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Evaluating A
(2)
T,S Matrix Inverses from full-rank

Singular Value Decomposition

Ivan Stanimirović

Abstract

Based on the compact SVD decomposition of the full rank of a prede-
termined matrix M , a method for calculating the inverses A

(2)
T,S of matrix

A is derived. As a consequence, the advantages of compact single value
decompositions were developed with this new method. The method is
then extended to a set of polynomial matrices. As a result, an algo-
rithm is proposed for effective symbolic computation of A

(2)
T,S inverses

of a polynomial matrix. Some implementation details and comparative
computation times compared to other similar methods are shown to
illustrate the efficiency of the algorithm.

1 Introduction

The decomposition of a matrix into an appropriate canonical arrangement is
named matrix factorization. There exist diverse matrix factorizations, utilized
among specific classes of tasks. A matrix with elements of a commutative ring
is named a symbolic matrix. The construction of matrices of minors is required
for the task of inversion of a symbolic matrix [1]. To compute the generalized
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inversions of A, the decomposition of the polynomial matrix A is frequently
considered [9].

Applying a compact SVD decomposition of a matrix A to the representa-

tion of the generalized inverse A
(2)
T,S from [10] is our central goal. The technique

offered in [10] is shaped from the full-rank decomposition of A. Here we pro-
vide an addition to this procedure, appropriate not just for the scheming of

the Moore-Penrose inverse but also for the broader set of A
(2)
T,S inverses. We

select the efficient compact SVD decomposition of the predetermined matrix
M instead of the decomposition FG of A. Furthermore, in this paper, the
expansion of this procedure is also established on a set of polynomial matrices
with one unknown variable.

To implement generalized inversions of polynomial and rational matrices,
SVD decomposition is a frequent choice (see [7]). In the compact SVD, the
product UrΣrV

∗
r is calculated, where only the r column vectors of U and the r

row vectors of V ∗ (which correspond to nonzero singular values) are calculated
(other vectors of U and V ∗ are not calculated). This is faster than a thin SVD
if r << n. The matrix Ur is consequently of dimensions m× r, while Σr is a
diagonal r× r matrix, and V ∗r is r× n matrix. So, a compact SVD of A(x) is
a full rank factorization of the form

A(x) = U(x)Σ(x)V ∗(x), (1)

where Σ(x) is diagonal matrix,

U(x) = (Uij(x))m,ri,j=1, V (x) = (Vij(x))r,ni,j=1 (2)

and uij , σj , vji, 1 ≤ j ≤ r are rational functions. In this notation, V ∗(x)
means the conjugate transpose of V (x).

As usual, the set of rational functions with complex coefficients is denoted
by C(x), and the set of m×n matrices with elements in C(x) is denoted by
C(x)m×n. Observe the complex matrix A(x) ∈ C(x)n×n given in the polyno-
mial formula with respect to the unidentified x:

A(x) = A0 +A1x+ · · ·+Aqx
q =

q∑
i=0

Aix
i (3)

where Ai, i = 0, . . . , q are n× n constant matrices [2].

Several novel procedures are presented for the scheming of various cat-
egories of generalized inverses in [15, 16], based on the knowledge that the
polynomial matrix may be described by a series of constant matrices. The
complexity that increases with the degree of A(x) is one of the complications
that influence these methods.
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The range of a matrix A ∈ C(x)m×n is indicated as R(A) and the null
space of A as N(A). Furthermore, let us denote by nr(A) the normal rank
of A (for example, the rank over the set C(x)) and by C(x)m×nr the class of
matrices from C(x)m×n of the normal rank r. Moreover, let rank(A) denote
the position of persistent matrix A and Cm×nr stands for the subset of complex

m × n matrices Cm×n with rank r. Now we recapture the meaning of A
(2)
T,S ,

summed in [10].

Definition 1.1. [10] If A ∈ Cm×nr , T is a subspace of Cn of dimension t ≤ r
and S is a subspace of Cm of dimension m − t, then A has a {2}-inverse X
such that R(X) = T and N(X) = S if and only if AT ⊕ S = Cm, in which

case X is unique and is denoted by A
(2)
T,S.

Definition 1.2. [10] In the case where A ∈ Cm×nr , T is a subspace of Cn of
measurement t ≤ r and S is a subspace of Cm of measurement m− t, at that
point A has a {2} reverse X with the end goal that R(X) = T and N(X) = S
if and only if AT ⊕ S = Cm, in which case X is remarkable and is indicated

by A
(2)
T,S.

