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On some differential inclusions with
anti-periodic solutions

Ioan Vladimir Vı̂ntu

Abstract

In this paper, we investigate a class of second- and first-order differ-
ential inclusions, along with an algebraic inclusion, all subject to anti-
periodic boundary conditions in a real Hilbert space. These problems,
denoted as (Pεµ)ap, (Pµ)ap, and (E00), involve operators that are odd,
maximal monotone, and possibly set-valued. The second- and first-order
differential inclusions are parameterized by two nonnegative constants,
ε and µ, which affect the behavior of the differential terms.

We establish the existence and uniqueness of strong solutions for the
problems (Pεµ)ap and (Pµ)ap, as well as for the algebraic inclusion (E00).
Additionally, we prove the continuous dependence of the solution to
problem (Pεµ)ap on parameters ε and µ. We also provide approximation
results for the solutions to (Pµ)ap and (E00) as the parameters ε and µ
approach zero. Finally, we discuss some applications of our theoretical
results.

1 Introduction

Consider the following pair of second-order and first-order inclusions with anti-
periodic boundary conditions in a real Hilbert space H :

(Pεµ)ap

{
−εu′′ + µu′ +Au+B u 3 f a.e. in (0, T ), (Eεµ)
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,
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along with

(Pµ)ap

{
µu′ +Au+B u 3 f a.e. in (0, T ), (Eµ)
u(0) + u(T ) = 0,

where the nonnegative parameters ε and µ satisfy ε+ µ > 0, T > 0 is a given
time instant, and the following assumptions are fulfilled:

(Hf ) f ∈W 1,2(0, T ;H) and f(0) + f(T ) = 0;
(HA) The operator A : D(A) ⊂ H → H is odd, maximal monotone (possibly
set-valued), and satisfies the following strong monotonicity condition:

(a− b, x− y) ≥ ω0‖x− y‖2 for all x, y ∈ D(A) and a ∈ Ax, b ∈ Ay,

for some positive constant ω0;
(HB) The operator B : H → H is odd, maximal monotone (possibly set-
valued) and satisfies the following condition: for each r > 0, there is Lr > 0
with the property that for all x ∈ H with ‖ x ‖≤ r, it holds that ‖ B x ‖≤ Lr.

The inclusion (Eµ) is derived from (Eεµ) by setting ε to zero. It is also
noteworthy that the problem (Pµ)ap only includes the boundary condition
u(0) + u(T ) = 0. In the case when the parameter ε is ’small’, the problem
(Pεµ)ap is referred to as a perturbed problem associated with (Pµ)ap, while
the latter is called unperturbed (or reduced problem). In this case, we could
consider (Pεµ)ap as a regularization of (Pµ)ap. Sometimes, it can be useful to
consider regularizations of (Pµ)ap that yield solutions that are more regular
with respect to t, approximating the solution to (Pµ)ap for small ε (see Lions
[16, pp. VII-IX]). From the additional term that involves the parameter, this
regularization method came to be known as the method of artificial viscosity
and became widely used in various fields, such as control theory, numerical
analysis and partial differential equations.

Finally, we introduce the algebraic inclusion

Au(t) +B u(t) 3 f(t) for a.e. t ∈ (0, T ), (E00)

which is obtained by taking ε = µ = 0 in the inclusion (Eεµ).
Okochi [21] began studying non-linear evolution equations with anti-periodic

solutions. The author proved the existence and uniqueness of the solution to
problem (Pµ)ap when A is an odd maximal cyclical monotone operator, and
B = 0 (refer also to [22] for quasi-linear equations of parabolic type).

Problems (Pµ)ap and/or (Pεµ)ap (including different kinds of perturba-
tions) have been extensively studied in numerous papers in the context where
A is an odd maximal cyclical monotone operator (see Haraux [14], Aizicovici
and Pavel [2], Aizicovici, McKibben and Reich [1], Chen [10] and references
therein).
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For hyperbolic problems with anti-periodic solutions, we refer to Haraux
[14, Section 4], where the author proved that such weak solutions to the semi-
linear wave equation with a dumping term exist. Nakao and Okochi [19] also
studied the quasilinear wave equation with viscosity ( see also [20]) and ob-
tained results regarding its anti-periodic solutions. Chen, Nieto and O’Regan
[11] investigated anti-periodic solutions to problem (Pµ)ap, assuming that A
satisfies a linear growth condition and its domain D(A) is embedded compactly
into H, whereas B = ∂G as a bounded operator, with G ∈ C1(H;H).

Our current goal is to institute a working structure in which A is not a
subdifferential anymore, in order to facilitate new applications to hyperbolic
systems, such as a telegraph system. Compared to [2] and [5] (where A is of
subdifferential type), here we impose a stronger condition on f and require
the strong positivity of A to show that the solution to (Pµ)ap exists (see
Theorem 2.3 below).

In the following, we review some fundamental definitions essential to this
paper. The base of our framework consists in a real Hilbert space H alongside
its inner product (·, ·) and the induced norm ‖ · ‖ .

A set-valued operator G : D(G) ⊂ H → H is said to be monotone if

(a− b, x− y) ≥ 0 for all a, b ∈ D(G), a ∈ Gx, b ∈ Gy.

If the operator does not admit any proper monotone extensions, then it is
said to be maximal monotone. According to Minty’s Theorem, a monotone
operator G is maximal monotone if and only if the range R(IH +λG) = H for
all (equivalently, some) λ > 0 (here, IH denotes the identity operator on H).
Therefore, if λ > 0 and G is maximal monotone, it makes sense to define the
single-valued operators

Jλ = (IH + λG)−1, Gλ = (IH − Jλ)/λ with D(Jλ) = D(Gλ) = H.

These operators are called the resolvent and the Yosida approximation of
G, respectively. For several properties of these two operators see, e.g., [17,
Theorem 1.3, p.21]. For further details on the theory of monotone operators,
including the set-valued case, we direct the reader to the relevant monographs
[7], [9], [17].

This paper is organized as follows. In Section 2, we present the main result,
which addresses the existence and uniqueness of solutions to the previously
introduced problems. This result also provides essential uniform estimates
with respect to ε and µ, applicable to all solutions to problem (Pεµ)ap, and
will be employed in the subsequent sections. In Section 3 we establish that
the solution to problem (Pεµ)ap is continuous with respect to the parameters
ε and µ. Additionally, we show that for small ε, the solution uεµ to (Pεµ)ap
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approximates the solution to the reduced problem (Pµ)ap. Furthermore, we
aim to prove that as (ε, µ) → (0+, 0+), the solution to (Pεµ)ap converges to
the solution to the algebraic inclusion (E00). Finally, Section 4 applies our
abstract theory to specific cases of the semilinear telegraph system and the
semilinear heat equation with time anti-periodic conditions.

