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Abstract

We de�ne a new alternate measure of the cumulative residual

Sharma-Taneja-Mittal entropy. For this measure, there are given upper

and lower bounds, is introduced a consistent test based on the uniform

distribution and some concrete numerical examples are formulated.

1 Introduction

In order to analyse some physical phenomena, Tsallis introduced Tsallis en-
tropy in [57], which is a generalization of Shannon entropy (see [47]). The idea
was to work with another formula instead of classical logarithm, which is used
in Shannon entropy. Tsallis entropy is applied especially in physics, the reader
can �nd concrete applications in: superstatistics (see [7]), spectral statistics
(see [58]), earthquakes (see [3], [9], [12]), plasma (see [23]), non-coding human
DNA (see [28]), income distribution (see [50]), statistical mechanics (see [31],
[35], [43], [57]), internet (see [2]), stock exchanges (see [17], [18]).

There are also other generalizations of Shannon entropy: Rényi en-
tropy, Varma entropy, Abe entropy, Kaniadakis entropy, cumulative entropy,
weighted entropy, relative entropy, with applications in: �nance (see [30], [55],
[56], [61]), Markov chains (see [4], [5], [6]), combinatorics (see [36], [37]), Lie
symmetries (see [14], [32]), model selection (see [52], [53]), survival analysis
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(see [42], [46], [51]), nonlinear equations (see [13], [54]), statistical mechanics
(see [44], [45], [49]), machine learning (see [16], [59]).

Sharma and Taneja [48] and Mittal [24] introduced, in the framework of
the information theory, Sharma-Taneja-Mittal entropy, a generalized entropy
with two parameters. Afterwards, Kaniadakis et al. [20] reconsidered this
entropy from a physical point of view. It was proved that many aspects of the
statistical mechanics based on Boltzmann-Gibbs entropy remain valid in the
case of statistical mechanics based on Sharma-Taneja-Mittal entropy. Scarfone
and Wada [41] studied the thermo-statistics properties of this theory in the
microcanonical picture.

We remark that Sharma-Taneja-Mittal entropy includes some of the one-
parameter entropies mentioned above, namely Abe entropy [1], Kaniadakis
entropy [19] and Tsallis entropy [57]. Consequently, we are able to consider
all these one-parameter entropies in an uni�ed scheme.

Sharma-Taneja-Mittal entropy is useful in: analysis of record values (see
[29]), investigations of di�usion processes (see [10]), modeling holographic dark
energy (see [40], [63]), investigation of the di�erent phenomenon of black holes
(see [11], [38]), modeling uncertainty in the theory of human cognition (see
[8]) and estimating the performance of clustering models in data analysis (see
[21]).

Tsallis entropy plays an important role in the measurement uncertainty of
random variables and is the basis of the nonextensive statistical mechanics,
which generalizes the Boltzmann-Gibbs theory. Sati and Gupta [39] introduced
the cumulative residual Tsallis entropy (CRTE) and studied it from the point
of view of reliability modeling. Rajesh and Sunoj [33] de�ned an alternate
measure of CRTE and showed that it has some additional features and simple
relationships with other important information and reliability measures.

By considering Sharma-Taneja-Mittal entropy instead of Tsallis entropy in
the de�nition of CRTE from [48], we obtain the cumulative residual Sharma-
Taneja-Mittal entropy (CRSTME). In this paper, we work with an alternate
measure of CRSTME, de�ned in a similar way like the alternate measure of
CRTE from [33]. The di�erence is that we have two parameters θ1 and θ2,
instead of one parameter θ.

The paper is organized as follows. After this Introduction, in Section 2,
named Preliminaries, we present the main notions and notations used through-
out the article, including the de�nition of the alternate measure of the cu-
mulative residual Sharma-Taneja-Mittal entropy, denoted via CSTMθ1,θ2(X),
which will be used in the next sections. In Section 3, named Bounds for
CSTMθ1,θ2(X), we give an upper bound for CSTMθ1,θ2(X) (Theorem 3.4)
and a lower bound for CSTMθ1,θ2(X) (Theorem 3.7). In Section 4, named
Test based on uniform distribution, we introduce a consistent test with the help



AN ALTERNATE MEASURE OF THE CUMULATIVE RESIDUAL

SHARMA-TANEJA-MITTAL ENTROPY 127

of the uniform distribution. In section 5, named Concrete examples, there are
given some examples considering �xed values for the parameter θ1. Finally,
we formulate Conclusions concerning the results obtained in the paper.