Probably the most utilized cases of generalized inverses are outer inverses
with predefined range and null space. Many important generalized inverses,
like Moore-Penrose X†, weighted Moore-Penrose X†M,N , Drazin XD and group

inverseX#, along with the Bott-Duffin inverseX
(−1)
(L) and the generalized Bott-

Duffin inverse X
(†)
(L), can be united and presented by generalized inverses X

(2)
T,S ,

where the corresponding matrices T and S are considered in [2]. For a given
matrix X ∈ Cm×n(x) the next presentations are valid (see [2, 3, 17, 18]):

X† = X
(2)
R(X∗),N(X∗), X

†
M,N = X

(2)

R(X]),N(X])
, XD = X

(2)

R(Xk),N(Xk)
,

X# = X
(2)
R(X),N(X), X

(−1)
(L) = X

(2)

L,L⊥
, X

(†)
(L) = X

(2)

S,S⊥
.

(4)

Our goal is to develop a new algorithm for symbolic computation of the
A2
T,S inverse from SVD decomposition of polynomial matrices. A motivation

is to apply a polynomial matrix factorization which is free of square roots
of polynomials, thus avoiding problems with symbolic computations of such
matrices arising from the existence of square roots of polynomials.

This work is structured as following. The calculation of outer inverses us-
ing compact SVD is first observed. Consequently, a new strategy is resulting
grounded on the theorems from [10] using the compact singular value factor-
ization. In Section 3, the aforementioned procedure is focused and specified on
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the class of polynomial matrices. Several numerical examples and comparison
studies were carried out in the fourth section, as well as execution specifics.
The conclusion is drawn in the last section.

2 Main results

Numerous full-rank presentations of dissimilar classes of generalized inverses
were presented, either of arranged rank or of prescribed range and kernel. We
observe the next full–rank presentation of outer inverses of predecided range
and null space, proposed by Sheng and Chen [10].

Theorem 2.1. [10]
Consider a matrix A∈Cm×nr and subspaces T ⊆ Cn of normal rank s ≤ r

and S ⊆ Cm of normal rank m− s. Assume that a matrix X ∈ Cn×m fulfills
R(X) = T,N(X) = S, and has a full-rank factorization X = FG. If A has an

A
(2)
T,S inverse, at that point the accompanying proclamations hold: (1) GAF is

an invertible matrix; (2) A
(2)
T,S = F (GAF )−1G = A

(2)
R(F ),N(G).

Theorem 2.2, deriving a representation of outer inverses, is proposed as a
corollary of Theorem 2.1.

Theorem 2.2. Observe a matrix A ∈ C(x)m×ns of normal rank s, and the
compact SVD decomposition of an random matrix X ∈ C(x)m×ns of the rank
r ≤ s, where U ∈ C(x)m×rr , Σ ∈ C(x)r×rr and V ∈ C(x)n×rr . Consider the set

Cr(X) = {z| nr(X)=rank(X(z))=rank(Σ(z)V ∗(z)A(z)U(z))=r}. (5)

If the equality
nr(X) = nr(ΣV AU) = r (6)

is valid, the next statement holds on Cr(X):

A
(2)
R(U),N(V ∗) = U(V ∗AU)−1V ∗ = A

(2)
R(X),N(X). (7)

Proof. From the equality
X = UΣV ∗, (8)

representing a full–rank factorization of X on Cs(X), using the identity (2)
proceeding from Theorem 2.1 and the expression

U(ΣV ∗AU)−1ΣV ∗ = A
(2)
R(U),N(ΣV ∗)

the following can be obtained:

U(V ∗AU)−1V ∗ = A
(2)
R(U),N(V ∗).
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The statement A
(2)
R(X),N(X) = A

(2)
R(U),N(V ∗) is valid on the subset Cr(X), ac-

cording to equality (8).

The accompanying theorem gives rules for developing the matrix X in re-
quest to produce several types of generalized inverses. Several types of gener-
alized rational matrix inverses can be determined by choosing the appropriate
X and generating the corresponding compact SVD factorization.

Corollary 2.1. Consider M ∈ C(x)n×ns of the normal rank s and a matrix
X ∈ C(x)n×nr , where r ≤ s. The next statements are satisfied on the class
Cr(X):

M
(2)
R(U),N(V ∗) =



M†, X = M∗;
M#, X = M ;
MD, X = Mk, k ≥ ind(M);

M
(−1)
(L) , R(X) = L, N(X) = L⊥;

M
(†)
(L), R(X) = S, N(X) = S⊥

(9)

Proof. Following from Theorem 2.2 and expressions (4).

