to the point a is
the quantity eδ (see, e.g., [1, 2, 3, 4, 5, 6]).

Note that at the point a =∞, this definition of the inner radius coincides
with the definitions given in works [5, 6], in contrast, for example, to works
[1, 17].

For a simply connected domain, its inner radius coincides with its confor-
mal radius.

Let B be a domain of the extended complex plane Cz. By a quadratic
differential in B we mean the expression

Q(z)dz2, (1)

where Q(z) is a meromorphic function in B (see, e.g., [3, 5, 6]).
A finite point z0 ∈ B is called a zero or a pole of order n of the differential

(1) if it is a zero or a pole, respectively, of the function Q(z).
A circle domain for quadratic differential Q(z)dz2 is called simply con-

nected domain B ⊂ Cz, containing a unique double pole of the quadratic
differential Q(z)dz2 at the point w = a ∈ B, such that at univalent conformal
mapping w = f(z) (f(a) = 0) the domain B onto the unit disk of the plane
Cw, the identity holds

Q(z)dz2 ≡ −kdw
2

w2
, k ∈ R+.

Let E be a bounded infinite closed set on C. Let

V (z1, z2, ..., zn) =

n∏
k,l=1
k<l

(zk − zl),

where n > 2 and z1, z2, ..., zn ∈ E. Let Vn = Vn(E) be the maximum value of
the module |V (z1, z2, ..., zn)|, where z1, z2, ..., zn run through various systems
of n points belonging to the set E. Let us denote

dn = V
2

n(n−1)
n .
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The quantity d(E) = lim
n→∞

dn is called by the transfinite diameter of the set

E. For example, the transfinite diameter of any circle is equal to its radius,
and the transfinite diameter of any straight segment is equal to a quarter of
its length [1].

For a compact set E ⊂ C, its logarithmic capacity is determined by the
equality

capE :=
1

r(C\E,∞)
,

if the value of r(C\E,∞) is finite; otherwise, capE := 0.
It is known [1] that the logarithmic capacity capE coincides with the

transfinite diameter d(E) of the set E.
In this work, when proving auxiliary statements, the area-minimization

theorem is used.
Theorem 1. [1] In the family of all functions F (z), F (0) = 0, F ′(0) = 1,

which are regular in a given simply connected domain B that contains the
point z = 0 and has more than one limit point, the minimum of the quantity

H(F ) =

∫∫
B

|F ′(z)|2dσ,

where dσ is an element of the area, is achieved at a unique function that
univalently maps the domain B onto the full disk |z| < R, and this minimum
is equal to the conformal radius R of the domain B at the point z = 0.

In monograph [1], the problem of minimizing the area of multiply connected
domains is also considered.

In the work [7] dated 1934, M.A. Lavrentiev, in particular, solved the
problem on the maximum of the product of the conformal radii of two non-
overlapping simply connected domains. Namely, the following result is valid.

Theorem 2. [7] Let a1 and a2 be some fixed points of the complex plane C
and Bk, ak ∈ Bk, k ∈ {1, 2}, be an arbitrary non-overlapping simply connected
domains in C. Then the following inequality holds:

R(B1, a1)R(B2, a2) 6 |a1 − a2|2 , (2)

where the equality is achieved for the half-planes Bk and the points ak that are
symmetric with respect to their common boundary.

Later (see, e.g., [8]), the result obtained by M.A. Lavrentiev was generalized
to the case of meromorphic functions. Then, for any non-overlapping domains
B1 ⊂ C and B2 ⊂ C, inequality (2) survives, and the equality sign is reached
if the domains B1 and B2 look like

B1 =

{
w ∈ C :

∣∣∣∣w − a1w − a2

∣∣∣∣ < ρ

}
, B2 =

{
w ∈ C :

∣∣∣∣w − a1w − a2

∣∣∣∣ > ρ

}
,
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where ρ ∈ R+. An example of such a domain configuration is the case where
one of the domains is bounded by a circle of the above type and the other
domain is unbounded, i.e., it is a supplement to the first domain. It should be
noted that in this case the family of extremals has the continual capacity.