2 Preliminaries

We use the notations (
p−→
n
) for convergence in probability and (

a.s.−−→
n

) for

almost surely convergence (as n→∞).
Let X be a random variable having absolutely continuous cumulative dis-

tribution function FX , survival function FX
def
= 1−FX and probability density

function fX .
Shannon entropy of X is given by

HX = −
∫ ∞
−∞

fX(x) log (fX(x)) dx,

where � log� is the natural logarithm function.
Rao et al. [34] and Wang et al. [60] de�ned a non-negative measure of

uncertainty, namely the cumulative residual entropy (CRE). This measure is
obtained by replacing the probability density function fX in the expression of
Shannon entropy by the survival function F |X|. More exactly, CRE is de�ned
by

CRE(X) = CRE(F ) = −
∫ ∞
0

F |X|(x) log
(
F |X|(x)

)
dx,

where F |X|(x) = P (|X| > x) for any x ≥ 0.
Using CRE, Noughabi [27] developed a test for uniformity and compared

the percentage points and power of seven alternative distributions. In order
to test the uniformity, Mohamed et al. [25] used the fractional and weighted
CRE measures.

Let θ ∈ (0,∞) \ {1}. Tsallis entropy of X is given via

HT
X =

1

θ − 1

∫ ∞
−∞

[
fX(x)− (fX(x))

θ
]
dx =

1

θ − 1

(
1−

∫ ∞
−∞

(fX(x))
θ
dx

)
.

Sati and Gupta [39] introduced the cumulative residual Tsallis entropy
(CRTE), given via

CT ∗θ (X) = CT ∗θ (F ) =
1

θ − 1

∫ ∞
0

[
f|X|(x)−

(
F |X|(x)

)θ]
dx =

1

θ − 1

(
1−

∫ ∞
0

(
F |X|(x)

)θ
dx

)
.
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Afterwards, Rajesh and Sunoj [33] introduced an alternate measure of
CRTE, as

CTθ(X) = CTθ(F ) =
1

θ − 1

∫ ∞
0

[
F |X|(x)−

(
F |X|(x)

)θ]
dx.

If θ → 1, then CTθ(X)→ CRE(X), but CT ∗θ (X) 6→ CRE(X).
According to Rajesh and Sunoj [33], CTθ(X) has more interesting mathe-

matical features than CRE(X). More exactly, it can be easily estimated from
sample data and these estimates converge asymptotically to the true values, for
the standard uniform distribution, denoted by U(0, 1) (i.e. X ∼ U(0, 1)), the

value of CTθ(X) is
1

2(1 + θ)
and CTθ(X) handles the information in residual

life.
Let θ1, θ2 ∈ (0,∞) such that θ2 > θ1.
Sharma-Taneja-Mittal entropy of X is given via

HSTM
X =

1

θ2 − θ1

∫ ∞
−∞

(
(fX(x))

θ1 − (fX(x))
θ2
)
dx.

Like in [39] we de�ne the cumulative residual Sharma-Taneja-Mitall en-
tropy (CRSTME) via

CSTM∗θ1,θ2(X) = CSTM∗θ1,θ2(F ) =

1

θ2 − θ1

∫ ∞
0

[(
f|X|(x)

)θ1 − (F |X|(x))θ2] dx
and, as in [33], we de�ne an alternate measure of the cumulative residual
Sharma-Taneja-Mittal entropy by

CSTMθ1,θ2(X) = CSTMθ1,θ2(F ) =
1

θ2 − θ1

∫ ∞
0

[(
F |X|(x)

)θ1 − (F |X|(x))θ2] dx.
Remark 2.1. We can easily see that CSTMθ1,θ2(X) ≥ 0.

Proposition 2.2. The following relationship is hold:

CSTMθ1,θ2(X) =
θ2 − 1

θ2 − θ1
CTθ2(X)− θ1 − 1

θ2 − θ1
CTθ1(X).

Proof. We have

CSTMθ1,θ2(X) =
1

θ2 − θ1

(∫ ∞
0

((
F |X|(x)

)θ1 − F |X|(x) + F |X|(x)−
(
F |X|(x))

θ2
))
dx

)
=
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− 1

θ2 − θ1

∫ ∞
0

(θ1 − 1)
1

θ1 − 1

[
F |X|(x)−

(
F |X|(x)

)θ1]
dx+

1

θ2 − θ1

∫ ∞
0

(θ2 − 1)
1

θ2 − 1

[
F |X|(x)−

(
F |X|(x)

)θ2]
dx =

θ2 − 1

θ2 − θ1
CTθ2(X)− θ1 − 1

θ2 − θ1
CTθ1(X).