Corollary 2.2. Consider M ∈ C(x)m×ns of the normal rank s and the compact
SVD factorization of a matrix X ∈ C(x)m×nr of the rank r ≤ s, where X =
UΣV ∗ and U ∈ C(x)m×rr , V ∈ C(x)n×rr , and Σ ∈ C(x)r×rr is the diagonal
matrix. Let us introduce the set

Cr(X) = {z| nr(X)=rank(X(z))=rank(V ∗(z)M(z)U(z))=r}. (10)

If the equality
nr(X) = nr(V ∗MU) = r (11)

holds, the next statement is satisfied on the set Cr(X):

M
(2)
R(U),N(V ∗) = U(V ∗XU)−1V ∗ = M

(2)
R(X),N(X). (12)

Proof. It proceeds from Corollary 2.1.

We will consider the effective method for evaluating (12) as to solve the
equations

V ∗MUY = V ∗ (13)

with respect to Y and then computing the matrix product UY :

M
(2)
R(U),N(V ∗) = UY. (14)

Next we formulate the method for computing M
(2)
T,S inverses of M as fol-

lows.
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Algorithm 2.1 Computing M
(2)
T,S from the compact SVD decomposition of

M . (Algorithm SVDATS2)

Require: The matrix M ∈ C(x)m×ns of the normal rank s.
1: Define matrix X ∈ C(x)m×n of the rank r ≤ s.
2: Calculate the compact SVD decomposition of the matrix X.
3: Solve the equation (13) to determine the variable matrix Y .

4: return The generalized inverse matrix M
(2)
R(U),N(V ∗) as the matrix product

UY from (14).

3 Computing A
(2)
T,S inverses of polynomial matrices

Thereat, SVD-P algorithm from [6] is utilized to define the compact SVD de-
composition of a polynomial matrix. In [7], the iterative method for evaluating
the SVD of a polynomial matrix is delivered. It is formed on iterative calcu-
lations of QR factorization of the certain matrix and its change to a nearly
diagonal polynomial matrix. Otherwise, the SVD may be calculated itera-
tively from the eigenvalue factorization and the second-order sequential best
rotation (SBR2) method, as presented in [7].

Computing the QR factorization of a polynomial matrix is evidently an
additionally complex problem compared to expressing the exact factorization
of a scalar matrix, since every component of the matrix A(z) now contains a
series of polynomial factors. To change a single element of the matrix to zero,
all the numbers of this element must be changed to zero, and this cannot be
done by Givens rotations [6]. In its place, a analogous method is employed
to that used when generating the Para unitary change matrix compulsory
within the SBR2 algorithm and so the Para unitary polynomial matrix Q(z)
is formulated as a series of basic rotation matrices interspersed with delay
matrices.

Another part of the PQRD-BC method contains an iterative procedure
to force the constants related with all polynomial elements located under the
diagonal of a specific column of the polynomial matrix A(x) to be sufficiently
small, which is done by using an array of EPGR processes. The algorithm
operates as a series of steps, where at each step all constants related with
the polynomial elements positioned below the diagonal of one column of the
polynomial matrix A(x) are made adequately small.

A method called SVD-P, by applying the polynomial QR decomposition
(QRD-P) method is presented in [7]. The SVD-P works by iteratively us-
ing two QRD-Ps onto a polynomial matrix A in order to obtain a diagonal
polynomial matrix Σ. Also, the choice maker is allowed to specify how small
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the coefficients looking in off-diagonal elements must be driven for conver-
gence. More meaningfully, the SVD-P using the QRD-P method is said to
have generally smaller relative errors and the orders of the matrices in the
result decomposition.
A paraunitary matrix, over C, is a square matrix U(z) such that U(z)U∗(z−1) =
I, where ∗ denotes complex conjugate transpose.
Let A(x) ∈ Cp×q be a given polynomial matrix. The SVD-P by QRD-P algo-
rithm returns as the result two polynomial paraunitary matrices U(x) ∈ Cp×p
and V (x) ∈ Cq×q and a diagonal polynomial matrix Σ(x) (see [7]) such that

U(x)A(x)V ∗(x) ∼= Σ(x). (15)

Often, a precise diagonalization of the matrix A(x) is not possible to gain, as
each element of A is a polynomial. This is the reason for the approximate
equality in (15). However, in [7] it is proved that a satisfactory approximation
can generally be obtained. From (15) it is obvious that

A(x) ∼= U∗(x−1)Σ(x)V (x−1), (16)

since U∗ and V ∗ are also paraunitary matrices.
Theorem 3.1 is derived from Theorem 2.1 on polynomial matrices A and

M .