Further generalizations of the M.A. Lavrentiev problem were made via
the increase in the domain number, the refusal to fix the poles of quadratic
differentials, the change to an extended complex plane, and the expansion of
the analyzed object: the non-overlapping domains are replaced by some class
of open sets or partially overlapping domains (see, e.g., [5, 6, 9, 10, 11, 12, 13]).
In particular, in the work [14] (see also [15]) the following result was obtained.

Theorem 3. [14, 15] Let n ∈ N, n > 2, ak ∈ C, Bk ⊂ C, k = 1, n, be,
respectively, some set of fixed points and domains of the complex plane such
that ak ∈ Bk, k = 1, n, Bi ∩ Bj = ∅, i 6= j. Then the following inequality
holds:

n∏
k=1

r(Bk, ak) 6 (n− 1)
−n4

 ∏
16p<k6n

|ap − ak|

 2
n−1

. (3)

This paper is devoted to obtaining effective upper estimates for the func-
tional of the following type

Jn(γ) = [r (B0, 0) r (Bn+1,∞)]
γ

n∏
k=1

r (Bk, ak) , (4)

where n ∈ N, γ ∈ R+, An = {ak}nk=1 is an arbitrary fixed system of points
of the complex plane C\{0}; B0, Bn+1, {Bk}nk=1 is an arbitrary system of
mutually non-overlapping domains such that a0 = 0 ∈ B0 ⊂ C, ∞ ∈ Bn+1 ⊂
C, ak ∈ Bk ⊂ C at k = 1, n.

In 1988 for γ = 1
2 and n > 2 estimate of the functional Jn(γ) for the

system of non-overlapping domains by the method of symmetrization when
the points lie on a unit circle was found by V.N. Dubinin [16]. Using the
extremal metric method G.V. Kuz’mina [17] for simply connected domains
strengthened this result of V.N. Dubinin [16] and showed that the estimate is

correct for γ ∈
(

0, n
2

8

]
, n > 2. However, for the case n = 2 G.V. Kuz’mina’s

result completely coincides with the result of the paper [16]. G.V. Kuz’mina
[17] also notes that the upper bounds for the parameter γ can be improved.
Therefore, the final question about the estimate for γ for the functional (4)
remains open. The functional Jn(γ) was considered, for example, in the papers
[5, 6, 17, 18], in which for Jn(γ) in particular cases for some values of γ, the
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following inequality was established

Jn(γ) 6

(
4

n

)n (
4γ
n2

) 2γ
n∣∣1− 4γ

n2

∣∣ 2γn +n
2

∣∣∣∣n− 2
√
γ

n+ 2
√
γ

∣∣∣∣2
√
γ

.

Equality in this inequality is achieved when the points 0, ∞, ak and the
domains B0, B∞, Bk, k = 1, n, are, respectively, poles and circular domains
of the quadratic differential

Q(w)dw2 = −γw
2n + (n2 − 2γ)wn + γ

w2(wn − 1)2
dw2.

The method proposed in this paper originates from the paper [19], where
the problem of finding the maximum for the product of the inner radii of
three mutually non-overlapping domains was considered under the additional
condition of symmetry of two of them with respect to the unit circle and the
power exponent γ = 1 for the inner radius of the domain with respect to the
coordinate origin. The ideas proposed in [19] were substantially generalized
in the works [14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27].

2 Upper estimate of the functional Jn(γ)

The following proposition is true.
Theorem 4. Let n ∈ N, γ ∈ R+. Then for any fixed system of differ-

ent points An = {ak}nk=1 ∈ C\{0} and any set of mutually non-overlapping
domains B0, Bn+1, {Bk}nk=1, a0 = 0 ∈ B0 ⊂ C, an+1 = ∞ ∈ Bn+1 ⊂ C,
ak ∈ Bk ⊂ C, k = 1, n, and besides there exists ε > 0 such that r (Bk, ak) > ε
for an arbitrary k = 1, n, the following inequality holds:

Jn(γ) 6 ε−
2nγ
n+2 (n+ 1)−

γ(n+1)
n+2

(
n∏
k=1

|ak|

) 2γ
n+2 n∏

k=1

r (Bk, ak) . (5)

Proof. First, we prove two auxiliary lemmas. Let us find an estimate for the
expression r (B0, 0) . The following lemma is valid.