2 Existence, uniqueness, and uniform estimates of the
solutions

The goal of our first result is to prove that the solutions to the problems in-
troduced in Section 1 indeed exist and are unique. Additionally, we obtain
some uniform estimates with respect to the parameters ε and µ of these solu-
tions. These estimates will be crucial in proving the results presented in the
subsequent sections.

The Hilbert space L2(0, T ;H) alongside its usual scalar product and norm
will be denoted by (H, 〈 ·, · 〉, ‖ · ‖H) . If G is a set-valued operator in H, then
SH(G) denotes the class of all sections of G that belong to H. Additionally,
the usual norm in C([0, T ];H) is denoted by ‖ · ‖∞ .

From this point onward, we investigate (strong) solutions to problems
(Pεµ)ap and (Pµ)ap in the sense presented below.

Definition 2.1. Under the assumptions outlined in Section 1, a function
uεµ ∈ W 2,2(0, T ;H) is said to be a (strong) solution to problem (Pεµ)ap if
the following conditions are all satisfied
(i) uεµ(t) ∈ D(A) for a.e. t ∈ (0, T );

(ii)

{
−εu′′εµ(t) + µu′εµ(t) + ξεµ(t) + ηεµ(t) = f(t) for a.e. t ∈ (0, T ),
ξεµ ∈ SH(Auεµ(·)), ηεµ ∈ SH(B uεµ(·)); (1)

(iii) uεµ(0) + uεµ(T ) = 0, u′εµ(0) + u′εµ(T ) = 0.
In a similar way, a function uµ ∈W 1,2(0, T ;H) is said to be a (strong) solution
to problem (Pµ)ap if uµ fulfills conditions (i), (ii) (with ε = 0), and uµ(0) +
uµ(T ) = 0.

We also recall the following inequality for H−valued antiperiodic functions for
later reference:

Lemma 2.2. If u ∈W 1,2(0, T ;H) and satisfies u(0) + u(T ) = 0, then

‖ u ‖C([0,T ];H)≤
√
T

2
‖ u′ ‖L2(0,T ;H) . (2)

The proof of this lemma follows directly from the equality

2u(t) =

∫ t

0

u′(s) ds−
∫ T

t

u′(s) ds for all t ∈ [0, T ].
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Theorem 2.3. (i) Assume that A is an odd maximal monotone operator and
(HB) is fulfilled. Then, for every ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H), the
problem (Pεµ)ap has a unique solution uεµ ∈W 2,2(0, T ;H) which satisfies the
following estimate

ε ‖ u′′εµ ‖H≤‖ f ‖H . (3)

(ii) Assume that (HA) is satisfied. Then, for every nonnegative ε and µ such
that ε + µ > 0, and for f satisfying (Hf ), both problems (Pµ)ap and (Pεµ)ap
have unique solutions uµ ∈ W 1,2(0, T ;H) and uεµ ∈ W 2,2(0, T ;H), respec-
tively. Moreover, the following estimates hold

‖ u′µ ‖H ≤ ω−1
0 ‖ f ′ ‖H for every µ > 0,

‖ u′εµ ‖H ≤ ω−1
0 ‖ f ′ ‖H for every ε > 0, µ ≥ 0.

(4)

In addition, the algebraic inclusion (E00) has a unique solution u00 belonging
to W 1,2(0, T ;H), satisfying u00(0) + u00(T ) = 0 and u(t) ∈ D(A) for all
t ∈ [0, T ].

Proof. Define the linear operator L : D(L) ⊂ H→ H as

D(L) = {v ∈W 2,2(0, T ;H); v(0) + v(T ) = v′(0) + v′(T ) = 0},
L v = −εv′′ + µv′ if ε > 0, and

D(L) = {v ∈W 1,2(0, T ;H); v(0) + v(T ) = 0}, L v = µv′ if ε = 0.

(5)

On the one hand, if ε > 0, by the T− anti-periodicity of v and v′, and by
using (2) combined with Hölder’s inequality, we have

〈L v, v〉 = ε ‖ v′ ‖2H≥
εT 2

4
‖ v ‖2H for all v ∈ D(L). (6)

Thus, L is strongly monotone with constant εT 2/4. On the other hand, if
ε = 0, the operator L is only positive. Clearly, L is maximal monotone in H.
Specifically, it can be easily checked that R(IH + L) = H.
(i) Let ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H). For λ > 0, let us introduce the
approximating problem below

(Pλ)ap

{
Lu+ Aλu+ Bλu = f a.e. in (0, T ), (Eλ)
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0, (BC)

where A and B are the canonical extensions of A, and respectively B to H

(see, e.g., [13, p. 28]), and Aλ and Bλ are their Yosida approximations. The
operator L+Aλ+Bλ is maximal monotone and, in fact, strongly monotone in
H, provided that L is strongly monotone. Consequently, the problem (Pλ)ap
has a unique solution uεµ,λ ∈ D(L) , which we will denote simply as uλ.
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The monotonicity and oddness of both Aλ and Bλ, combined with (BC),
imply that for any positive λ, we have

〈Aλuλ, u′′λ〉 = −〈(Aλuλ)′, u′λ〉 ≤ 0, 〈Bλuλ, u′′λ〉 = −〈(Bλuλ)′, u′λ〉 ≤ 0. (7)

From (Eλ), (BC), and the above inequalities, one sees that

ε〈u′′λ, u′′λ〉−µ〈u′λ, u′′λ〉︸ ︷︷ ︸
= 0

−〈Aλuλ, u′′λ〉︸ ︷︷ ︸
≤ 0

−〈Bλuλ, u′′λ〉︸ ︷︷ ︸
≤ 0

= −〈f, u′′λ〉 for all λ > 0.

This, along with (2) (with u replaced by u′λ and uλ) and Hölder’s inequality,
implies that

‖ u′′λ ‖H ≤ ε−1 ‖ f ‖H, ‖ u′λ ‖H≤ T (2ε)−1 ‖ f ‖H,

‖ uλ ‖∞ ≤ T
√
T (4ε)−1 ‖ f ‖H for all λ > 0.

(8)

As uλ satisfies estimate (8)3, we infer from (HB), and subsequently from
equation (Eλ) combined with (8)1,2, that for all λ > 0

‖ Bλuλ ‖H≤
√
TLε, ‖ Aλuλ ‖H≤‖ f ‖H

(
2 + µT (2ε)−1

)
+
√
TLε. (9)

Here Lε stands for the positive constant specified in assumption (HB) corre-
sponding to r = T

√
T ‖ f ‖H /(4ε).