Theorem 3.1. Consider a polynomial matrix A ∈ C(x)m×ns of normal rank s,
an arbitrary Hermitian polynomial matrix M ∈ C(x)m×nr of the normal rank
r ≤ s and let M = UΣV ∗ be the compact SVD decomposition of M , where
U ∈ C(x)m×rr , V ∈ C(x)n×rr and Σ ∈ C(x)r×rr are of the form (2). Denote the
set Cr(M) as in (10) and an arbitrary (i, j)-th element of the inverse matrix
N = (V ∗AU)−1 by

ni,j(x) =

nq∑
k=0

nk,i,jx
k
/ nq∑
k=0

nk,i,jx
k. (17)

If the condition (11) is satisfied, then an arbitrary (i, j)-th element of A
(2)
R(U),N(V ∗)

can be calculated by (
A

(2)
R(U),N(V ∗)

)
ij

(x) =
Θi,j(x)

Θi,j(x)
,
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for x ∈ Cr(M), where Θi,j(x) and Θi,j(x) are polynomials of the form

Θi,j(x) =

Θq−γq+γq∑
t=0

min{j,r}∑
k=1

min{i,r}∑
l=1

t∑
t1=0

γt1,i,j,k,lθt−t1,i,j,k,l

xt, (18)

Θi,j(x) = PolynomialLCM


γq∑
t=0

γt,i,j,k,lx
t
∣∣k = 1, r, l = 1, r

 (19)

=

Θq∑
t=0

θt,i,jx
t, (20)

where for k = 1, r, l = 1, r, the coefficients θt,i,j,k,l, 0 ≤ t ≤ Θq − Θq are the
coefficients of the polynomial

Θi,j,k,l(x) =
Θi,j(x)

Θq∑
t=0

Θt,i,j,k,lxt

and the following denotations are used:

γt,i,j,k,l =

t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k, 0 ≤ t ≤ γq = uq + nq + vq,(21)

γt,i,j,k,l =

t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k, 0 ≤ t ≤ γq = uq + nq + vq.(22)

Proof. Since the entries of the inverse matrix N = (V ∗AU)−1 = {ni,j(x)}ri,j=0

are determined by (17), it follows

(UN)ij(x) =

r∑
l=1

ui,l(x)nl,j(x) =

r∑
l=1

uq∑
k=0

uk,i,lx
k

uq∑
k=0

uk,i,lxk

nq∑
k=0

nk,l,jx
k

nq∑
k=0

nk,l,jxk

=

r∑
l=1

uq+nq∑
k=0

(
k∑

k1=0

uk1,i,lnk−k1,l,j

)
xk

uq+nq∑
k=0

(
k∑

k1=0

uk1,i,lnk−k1,l,j

)
xk

.
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Therefore, the following equalities are valid:

(U(V ∗AU)−1V ∗)ij(x) =

r∑
k=1

(UN)ik(x) · (V ∗)kj(x)

=

r∑
k=1

r∑
l=1

uq+nq∑
t1=0

(
t1∑
t2=0

ut2,i,lnt1−t2,l,k

)
xt1

vq+nq∑
t1=0

(
t1∑
t2=0

ut2,i,lnt1−t2,l,k

)
xt1

vq∑
t2=0

v∗t2,j,kx
t2

vq∑
t2=0

v
∗
t2,j,kx

t2

=

r∑
k=1

r∑
l=1

uq+nq+vq∑
t1=0

(
t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k

)
xt1

lq+nq+vq∑
t1=0

(
t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k

)
xt1

.