Lemma 1. Let n ∈ N, {ak}, {Bk}, k = 0, n+ 1, are the same as in the
Theorem 4. Then the following inequality holds:

r (B0, 0) 6 ε−
n
n+1

(
n∏
k=1

|ak|
) 2
n+1

(n+ 1)
1
2 (r (Bn+1,∞))

1
n+1

. (6)
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Proof. Consider the mapping w = 1
z and let B+ =

{
z : 1

z ∈ B
}
. Since the

inner radius of the domain containing an infinitely distant point is reciprocal
to the transfinite diameter of the complement to this domain (see [1, 6]), then

r (B0, 0) = r
(
B+

0 ,∞
)

=
1

d
(
C \B+

0

) . (7)

According to the Polya theorem [4], the following inequality is valid:

µE 6 πd2(E),

where µE is the Lebesgue measure of the compact set E. Whence we obtain

d(E) >

(
1

π
µE

) 1
2

.

Thus,
1

d
(
C \B+

0

) 6
1√

1
πµ
(
C \B+

0

) .
Taking the monotonicity and additivity of the Lebesgue measure into account,
we have

1√
1
πµ
(
C \B+

0

) 6
1√

1
πµ

(
n+1⋃
k=1

B
+

k

) =
1√

1
π

n+1∑
k=1

µB
+

k

.

Then, from (7), we obtain

r (B0, 0) 6

(
1

π

n+1∑
k=1

µB
+

k

)− 1
2

. (8)

From the area-minimization theorem [1] (see also Theorem 1), it follows that

µ(B) > πr2 (B, a) .

From inequality (8), it follows immediately that

r (B0, 0) 6

[
1

π

n+1∑
k=1

µB
+

k

]− 1
2

6

[
1

π

n+1∑
k=1

µB+
k

]− 1
2

6

[
n+1∑
k=1

r2
(
B+
k , a

+
k

)]− 1
2

.
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It directly follows from this

r (B0, 0) 6
1[

n+1∑
k=1

r2
(
B+
k , a

+
k

)] 1
2

. (9)

Let us find the values r
(
B+
k , a

+
k

)
for k = 1, n. Note that

gBk(z, ak) = − ln |z − ak|+ ln r(Bk, ak) + o(1), o(1)→ 0, z → a.

Taking advantage of the Green function invariance at conformal and univalent
mapping, we have

gBk(z, ak) = gB+
k

(w+, a+k ), w+ =
1

z
.

Then

gB+
k

(w+, a+k ) = gB+
k

(
1

z
,

1

ak

)
= ln

1

| 1z − a
+
k |

+ ln r(B+
k , a

+
k ) + o(1).

Using simple transformations, we get

gB+
k

(w+, a+k ) = ln
1

|z − ak|
+ ln |ak|2r(B+

k , a
+
k ) + o(1).

Hence,

r
(
B+
k , a

+
k

)
=
r (Bk, ak)

|ak|2
. (10)

Let us find now r
(
B+
n+1, a

+
n+1

)
. Since an+1 =∞, then from the invariance

of the Green function at conformal and univalent mapping, we obtain

gBn+1
(z,∞) = gB+

n+1
(w, 0) = ln

1

|w|
+ ln r(B+

n+1, 0) + o(1) =

= ln |z|+ ln r(B+
n+1, 0) + o(1),

and we arrive at the following inequality:

r(B+
n+1, 0) = r(Bn+1,∞). (11)

Substituting the equalities (10) and (11) into the inequality (9), we obtain:

r (B0, 0) 6

[
r2 (Bn+1,∞) +

n∑
k=1

r2 (Bk, ak)

|ak|4

]− 1
2

.
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From the Cauchy inequality of arithmetic and geometric means, we deduce

r2 (Bn+1,∞) +

n∑
k=1

r2 (Bk, ak)

|ak|4
>

> (n+ 1)

(
r (Bn+1,∞)

n∏
k=1

r (Bk, ak)

|ak|2

) 2
n+1

,

whence it is easy to obtain that

r (B0, 0) 6

(
n∏
k=1

r (Bk, ak)

)− 1
n+1

(
n∏
k=1

|ak|
) 2
n+1

(n+ 1)
1
2 (r (Bn+1,∞))

1
n+1

.