Now, for every positive λ and ν, we derive from equations (Eλ) and (Eν) that

−ε
∫ T

0

(w′′λν , wλν) dt+ µ

∫ T

0

(w′λν , wλν) dt

+〈Aλuλ −Aνuν , wλν〉+ 〈Bλuλ −Bνuν , wλν〉 = 0,

where we denote wλν = uλ − uν . This implies, due to the T− anti-periodicity
boundary conditions (BC), the definitions of the Yosida approximation, and
the fact that A and B are monotone (see also [17, Theorem 1.3(ii), p.21]), that

ε ‖ w′λν ‖2H + 〈Aλuλ −Aνuν , J
A
λ uλ − JA

ν uν〉︸ ︷︷ ︸
≥ 0

+ 〈Bλuλ −Bνuν , J
B
λ uλ − JB

ν uν〉︸ ︷︷ ︸
≥ 0

= −〈Aλuλ −Aνuν , λAλuλ − νAνuν〉
− 〈Bλuλ −Bνuν , λBλuλ − νBνuν〉.

(10)

Here JA
λ and JB

λ denote the resolvent operators (IH+λA)−1 and (IH+λB)−1,
respectively. Therefore, combining (10) with (9), we obtain the existence of a
positive constant C such that

‖ wλν ‖2H=‖ u′λ − u′ν ‖2H≤ C(λ+ ν)/ε, (11)
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for all positive λ and ν. This implies, by (2), that for all positive λ and ν

‖ uλ − uν ‖2∞≤
T

4
‖ u′λ − u′ν ‖2H≤

TC

4ε
(λ+ ν). (12)

Therefore, according to (8)1,2, (9), and (12), there exist u ∈W 2,2(0, T ;H) and
ξ, η ∈ H, such that, as λ→ 0+, the following convergences hold

uλ → u in C([0, T ];H), (13)

u′λ → u′ in H, (14)

u′′λ → u′′ weakly in H, (15)

Aλuλ → ξ, Bλuλ → η, weakly in H. (16)

Next, we will prove that u′λ → u′ in C([0, T ];H) as λ→ 0+. In this sense, set
wλ(t) := u′λ(t)−u′(t), and define hλ(t) :=‖ wλ(t) ‖ for all λ > 0 and t ∈ [0, T ].
Then, for all λ > 0 and all t ∈ [0, T ],

hλ(t) ≤‖ u′λ(t) ‖ + ‖ u′(t) ‖≤
√
T

2
‖ u′′λ ‖H + ‖ u′ ‖∞<∞,

by (2) (in which u is replaced by u′λ) and (8)1. In addition, from (8)1, the set
{hλ}λ>0 is equi-continuous since, for all λ > 0, t, s ∈ [0, T ],

| hλ(t)− hλ(s) |≤‖ wλ(t)− wλ(s) ‖

=

∥∥∥∥∫ t

s

wλ(τ)′ dτ

∥∥∥∥ ≤ √T (‖ u′′λ ‖H + ‖ u′′ ‖H)
√
| t− s |

≤
√
T (‖ f ‖H /ε+ ‖ u′′ ‖H)

√
| t− s |.

Therefore, by the the Arzelà-Ascoli Criterion, along with (14) (see also [8,
Theorem 4.9]), it follows that hλ → 0 as λ→ 0+ in C[0, T ]; i.e.,

u′λ → u′ in C([0, T ];H) as λ→ 0+. (17)

Thus, using (13) and (17), we conclude that u(0)+u(T ) = 0 and u′(0)+u′(T ) =
0, implying that u ∈ D(L).

Next, we will verify that u satisfies the inclusion (Eεµ). Indeed, from
(13) and (16), together with [6, Proposition 1.1(iv), p.42], we get that u ∈
D(A), u ∈ D(B), and ξ ∈ SH(Au(·)) and η ∈ SH(B u(·)). Thus, if we pass to
the (weak) limit in (Eλ) and use (14) and (15), we obtain that u ∈ D(L+A+B)
and satisfies

−εu′′(t) + µu(t) + ξ(t) + η(t) = f(t) for a.e. t ∈ (0, T ) and

ξ ∈ SH(Au(·)), η ∈ SH(B u(·)).
(18)
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Hence, u = uεµ is the desired solution to problem (Pεµ)ap. Since L is strongly
monotone, it follows that the solution uεµ is unique.

Finally, using estimate (8)1 obtained above and the weak lower semicon-
tinuity of norms, we derive the estimate (3) by passing to the weak limit as
λ→ 0+.
(ii) Assume that (HA), (HB), and (Hf ) hold.

In this framework, we decompose A as A = ω0IH + A1, where A1 :=
A− ω0IH , with D(A1) = D(A), according to the definition of the sum of set-
valued operators and assumption (HA). Obviously, A1 is a maximal monotone
operator. Next, denote by A1 and B the canonical extensions of A1 and B to
H, respectively, and by A1λ and Bλ their Yosida approximations, for λ > 0.
For f satisfying (Hf ) and λ > 0, consider the problems

(P 0
λ)ap

{
µu′ + ω0u+ A1λu+ Bλu = f a.e. in (0, T ), (E0

λ)
u(0) + u(T ) = 0, (BC0)

if ε = 0 and

(P ′λ)ap

{
−εu′′ + µu′ + ω0u+ A1λu+ Bλu = f a.e. in (0, T ), (E′λ)
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0, (BC)

if ε > 0.
Clearly, L + ω0I + A1λ + Bλ is a maximal monotone operator in H. In

addition, it is also strongly monotone, since so is L + ω0I. Thus, for every
λ > 0, the problems (P ′λ)ap and (P 0

λ)ap have unique solutions uεµ,λ ∈ D(L)
and uµ,λ ∈ D(L), respectively, denoted, as in the previous case, by uλ.

First, let us consider the case when ε = 0. To start with, we need to prove
that the problem (Pµ)ap has a unique solution uµ ∈W 1,2(0, T ;H).