According to Theorem 2.2, the equation (12) is satisfied for x ∈ Cr(M), and

an arbitrary (i, j)-th element of the inverse A
(2)
R(U),N(V ∗) is presented in the

form

(
A

(2)
R(U),N(V ∗)

)
ij

=

r∑
k=1

r∑
l=1

γq∑
t=0

γt,i,j,k,lx
t

γq∑
t=0

γt,i,j,k,lx
t

=
Θi,j(x)

Θi,j(x)
,

where the numerator and denominator polynomials are evaluated as

Θi,j(x) = PolynomialLCM


γq∑
t=0

γt,i,j,k,lx
t
∣∣k = 1, r, l = 1, r

 =

Θq∑
t=0

θt,ix
t,

Θi,j(x) =

j∑
k=1

r∑
l=1

Θi,j,k,l(x)

γq∑
t=0

γt,i,j,k,lx
t

 ,

such that every polynomial Θi,j,k,l(x) is determined by

Θi,j,k,l(x) = Θi,j(x)/

γq∑
t=0

γt,i,j,k,lx
t =

Θq−γq∑
t=0

θt,i,j,k,lx
t.

Therefore, each numerator polynomial Θi,j(x) is of the form (18), which com-
pletes the proof.
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Let us now propose the method for the estimate of generalized inverses of a
polynomial matrix, agreeing to the prior theorem. It is based on the compact
SVD decomposition of a polynomial matrix (where SVD-P algorithm from
[6] is used), and calculating the inverse of a polynomial matrix (given by
Algorithm 3.2 from [14]). In order to apply Algorithm 3.2 from [14] to the
rational matrix V ∗AU , it would be presented as a measure of a polynomial
matrix and a polynomial.

The SVD-P by QRD-P algorithm applied here is an iterative technique
where in every step the paraunitary matrices are computed using the QRD-P
by columns strategy (see [7] for details), as it generally uses less steps for the
convergence and it produces the upper triangular matrix of smallest order.
These two properties of the stated Algorithm 3.2 are rather related.

Algorithm 3.2 Evaluating the A
(2)
T,S inverse of a polynomial matrix using the

compact SVD factorization of an arbitrary polynomial matrix M .(Algorithm
SVDATS2)

Require: Polynomial matrix A(x) ∈ C(x)m×ns of the normal rank s, the
convergence parameter ε and the truncation parameter µ.

1: Choose an arbitrary fixed m×n polynomial matrix M of thr normal rank
r ≤ s.

2: Compute the SVD decomposition (15) of the matrix M using the SVD-P
by QRD-P algorithm for the given convergence and truncation parameters.

3: Evaluate the compact SVD decomposition of M by taking the first r col-
umn vectors of the first matrix appearing in (15) and r row vectors of the
last matrix from (15), in order to obtain the form (1)–(2).

4: Denote the entries of the polynomial matrices U and V appearing in (2)
as,

ui,j(x) =
umax∑
k=umin

uk,i,jx
k, i, j = 1, n,

vi,j(x) =
vmax∑
k=vmin

vk,i,jx
k, i, j = 1, n,

5: Extract the denominator polynomial from the rational matrix V ∗AU , such
that the equality V ∗AU = 1

p(x)P (x) is valid, where p(x) is a polynomial

and P (x) is a polynomial matrix.
6: Compute the inverse matrix P−1(x) using the Algorithm 3.2 from [14].

Evaluate the inverse matrix N = (V ∗AU)−1 as the product p(x) ·P−1(x),
where the entries are of the form (17).

7: Make the notations γq = uq + nq + vq, γq = uq + nq + vq, and for i =

1,m, j = 1, n perform Step 5.1 – Step 5.5.
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5.1: For k = 1, r, l = 1, r perform the following computations:

γt,i,j,k,l =

t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k, 0 ≤ t ≤ γq,

γt,i,j,k,l =

t1∑
t2=0

t1−t2∑
t3=0

ut2,i,lnt1−t2−t3,l,kv
∗
t3,j,k, 0 ≤ t ≤ γq.

5.2: Compute the denominator polynomial of the (i, j)-th element of

A
(2)
R(U),N(V ∗) by

PolynomialLCM


γq∑
t=0

γt,i,j,k,lx
t
∣∣k = 1, r, l = 1, r

 ,

and denote it by Θi,j(x) =
∑Θq

t=0 θt,i,jx
t.

5.3: For k, l = 1, r compute the polynomial Θi,j(x)/
γq∑
t=0

γt,i,j,k,lx
t and

denote it by Θi,j,k,l(x) =
Θq−γq∑
t=0

θt,i,j,k,lx
t.

5.4: Compute the numerator polynomial of the (i, j)-th element of

A
(2)
R(U),N(V ∗) as

Θi,j(x) =

Θq−γq+γq∑
t=0

(
r∑

k=1

r∑
l=1

t∑
t1=0

γt1,i,j,k,lθt−t1,i,j,k,l

)
xt,

5.5: Return the (i, j)-th entry of the matrix A
(2)
R(U),N(V ∗) as

Θi,j(x)/Θi,j(x).