Taking into account that according to the condition of the Theorem 4 for
k = 1, n the inequality r (Bk, ak) > ε holds, we obtain(

n∏
k=1

r (Bk, ak)

)− 1
n+1

6 ε−
n
n+1 .

Substituting this expression into the previous inequality, we obtain the in-
equality (6).

Let us now find an estimate for the expression r (Bn+1,∞) . The following
lemma is true.

Lemma 2. Let n ∈ N, {ak}, {Bk}, k = 0, n+ 1, are the same as in the
Theorem 4. Then the following inequality holds:

r (Bn+1,∞) 6
ε−

n
n+1

(n+ 1)
1
2 (r (B0, 0))

1
n+1

. (12)

Proof. By performing transformations similar to those performed in Lemma 1
for the quantity r (Bn+1,∞), we obtain the inequality

r (Bn+1,∞) 6
1[

n∑
k=0

r2 (Bk, ak)

] 1
2

.

Further, by the Cauchy inequality of arithmetic and geometric means, we have

n∑
k=0

r2 (Bk, ak) > (n+ 1)

[
n∏
k=0

r (Bk, ak)

] 2
n+1

,
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and therefore

r (Bn+1,∞) 6

(
n∏
k=1

r (Bk, ak)

)− 1
n+1

(n+ 1)
1
2 (r (B0, 0))

1
n+1

.

Considering that, according to the condition of the Theorem 4 for k = 1, n the
inequality r (Bk, ak) > ε is valid, thus(

n∏
k=1

r (Bk, ak)

)− 1
n+1

6 ε−
n
n+1 .

By substituting this expression into the previous inequality, we get the in-
equality (12).

Let us proceed to prove the main result of the Theorem 4. Multiplying the
inequalities (6) and (12), we obtain the following chain of inequalities:

r (B0, 0) r (Bn+1,∞) 6 ε−
2n
n+1

(
n∏
k=1

|ak|
) 2
n+1

(n+ 1) (r (B0, 0) r (Bn+1,∞))
1

n+1

,

(r (B0, 0) r (Bn+1,∞))
n+2
n+1 6 ε−

2n
n+1

(
n∏
k=1

|ak|
) 2
n+1

n+ 1
,

r (B0, 0) r (Bn+1,∞) 6 ε−
2n
n+2 (n+ 1)−

n+1
n+2

(
n∏
k=1

|ak|

) 2
n+2

.

And from here the following inequality holds

[r (B0, 0) r (Bn+1,∞)]
γ

n∏
k=1

r (Bk, ak) 6

6 ε−
2nγ
n+2 (n+ 1)−

γ(n+1)
n+2

(
n∏
k=1

|ak|

) 2γ
n+2 n∏

k=1

r (Bk, ak) ,

which proves the inequality (5).

Remark 1. Note that the condition r (Bk, ak) > ε for k = 1, n is essential,
since it allowed us to obtain the estimates r (B0, 0) and r (Bn+1,∞) without
any additional restrictions on γ.
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3 Some consequences

Theorem 4 is quite general, however, if the points satisfy certain conditions,
then more specific estimates can be written. The following theorem considers
the case when all points ak, k = 1, n, belong to the unit circle. In particular,
the following result is correct.

Theorem 5. Let n,m ∈ N, γ ∈ R+. Then for any fixed system of different
points An = {ak}nk=1 ∈ C\{0} and any set of mutually non-overlapping do-
mains B0, Bn+1, {Bk}nk=1, such that a0 = 0 ∈ B0 ⊂ C, an+1 =∞ ∈ Bn+1 ⊂
C, |ak| = 1 and ak ∈ Bk ⊂ C, k = 1, n, besides there exists ε > 0 such that
r (Bk, ak) > ε for an arbitrary k = 1, n, the following inequalities hold:
if n = 2m, then

Jn(γ) 6 2nε−
2nγ
n+2 (n+ 1)−

γ(n+1)
n+2 (n− 1)