To do so, since (Hf ) is fulfilled and uλ ∈ D(L), and considering that A1λ

and Bλ are odd Lipschitz operators, we obtain from (E0
λ) that the solution uλ

to problem (Pµ)ap belongs to W 2,2(0, T ;H) and u′λ(0) + u′λ(T ) = 0. First, we
differentiate (E0

λ) with respect to t a.e. on (0, T ) and then we multiply the
equation we obtain by u′λ in H to obtain, for all λ > 0

ω0 ‖ u′λ ‖2H +〈(A1λuλ)′, u′λ〉+ 〈(Bλuλ)′, u′λ〉 = 〈f ′, u′λ〉, (19)

from the T− anti-periodicity of u′λ. This implies that

‖ u′λ ‖H ≤ ω−1
0 ‖ f ′λ ‖H, ‖ uλ ‖∞≤

√
T (2ω0)−1 ‖ f ′λ ‖H,

‖ uλ ‖H ≤ T (2ω0)−1 ‖ f ′λ ‖H for allλ > 0,
(20)

by (2) along with Hölder’s inequality, and (7) (with Aλ replaced by A1λ). As
in the previous case, from (HB) and the estimates in (20), together with (E0

λ),
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we obtain the existence of positive constants C1, C2, both independent of λ,
such that

‖ Bλ uλ ‖≤ C1, ‖ A1λ uλ ‖≤ C2, ∀λ > 0, (21)

Following the approach in Case 1, for every positive λ and ν, we derive from
equations (E0

λ), (E0
ν), and (21) that

ω0 ‖ uλ − uν ‖2H + 〈A1λuλ −A1νuν , J
A1

λ uλ − JA1
ν uν〉︸ ︷︷ ︸

≥ 0

+ 〈Bλuλ −Bνuν , J
B
λ uλ − JB

ν uν〉︸ ︷︷ ︸
≥ 0

= −〈A1λuλ −A1νuν , λA1λuλ − νA1νuν〉
− 〈Bλuλ −Bνuν , λBλuλ − νBνuν〉 ≤ 2(C2

1 + C2
2 )(λ+ ν),

(22)

where JA1

λ is the resolvent of A1. Now, by using the information obtained so
far, there exist u ∈ W 1,2(0, T ;H) and ξ1, η ∈ H, such that, as λ → 0+, we
have

uλ → u in H, (23)

u′λ → u′ weakly in H, (24)

A1λuλ → ξ1, Bλuλ → η weakly in H. (25)

Now, consider the function gλ : [0, T ]→ R, gλ(t) =‖ uλ(t)−u(t) ‖ for all λ > 0
and t ∈ [0, T ]. On the one hand, the set {gλ}λ>0 is bounded in C[0, T ], by
(20)2. On the other hand, according to (20)1, this set is also equi-continuous.
Consequently, the Arzelà-Ascoli Criterion ensures that

uλ → u in C([0, T ];H) as λ→ 0+. (26)

Consequently, u(0) + u(T ) = 0, so u ∈ D(L) (see (5)).
Next, from [6, Proposition 1.1(iv), p.42], combined with (26) and (25),

we obtain that u ∈ D(A) ∩ D(B) for a.e. t ∈ (0, T ), ξ1 ∈ SH(A1 u(·)) and
η ∈ SH(B u(·)). Following arguments similar to those used in the proof of Case
1, we take the (weak) limit in (E0

λ) and obtain that u verifies the equation

µu′(t) + ξ(t) + η(t) = f(t) for a.e. t ∈ (0, T ),

where ξ(t) = ω0u(t) + ξ1(t) ∈ Au(t) for a.e. t ∈ (0, T ). That is, problem
(Pµ)ap admits solution u = uµ, as desired. Since A is strongly positive, this
means that uµ is unique.

If we take the weak limit λ→ 0+ in (20)1 and use the fact that the norms
are weakly lower semicontinuous, we get that estimate (4)1 holds true.
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Let ε > 0. From (i), problem (Pεµ)ap admits a unique solution uεµ. In
addition, as in the previous case, one obtains that this solution is the limit in
C([0, T ];H) of the approximating solutions uλ to problems (P ′λ)ap, as λ→ 0+.
To prove estimate (4)2, we start by differentiating (E′λ) with respect to t, to
obtain

−εu(3)
λ + µu′′λ + ω0u

′
λ + (A1λuλ)′ + (Bλuλ)′ = f ′ a.e. in (0, T ). (27)

Due to the oddness of the operators A1λ and Bλ, along with f(0) + f(T ) = 0
and (BC), we also get from (E′λ) that u′′λ(0) + u′′λ(T ) = 0. We now multiply
(27) by u′λ with respect to the inner product of H, then we integrate by parts
and use (BC), as well as u′′λ(0) + u′′λ(T ) = 0 to obtain

ε ‖ u′′λ ‖2H +ω0 ‖ u′λ ‖2H≤‖ f ′ ‖H‖ u′λ ‖H .

Here we have used (7) (with Aλ replaced by A1λ). We derive from the above
inequality that

‖ u′λ ‖H≤ ω−1
0 ‖ f ′ ‖H,

which implies, by taking the limit as λ→ 0+, that the solution uεµ to problem
(Pεµ)ap satisfies (4)2; namely, ‖ u′εµ ‖H≤ ω−1

0 ‖ f ′ ‖H .
Next, we consider the algebraic inclusion (E00). From [5, Theorem 6] we

know that (E00) admits a unique solution u00 ∈W 1,2(0, T ;H) given by

u00(t) = Q−1f(t) for all t ∈ [0, T ], (28)

where Q := A + B, with D(Q) = D(A). Moreover, the operator Q−1 : H →
D(A) is Lipschitz continuous with constant ω−1

0 . In particular, as Q is odd
and f(0) + f(T ) = 0, we derive from (28) that u00(0) +u00(T ) = 0. Moreover,
(28) implies that u(t) ∈ D(A) for all t ∈ [0, T ].

This completes our proof.

A similar result to Theorem 2.3 can be derived for the case where the prob-
lems introduced in Section 1 are perturbed non-monotonically by a Lipschitz
operato. More exactly, we now consider the problems

(P εµ)ap

{
−εu′′ + µu′ +Au+B u 3 F (u) + f a.e. in (0, T ), (Eεµ)
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0, (BC)

alongside

(P 0)ap

{
µu′ +Au+B u 3 F (u) + f a.e. in (0, T ), (E0)
u(0) + u(T ) = 0, (BC0)
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as well as the algebraic inclusion

Au+B u 3 F (u)+f a.e. in (0, T ). (E00)

Here, the nonlinear operator F satisfies
(HF) F : H → H is a Lipschitz operator with Lipschitz constant L > 0.

Theorem 2.4. Assume that (HA), (HB), and (HF ) are fulfilled, with con-
stants L and ω0 verifying L < ω0. Then, for every nonnegative ε and µ such
that ε + µ > 0, and f satisfying (Hf ), the problems (Pεµ)ap and (Pµ)ap have
unique solutions uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H), respectively.
Furthermore, one can derive the following estimates

‖ u′µ ‖H ≤ (ω0 − L)−1 ‖ f ′ ‖H for every µ > 0,

‖ u′εµ ‖H ≤ (ω0 − L)−1 ‖ f ′ ‖H for every ε > 0, µ ≥ 0.
(29)

In addition, the algebraic inclusion (E00) has a unique solution u00 belonging
to W 1,2(0, T ;H) that satisfies u00(0) + u00(T ) = 0 and u(t) ∈ D(A) for all
t ∈ [0, T ].