4 Illustrative examples

Through examples we study our method and eventually check various develop-
ments to make comparative processing timings using random test matrices.

Example 4.1. Consider the next randomly generated polynomial matrix

A(x) =

 0.89 − 0.06
x 0.16x+ 0.47 0.33

x − 0.04
−0.33− 0.06

x 0.18x+ 0.47 0.34
x − 0.33

−0.44− 0.08
x 0.64 − 0.23x 0.24 + 0.45

x

 .
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These rational matrices used in SVD are gained:

U(x) =

 −0.867 − 0.441
x 0.006

0.257 − 0.444
x −0.783

0.467 − 0.602
x 0.51

,Σ(x) =

 −1.067 0 0
0 −1.338 0
0 0 0.544

,
V (x) =

 0.971 0.171x −0.048
−0.105 0.802x 0.565
0.149 −0.545x 0.806

.
Therefore:

A† = A# =
−1+x

−85−83x−2x2+x3
9+17x

85+83x+2x2−x3
3+10x

85+83x+2x2−x3

26(1+x)
−85−83x−2x2+x3

9+17x
85+83x+2x2−x3

4+36x−2x2+3x3

−85−83x−2x2+x3
27−2x+2x2−2x3

85+83x+2x2−x3
21+19x−2x2+5x3

85+83x+2x2−x3

3+10x
85+83x+2x2−x3

27−2x+2x2−2x3

85+83x+2x2−x3
9−16x+x2−x3

85+83x+2x2−x3
7+7x−2x2+3x3

85+83x+2x2−x3

26(1+x)
−85−83x−2x2+x3

21+19x−2x2+5x3

85+83x+2x2−x3
7+7x−2x2+3x3

85+83x+2x2−x3
4−4x+8x3

−85−83x−2x2+x3

 .
Consequently, the proposed algorithmic complexity will be nearlyO(n3m2),

wherever O(n3) is the complexity of the SV D and m is the largest exponent
of the polynomials resulting within this method.

Realization can be done in the package MATHEMATICA which is appropriate
for symbolic computations and has built-functions for manipulations with the
expressions [19]. The function Simplify[ ] is used to make the necessary
simplifications.

Example 4.2. Let us analyze the effectiveness of the SVDATS Algorithm.
For that purpose, a gathering of various calculations for the assessment of
Moore-Penrose inverse is thought about. The accompanying table presents
mean times consumed by performing these calculations on three arrangements
examples from [20], considering the halfway instance of a = 1.

Test matrix A10 A50 A100 A150 S10 S50 S100 S150 F10 F50 F100 F150

Partitioning [12] 0.01 0.48 2.75 14.55 0.03 1.18 9.20 73.55 0.01 0.45 2.81 15.3
Lev.-Faddeev [8] 0.04 2.76 43.78 - 0.11 2.51 44.37 - 0.13 2.67 42.84 -
PseudoInverse [19]0.03 1.86 25.51 - 0.13 2.77 41.39 - 0.09 2.33 33.54 -
Courrieu [5] 0.02 0.76 5.84 39.86 0.01 0.37 2.29 14.66 0.01 0.70 5.78 35.43
LDLGInverse [11] 0.02 1.87 11.67 - 0.02 0.98 4.55 22.31 0.01 1.96 12.64 -
SVDATS 0.02 0.82 5.44 40.33 0.01 0.39 2.11 15.99 0.01 0.87 6.02 38.01

Table 1. Mean processor timings (in sec.) from several methods and SVDATS

The proposed SVDATS algorithm is the fastest for test matrices A10, A100,
S10, S100, F10, and nearly equal to the running times of other tested algorithms for
other classes of matrices, making it a good candidate for solving the given problem
in terms of the running time.
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Rank deficient matrices are treated faster than full-rank matrices of the same
size, what is the straight result of the smaller matrix sizes of L and D, created by
the full-rank factorization. However, computation timings may expand greatly with
the matrix size and density increasing.

5 Conclusion

In this paper, we have observed the symbolic computation of outer inverses on
rational and polynomial matrices using compact SVD, and a new technique is
developed based on compact singular value factorization. We have proven that
our algorithm is highly efficient in terms of running times. Future research may
include developing analogous algorithms to evaluate A2

T,S generalized inverses.
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