−n4

(
m−1∏
k=1

sin
kπ

n

) 2n
n−1

; (13)

if n = 2m+ 1, then

Jn(γ) 6 2nε−
2nγ
n+2 (n+ 1)−

γ(n+1)
n+2 (n− 1)

−n4

(
m∏
k=1

sin
kπ

n

) 2n
n−1

. (14)

Proof. Since the configuration of the domains Bk and the points ak described
in the condition of this theorem satisfies all conditions of the Theorem 4, then
the inequality (5) is true for it. Since |ak| = 1, k = 1, n, then we note(

n∏
k=1

|ak|

) 2γ
n+2

= 1. (15)

Let us now evaluate the expression
n∏
k=1

r (Bk, ak) . Let for concreteness

0 = arg a1 < arg a2 < . . . < arg an < 2π.

Denote α1 := 1
π (arg a2 − arg a1), α2 := 1

π (arg a3 − arg a2), . . . , αn := 1
π (2π −

arg an). From here we get∏
16p<k6n

|ap − ak| =
∏

16p<k6n

2 sin
π(αp + . . .+ αk−1)

2
. (16)

Taking into account that
n∑
k=1

αk = 2 and using elementary calculations of

the product written on the right-hand side of the inequality (16), we obtain
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that the maximum of this expression is achieved when all αk are equal, and
therefore for n = 2m we obtain

∏
16p<k6n

(
2 sin

π(αp + ...+ αk−1)

2

)
6 2

n2−n
2

(
m−1∏
k=1

sin
kπ

n

)n
.

Taking the Theorem 3 and the inequality (3) into account, we have:

n∏
k=1

r(Bk, ak) 6 2n (n− 1)
−n4

(
m−1∏
k=1

sin
kπ

n

) 2n
n−1

. (17)

Further, by substituting the inequalities (17) and (15) in the inequality (5),
we obtain the inequality (13). If n = 2m+ 1, then we get

∏
16p<k6n

(
2 sin

π(αp + ...+ αk−1)

2

)
6 2

n2−n
2

(
m∏
k=1

sin
kπ

n

)n
,

therefore,
n∏
k=1

r(Bk, ak) 6 2n (n− 1)
−n4

(
m∏
k=1

sin
kπ

n

) 2n
n−1

. (18)

Substituting the inequalities (18) and (15) in the inequality (5), we obtain the
inequality (14).

The following theorem considers the case when all points ak, k = 1, n,
belong to some straight line that is parallel to the imaginary axis.

Theorem 6. Let n ∈ N, γ ∈ R+. Then for any fixed system of different
points An = {ak}nk=1 ∈ C\{0}, such that ak = 1 + iyk, where yk, k = 1, n,
are some real numbers, and any set of mutually non-overlapping domains B0,
Bn+1, {Bk}nk=1, a0 = 0 ∈ B0 ⊂ C, an+1 = ∞ ∈ Bn+1 ⊂ C, ak ∈ Bk ⊂ C,
k = 1, n, besides there exists ε > 0 such that r (Bk, ak) > ε for an arbitrary
k = 1, n, the following inequality holds:

Jn(γ) 6 ε−
2nγ
n+2 (n+ 1)−

γ(n+1)
n+2 (n− 1)

−n4(
n∏
k=1

(1 + y2k)

) γ
n+2

 ∏
16p<k6n

|yp − yk|

 2
n−1

. (19)
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Proof. First, let us note that for k = 1, n the equality |ak| =
√

1 + y2k holds,
and therefore (

n∏
k=1

|ak|

) 2γ
n+2

=

(
n∏
k=1

(1 + y2k)

) γ
n+2

. (20)

Further, taking into account that all points ak, k = 1, n, belong to one straight
line, then from inequality (3) we obtain

n∏
k=1

r(Bk, ak) 6 (n− 1)
−n4

 ∏
16p<k6n

|yp − yk|

 2
n−1

. (21)

Substituting the expressions (20) and (21) in the inequality (5), we obtain the
inequality (19).

Remark 2. Note that the case when the points ak, k = 1, n, belong to
some arbitrary straight line that does not pass through the origin can always
be reduced to the Theorem 6 by some linear transformation.
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