Proof. Let ε > 0 and µ ≥ 0 be fixed. We prove the statements of the theorem
for the problem (P εµ)ap, noting that similar arguments and computations
apply to the problem (Pµ)ap.

Here, the Banach Contraction Principle is employed to prove that problem
(P εµ)ap has a unique solution. To this end, for v ∈ H, consider the problem

(P vεµ)ap

{
−εu′′ + µu′ +Au+B u 3 F v + f a.e. in (0, T ),
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0.

(30)

Clearly, for every v ∈ H, it follows from (HF ) that F v ∈ H. Let uv ∈
W 2,2(0, T ;H) denote the solution to this problem, which is known to exist
and be unique by Theorem 2.3. Define the operator

P : H→ H, Pv = uv.

Let v1, v2 ∈ H. Then, w = uv1 − uv2 = Pv1 − Pv2 satisfies

−εw′′ + µw′ + Auv1 −Auv2 + Buv1 −Buv2 3 F v1 − F v2 inH,

w(0) + w(T ) = 0, w′(0) + w′(T ) = 0.
(31)

We now take the scalar product of (31)1 with w in H, use the integration by
parts in the first term and (31)2, as well as the assumptions (HA) and (HB),
to get

ε ‖ w′ ‖2H +ω0 ‖ w ‖2H≤ L ‖ v1 − v2 ‖H‖ w ‖H . (32)
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From (2), together with Hölder’s inequality, and (32) it now follows(
4ε

T 2
+ ω0

)
‖ P v1 − P v2 ‖2H≤ L ‖ v1 − v2 ‖H‖ P v1 − P v2 ‖H . (33)

Since L < ω0, we obtain that P is a contraction on H. Hence, P has a fixed
point that is unique in H. This, in fact, is the unique solution to (P εµ)ap.

Now, from (4)2, where we replace f by f + F (uεµ), as F (0) = 0, we have

ω0 ‖ u′εµ ‖H≤‖ f ′ + F ′(uεµ)u′εµ ‖H≤‖ f ′ ‖H +L ‖ u′εµ ‖H,

which implies (29)2.
The argument which proves that (E00) has a unique solution is identical

to the argument employed in the proof of Theorem 2.3.
Our proof is thus complete.

Remark 2.5. If, in addition, F is an odd operator, and f satisfies f(t+T ) +
f(t) = 0 for a.e. t ∈ R, then the solutions derived in this section can be
extended to all of R imposing T−anti-periodicity.

3 Continuous dependence of the solution to (Pεµ)ap on ε
and µ and approximation results

This section is designated to investigate the continuous dependence of the
solution uεµ to problem (Pεµ)ap on parameters ε and µ. We will also obtain
approximating results regarding the solutions to the reduced problem (Pµ)ap
and the algebraic inclusion (E00). In what follows, O shall denote the usual
big Landau symbol.

Theorem 3.1. Assume that (HB) is fulfilled.
(i) Let ε0 > 0 and µ0 ≥ 0 be fixed. Suppose that A is an odd maximal monotone
operator. For every ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H), let uεµ ∈W 2,2(0, T ;H)
be the unique solution to problem (Pεµ)ap given by Theorem 2.3 (i). Then the
following estimate and convergence hold

‖ uεµ − uε0µ0
‖C([0,T ];H)= O(| ε− ε0 |) + O(| µ− µ0 |),

uεµ → uε0µ0 in C1([0, T ];H) as (ε, µ)→ (ε0, µ0).
(34)

(ii) Let µ0 > 0 be fixed. Assume that (HA) holds. For every nonnegative ε
and µ such that ε + µ > 0, and f satisfying (Hf ), let uεµ ∈ W 2,2(0, T ;H)
and uµ ∈ W 1,2(0, T ;H) be the unique solutions to problems (Pεµ)ap, and re-
spectively (Pµ)ap, given by Theorem 2.3 (ii). Then, the following estimate and
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approximation hold

‖ uεµ − uµ0
‖L2(0,T ;H)= O(

√
ε) + O(| µ− µ0 |),

uεµ → uµ0
in C([0, T ];H) as (ε, µ)→ (0+, µ0).

(35)

In addition, the following estimate holds

‖ uεµ − u00 ‖L2(0,T ;H)= O(
√
ε) + O(µ) as (ε, µ)→ (0+, 0+), (36)

where u00 ∈ W 1,2(0, T ;H) is the unique solution to the (algebraic) inclusion
(E00), given by Theorem 2.3(ii). Furthermore, if µ2/ε = O(1), then

uεµ → u00 in C([0, T ];H) as (ε, µ)→ (0+, 0+). (37)

Proof. (i) From (Eεµ) and (Eε0µ0
) we have,

−ε(u′′εµ − u′′ε0µ0
)− (ε− ε0)u′′ε0µ0

+ µ(u′εµ − u′ε0µ0
) + (µ− µ0)u′ε0µ0

+Auεµ −Auε0µ0
+B uεµ −B uε0µ0

3 0 a.e. in (0, T ).
(38)

Set wεµ := uεµ − uε0µ0
and take the scalar product of (38) and wεµ in H to

obtain

ε ‖w′εµ ‖2H≤‖ wεµ ‖H
(
| ε− ε0 | ‖ u′′ε0µ0

‖H + | µ− µ0 | ‖ u′ε0µ0
‖H
)

≤ T ‖ f ‖H
2ε0

‖ w′εµ ‖H
(
| ε− ε0 | +

T

2
| µ− µ0 |

)
(39)

by integration by parts, the monotonicity of A and B, as well as the boundary
conditions satisfied by uεµ and uε0µ0

. Also, we have used (3) and (2) (with u
replaced by wεµ and u′ε0µ0

).
From (39) we derive

‖ w′εµ ‖H=‖ u′εµ − u′ε0µ0
‖H≤

T ‖ f ‖H
2ε0ε

(
| ε− ε0 | +

T

2
| µ− µ0 |

)
. (40)

From this and (2), we obtain that

‖ uεµ − uε0µ0 ‖∞≤
√
T

2
‖ u′εµ − u′ε0µ0

‖H= O(| ε− ε0 |) + O(| µ− µ0 |). (41)

In order to check convergence (34)2, let δ0 ∈ (0, ε0) be fixed. Denote
I0 = (ε0 − δ0, ε0 + δ0)× ((µ0 − δ0, µ0 + δ0) ∩ R+). For (ε, µ) ∈ I0, by (3) (see
also (2)), we have

‖ u′′εµ ‖H≤ (ε0 − δ0)−1 ‖ f ‖H, ‖ u′εµ ‖∞≤
√
T (2(ε0 − δ0))−1 ‖ f ‖H . (42)
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Following a similar pathway to the arguments employed in the proof of The-
orem 2.3, from the Arzelà-Ascoli Criterion, along with (42), (41), and the
uniqueness of the solution uε0µ0

to problem (Pε0µ0
)ap, we get

u′εµ → u′ε0µ0
in C([0, T ];H) as (ε, µ)→ (ε0, µ0). (43)

Finally, this combined with (41), implies (34)2.
(ii) First, we consider that (ε, µ)→ (0+, µ0), with µ0 > 0. Subtracting (Eεµ)
and (Eµ0

) we obtain

−εu′′εµ+µ(u′εµ−u′µ0
)+(µ−µ0)u′µ0

+Auεµ−Auµ0 +B uεµ−B uµ0 3 0. (44)

Set w̄εµ := uεµ − uµ0
take the scalar product of (44) and w̄εµ in H, then use

the strong monotonicity of A and arguments similar to those in the previous
case, we get

ε ‖ u′εµ ‖2H +ω0 ‖ w̄εµ ‖2H
≤| µ− µ0 | · ‖ u′µ0

‖H‖ w̄εµ ‖H +ε ‖ u′εµ ‖H‖ u′µ0
‖H

≤ ε

2
‖ u′εµ ‖2H +

ω0

2
‖ w̄εµ ‖2H +

‖ f ′ ‖2H ε

2ω2
0

+
(µ− µ0)2 ‖ f ′ ‖2H

2ω3
0

.

(45)

Here we have also used (4) along with the elementary inequality xy ≤ (x2 +
y2)/2. Clearly, from (45) we get

ε ‖ u′εµ ‖2H +ω0 ‖ w̄εµ ‖2H= O(ε) + O(| µ− µ0 |2),

which implies

‖ uεµ − uµ0 ‖H= O(
√
ε) + O(| µ− µ0 |) as (ε, µ)→ (0+, µ0). (46)

Finally, consider an arbitrary sequence (εn, µn) → (0+, µ0) as n → ∞. We
have (see (4))

‖ u′εnµn
‖H≤

‖ f ′ ‖H
ω0

for all n ∈ N, ‖ u′µ0
‖H≤

‖ f ′ ‖H
ω0

.

Therefore, the sequence {‖ uεnµn − uµ0 ‖}n∈N is bounded and uniformly
equicontinuous in C[0, T ]. From the Arzel-Ascoli Criterion, estimate (46) (see
also [8, Theorem 4.9]), and that the solution uµ0

to problem (Pµ0
)ap is unique,

we obtain uεnµn
→ uµ0

as n→∞, which implies

uεµ → uµ0
in C([0, T ];H) as (ε, µ)→ (0+, µ0).

Next we assume that (ε, µ)→ (0+, 0+).
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By computations similar to those carried out in order to derive (45), we get

ε ‖ u′εµ − u′00 ‖2H +ω0 ‖ uεµ − u00 ‖2H
≤ µ ‖ u′00 ‖H‖ uεµ − u00 ‖H +ε ‖ u′00 ‖H‖ u′εµ − u′00 ‖H .

(47)

Using again the elementary inequality xy ≤ (x2 + y2)/2 in (47) we obtain

ε ‖ u′εµ − u′00 ‖2H +ω0 ‖ uεµ − u00 ‖2H= O(ε) + O(µ2), (48)

as (ε, µ)→ (0+, 0+), hence

‖ uεµ − u00 ‖H= O(
√
ε) + O(µ) as (ε, µ)→ (0+, 0+). (49)

In order to obtain convergence (37), we note that the assumption µ2/ε = O(1)
as (ε, µ)→ (0+, 0+), combined with (48), yields that we can find two positive
constants C0 and δ0 that are independent of both ε and µ, with the property
that

‖ u′εµ ‖2H≤ C0 for all (ε, µ) ∈ (0, δ0)× (0, δ0).

This estimate together with (2) implies that the set {‖ uεµ − u00 ‖; (ε, µ) ∈
(0, δ0) × (0, δ0)} is relatively compact in C[0, T ]. Thus, by the Arzelà-Ascoli
Criterion combined with (49), we obtain that every convergent sequence with
positive components (εn, µn)→ (0+, 0+) has a convergent subsequence, again
denoted

(
εn, µn

)
n
, such that

uεnµn
→ u00 in C([0, T ];H) as (εn, µn)→ (0+, 0+).

Finally, the uniqueness of the solution u00 to algebraic inclusion (E00) implies

uεµ → u00 in C([0, T ];H) as (ε, µ)→ (0+, 0+).

Our proof is thus complete.

Remark 3.2. In the case of problems (P εµ)ap, (Pµ)ap, as well as the inclusion
(E00) obtained by considering the Lipschitz perturbation F, the statements of
Theorem 3.1 (ii) hold true assuming the framework in Theorem 2.4. This can
be easily verified by reviewing the proof above and noting that all estimates in
Theorem 3.1 (ii) hold, with the constant ω0 replaced by ω0 −L, where L is the
Lipschitz constant of F.

4 Applications

In this section, we will illustrate the relevance of our abstract theorems by
applying them to boundary value problems for the telegraph system and the
semilinear heat equation.
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4.1 Semilinear telegraph system with time anti-periodic solution

We encounter telegraph systems in the theory of integrated circuits, models of
arterial networks (such as arterial blood flow), traffic flows on networks, and
networks of open channels (see [18]).

Let DT := [0, T ] × [0, 1], where we consider the problem presented below,
denoted as (P 1

εµ)ap:{
−εutt + µut + vx + ru = f1(t, x),
−εvtt + cvt + ux + gv = f2(t, x), (t, x) ∈ DT ,

(−u(t, 0), u(t, 1)) ∈ Γ(v(t, 0), v(t, 1)), t ∈ (0, T ),{
u(0, x) + u(T, x) = 0, v(0, x) + v(T, x) = 0,
ut(0, x) + ut(T, x) = 0, vt(0, x) + vt(T, x) = 0, x ∈ (0, 1).

The above problem can be considered a Lions-type regularization (for small ε)
of the reduced problem linked with the telegraph differential system, denoted
by (P 1

µ)ap : {
µut + vx + ru = f1(t, x),
cvt + ux + gv = f2(t, x), (t, x) ∈ DT ,

(−u(t, 0), u(t, 1)) ∈ Γ(v(t, 0), v(t, 1)), t ∈ (0, T ), (50)

u(0, x) + u(T, x) = 0, v(0, x) + v(T, x) = 0, x ∈ (0, 1). (51)

Here, the positive constants r, g, µ, c represent the resistance, conductance,
inductance and capacitance per unit length of an electrical circuit (long line)
and the functions u(t, x), v(t, x) represent the current and voltage at time
instant t and point x (see, e.g., [12] and [17, Chapter III]).

We assume that
(hrgc) r, g, c are strictly positive constants;
(hfi) fi ∈W 1,1(0, T ;L2(0, 1)), and fi(0) + fi(T ) = 0, i = 1, 2;
(hΓ) Γ ⊂ R2 (possibly set-valued) is an odd maximal monotone operator.

The boundary condition at the ends of the circuit is very general, which
means that many other classical boundary conditions may emerge from it as
isolated cases. For example, if Γ is linear, this condition turns into equalities
that represent Ohm’s law at the ends of the circuit where x = 0 and x = 1. On
the other hand, if Γ is the subdifferential of the function j : R2 → (−∞,+∞],
defined by j(x, y) = 0 if x = y, and j(x, y) = +∞, otherwise, the condition
corresponds to space periodic boundary conditions

u(t, 0) = u(t, 1), v(t, 0) = v(t, 1) t ∈ (0, T ).

Notice that in both problems (P 1
εµ)ap and (P 1

µ)ap, the parameter µ appears
exclusively in one equation of the system. We will consider the inductance,
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represented by µ, to be a small parameter. If the corresponding frequency is
small, then the inductance of the line is small as well (see [4, Chapter 3]).

In the Hilbert space H = L2(0, 1) × L2(0, 1), with the standard inner
product and norm, problems (P 1

εµ)ap and (P 1
µ)ap can be expressed as abstract

boundary value problems.
Indeed, define A : D(A) ⊂ H → H by

D(A) =
{
v = [v1, v] ∈ H1(0, 1)

2
; [−v1(0), v1(1)] ∈ Γ([v2(0), v2(1)])

}
,

Av = [v′2 + rv1, v
′
1 + gv2] ∀ v ∈ D(A).

Setting w := [u, v], f := [f1, f2], we can write the two problems above as{
−εw(t) + [µu′, cv′](t) +Aw(t) 3 f(t) a.e. t ∈ (0, T ),
w(0) + w(T ) = [0, 0], w′(0) + w′(T ) = [0, 0],

(52)

and {
[µu′, cv′](t) +Aw(t) 3 f(t) a.e. t ∈ (0, T ),
w(0) + w(T ) = [0, 0],

(53)

where w(t) = [u(t, ·), v(t, ·)] and f(t) := [f1(t, ·), f2(t, ·)].
The above definition of the operator A renders it to be maximal monotone

in H (see [15, Section 5.1]). On the other hand, since A is not a subdifferen-
tial, that means that it is also not cyclically monotone. A simple calculation
reveals that A is strongly monotone with constant ω0 = min{r, g}. There-
fore, we obtain the following result which is very similar to Theorem 2.3 and
Theorem 3.1 above.

Theorem 4.1. Assume that (hrcg), (hΓ), and (hfi), i = 1, 2, are fulfilled.
Then, for every nonnegative ε and µ such that ε + µ > 0, and fi satisfying
(Hfi), i = 1, 2, the problems (P 1

εµ)ap and (P 1
µ)ap have unique solutions

[uεµ, vεµ] ∈ (W 2,2(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1))2,

and
[uµ, vµ] ∈ (W 1,2(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1))2.

In addition, the following estimates hold

‖ [u′εµ, v
′
εµ] ‖H2≤ ω−1

0 ‖ [f ′1, f
′
2] ‖(L2(DT ))2 for every ε > 0, µ ≥ 0,

‖ [u′µ, v
′
µ] ‖(L2(DT ))2≤ ω−1

0 ‖ [f ′1, f
′
2] ‖H2 for every µ > 0.

(54)

Moreover, for nonnegative ε0 and µ0 such that ε0 + µ0 > 0, the following
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estimates and approximations hold

‖ [uεµ − uε0µ0
, vεµ − vε0µ0

] ‖C([0,T ];H)= O(| ε− ε0 |) + O(| µ− µ0 |),
[uεµ, vεµ]→ [uε0µ0

, vε0µ0
] in C1([0, T ];H) as (ε, µ)→ (ε0, µ0),

‖ [uεµ − uµ0
, vεµ − vµ0

] ‖L2(DT )2= O(
√
ε) + O(| µ− µ0 |) and

[uεµ, vεµ]→ [uµ0
, vµ0

] in C([0, T ];H) as (ε, µ)→ (0+, µ0),

(55)

where H = L2(0, 1)× L2(0, 1).

Proof. Upon reviewing the proof of Theorem 2.3, it becomes evident that all
the arguments and computations used there remain valid within this frame-
work, as the coefficients µ and c of the term [u′, v′] are irrelevant. Conse-
quently, the solutions to (P 1

εµ)ap and (P 1
µ)ap both exist and are unique; we

also obtain the uniform estimates (54).
In order to derive (55), we look at Theorem 3.1 and apply similar arguments

to those employed in its proof. However, we do need some tiny adjustments
that we highlight below. To proceed with, consider the case (ε, µ)→ (0+, µ0);
the other case, (ε, µ) → (ε0, µ0), is similar. Obviously, from (52)1 and (53)1,
we obtain

−ε[u′′εµ, v′′εµ] + [µ(u′εµ − u′µ0
), c(v′εµ − v′µ0

)] + [(µ− µ0)u′µ0
, 0]

+A [uεµ, vεµ]−A [uµ0 , vµ0 ] 3 [0, 0].
(56)

Taking the scalar product in H2 of the above inclusion and [uεµ−uµ0
, vεµ−vµ0

]
using the strong monotonicity of A and the antiperiodic conditions, we derive

ε ‖ [u′εµ,v
′
εµ] ‖2H2 +ω0 ‖ [uεµ − uµ0

, vεµ − vµ0
] ‖2H2

≤| µ− µ0 | · ‖ u′µ0
‖H‖ uεµ − uµ0 ‖H

+ ε
(
‖ u′εµ ‖H‖ u′µ0

‖H + ‖ v′εµ ‖H‖ v′µ0
‖H
)

≤ K
(
| µ− µ0 |‖ uεµ − uµ0

‖H +ε ‖ [u′εµ, v
′
εµ] ‖H2

)
,

(57)

by (54) (here K = ω−1
0 ‖ [f ′1, f

′
2] ‖H2). From the elementary inequality xy ≤

(x2 + y2)/2, this implies

ε

2
‖ [u′εµ, v

′
εµ] ‖2H2 +

ω0

2
‖ [uεµ − uµ0 , vεµ − vµ0 ] ‖2H2≤

K2

2

(
(µ− µ0)2

ω0
+ ε

)
.

Thus,

‖ [uεµ − uµ0
, vεµ − vµ0

] ‖H= O(
√
ε) +O(| µ− µ0 |) as (ε, µ)→ (0+, µ0). (58)

Finally, the Arzel-Ascoli Criterion along with (54) and the uniqueness of the
solution [uµ0 , vµ0 ] to problem (P 1

µ0
)ap, ensures the convergence

[uεµ, vεµ]→ [uµ0
, vµ0

] in C([0, T ];H) as (ε, µ)→ (0+, µ0).

Our proof is thus complete.
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4.2 Semilinear heat equation with anti-periodic solutions

Let N be a positive integer, and let Ω be a bounded domain in RN with smooth
boundary ∂Ω. In this subsection, we set µ = 1, to derive a Lions regularization
for the anti-periodic solution of a semilinear heat equation presented below.
Thus, for ε > 0, we consider the following pair of problems

(P 2)ap

 ut −∆xu+ θ u =
(∫

Ω
u2dx

)p
u+ f a.e. in R× Ω,

u(t, x) = 0 for a.e. t ∈ R, x ∈ ∂Ω,
u(0, x) + u(T, x) = 0, x ∈ Ω,

(P 2
ε )ap

 −εutt + ut −∆xu+ θ u =
(∫

Ω
u2dx

)p
u+ f a.e. in R× Ω,

u(t, x) = 0 or ∂u
∂ν (t, x) = 0 for a.e. t ∈ R, x ∈ ∂Ω,

u(0, x) + u(T, x) = 0, ut(0, x) + ut(T, x) = 0, x ∈ Ω,

where p ≥ 0 and ∆x represents the N−dimensional Laplacian with respect to
the variable x. Suppose that the following assumptions are met

(hf ) f ∈W 1,2(0, T ;L2(Ω)), and fi(0) + fi(T ) = 0, i = 1, 2;
(hθ) θ ⊂ R2 is an odd, maximal monotone (potentially set-valued) operator.

We choose the Hilbert spaces H = L2(Ω) and V = H1
0 (Ω), and define the

even, proper, convex and lower semicontinuos function φ : H → [0,+∞]

φ(v) =

{ 1
2 ‖ ∇ v ‖

2
L2(Ω;RN ) + ‖ j(v) ‖2L1(Ω) if v ∈ V and j(v) ∈ L1(Ω),

+∞ otherwise,

where j : R→ (−∞,+∞] is such that ∂ j = θ (here and throughout ∂ denotes
the subdifferential).
Next, we will derive the abstract formulations of the aforementioned problems
in H. To this end, we define the operators A : D(A)→ H and F : H → H as
follows

D(A) = {u ∈ H2(Ω) ∩ V ; ∆u+ θ̄u ∈ H}, A v = −∆ v + θ̄ v for all v ∈ D(A),

F : H → F, F v =‖ u ‖p v for all v ∈ H,

where θ̄ is the canonical extension to the operator θ to the Hilbert space
L2(0, T ;H). It is known that A = ∂ψ (see, e.g., [6, Proposition 3.8, p. 89]).
Therefore, A is maximal cyclically monotone and also strongly monotone with
constant ω0 = λ1, where λ1 is the smallest eigenvalue of the Laplace operator
on H1

0 (Ω). On the other hand, F is the Fréchet derivative of the even, proper,
and convex function

ψ : H → R, ψ(v) =
1

2p+ 2
‖ v ‖2p+2 for all v ∈ H.
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Also, the operator F is local Lipschitz continuous being continuous Fréchet
differentiable on H. Indeed, for all r > 0

‖ F v1 − F v2 ‖≤ (2p+ 1)r2p ‖ v1 − v2 ‖ if vi ∈ H, ‖ vi ‖≤ r, i = 1, 2. (59)

Clearly, (P 2
ε )ap can be expressed in abstract form in H as follows{
−εu′′(t) + u′(t) +Au(t) 3 F u(t) + f(t) a.e. t ∈ (0, T ),
u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

(60)

where u(t) = u(t, ·) and f(t) = f(t, ·). Consider uε ∈ W 2,2(0, T ;H) as a
solution to (P 2

ε )ap. Since A and F are odd operators of subdifferential type,
taking the scalar product in L2(0, T ;H) of (60)1 (with uε instead of u) and u′ε,
applying the chain rule for subdifferential (see, e.g., [9, Lemma 3.3, p. 73]),
and the T− antiperiodicity of u′ε, we obtain ‖ u′ε ‖H≤‖ f ‖L2((0,T )×Ω) .

This implies, by (2), that

‖ uε ‖∞≤
√
T ‖ f ‖L2(0,T ) /2︸ ︷︷ ︸

= R0

. (61)

Moreover, using a similar technique, we can show that the solution to (P 2)ap
satisfies the same estimate. To apply Theorem 2.4, we define the operator
FR0 = F ◦ hR0 , where hR0 is the radial retraction given by hR0(x) = x if
‖ x ‖≤ R0, and hR0

(x) = R0x/ ‖ x ‖ otherwise. Since hR0
is Lipschitz with a

constant in the range [1, 2] (see, e.g., [3, p. 55]), it follows that Fr is Lipschitz
on H with a Lipschitz constant no greater that LR0

:= 2(2p+1)R2p
0 (see (59)).

If LR0 < ω0 = λ1, that is

21−2p(2p+ 1)T p ‖ f ‖2pL2((0,T )×Ω)< λ1, (62)

then Theorem 2.4 applies to our problems with FR0
in place of F , ensuring the

existence and uniqueness of solutions in this case. As can be seen from (61)
and the definition of FR0

, these solutions are, in fact, the unique solutions of
the original problems.

Consequently, from Theorem 2.4 and Theorem 3.1 (see also Remark 3.2),
we have the following result.

Theorem 4.2. Let p ≥ 0. Assume that (hθ) and (62) are satisfied. Then, for
every ε > 0 and f satisfying (hf ), the problems (P 2

ε )ap and (P 2)ap have unique
solutions uε ∈W 2,2(0, T ; L2(Ω)) ∩ C(0, T ;H1

0 (Ω)) and u ∈W 1,2(0, T ; L2(Ω))
∩ C(0, T ;H1

0 (Ω)), respectively. Moreover, for any fixed ε0 ≥ 0, the following
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estimates and approximations hold true

‖ uε − uε0 ‖C([0,T ];L2(Ω))= O(| ε− ε0 |),
‖ u′ε − u′ε0 ‖L2((0,T );H1

0 (Ω))= O(| ε− ε0 |) and

uε →uε0 in C1([0, T ];L2(Ω) as ε→ ε0 > 0,

‖ uε − u ‖L2((0,T )×Ω))= O(
√
ε),

uε → u in C([0, T ];L2(Ω)) as ε→ 0+.

(63)

In particular, the last convergence in (63) confirms that (P 2
ε )ap provides a

genuine Lions elliptic regularization for the problem (P 2)ap.
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