3 Bounds for CSTMθ1,θ2(X)

Theorem 3.1. Assume that θ2 > θ1 > 1. If X ∈ L2 (i.e. E(X2) <∞), then
CSTMθ1,θ2(X) <∞.

Proof. From Proposition 2.2 we have

CSTMθ1,θ2(X) ≤ θ2 − 1

θ2 − θ1
CTθ2(X).

We apply Theorem 1 from [26] and obtain the conclusion.

Remark 3.2. Assume that θ2 > θ1 > 1. Then the existence of V ar(X)
assures that CSTMθ1,θ2(X) <∞.

Lemma 3.3. We consider gθ1,θ2 : [0, 1]→ R,

gθ1,θ2(t) =
1

θ2 − θ1
(
tθ1 − tθ2

)
.

Then, for any t ∈ [0, 1],

0 ≤ gθ1,θ2(t) ≤
1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

.
Proof. Let t ∈ [0, 1]. We have

g′θ1,θ2 (t) =
1

θ2 − θ1
[
θ1t

θ1−1 − θ2tθ2−1
]

and

g′θ1,θ2 (t) = 0⇐⇒ t =

(
θ1
θ2

) 1

θ2 − θ1 .

It follows that
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0 ≤ gθ1,θ2(t) ≤ gθ1,θ2

(θ1
θ2

) 1

θ2 − θ1

 =

1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

.

Theorem 3.4. Assume that X has support [0, 1]. Then

CSTMθ1,θ2(X) ≤ 1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

.
Proof. By Lemma 3.3 we get

CSTMθ1,θ2(X) =
1

θ2 − θ1

∫ 1

0

[(
F |X|(x)

)θ1 − (F |X|(x))θ2] dx ≤
∫ 1

0

 1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1


 dx =

1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

.

Theorem 3.5. Let (Xn)n be a sequence of random variables with absolutely
continuous cumulative distribution functions, which converges in distribution
to the random variable X and such that, for any n, Xn ∈ L2. Then

lim
n→∞

CSTMθ1,θ2(Xn) = CSTMθ1,θ2(X).

Proof. From Proposition 2.2 we have, for any n,

CSTMθ1,θ2(Xn) =
θ2 − 1

θ2 − θ1
CTθ2(Xn)−

θ1 − 1

θ2 − θ1
CTθ1(Xn).

Theorem 2 from [26] assures us that

lim
n→∞

CTθ1(Xn) = CTθ1(X) and lim
n→∞

CTθ2(Xn) = CTθ2(X).
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Hence

lim
n→∞

CSTMθ1,θ2(Xn) = CSTMθ1,θ2(X).

Lemma 3.6. We consider

C(θ1, θ2) = e

∫ 1

0

log

(
1

θ2 − θ1
(
tθ1 − tθ2

))
dt
.

Then

0 < C(θ1, θ2) ≤
1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

 <∞.

Proof. It is obvious that 0 < C(θ1, θ2).
From Lemma 3.3 we get

C(θ1, θ2) ≤ e

∫ 1

0

log

 1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1


 dt

=

1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

 <∞.

Theorem 3.7. Assume that the random variable X is nonnegative. Then

CSTMθ1,θ2(X) ≥ C(θ1, θ2)eH
S(X),

where

HS(X) = −
∫ ∞
0

fX(x) log (fX(x)) dx.

Proof. By the log-sum inequality, we have

− log (CSTMθ1,θ2(X)) =

log

 1∫ ∞
0

1

θ2 − θ1

((
FX (x)

)θ1 − (FX (x)
)θ2)

dx

 ≤
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∫ ∞
0

fX(x) log

 fX (x)
1

θ2 − θ1

((
FX (x)

)θ1 − (FX (x)
)θ2)

 dx =

∫ ∞
0

fX(x) log (fX(x)) dx−∫ ∞
0

fX(x) log

[
1

θ2 − θ1

((
FX(x)

)θ1 − (FX(x)
)θ2)]

dx =

−HS(X)−
∫ ∞
0

log

[
1

θ2 − θ1

((
FX(x)

)θ1 − (FX(x)
)θ2)]

dFX(x) =

−HS(X)−
∫ 1

0

log

(
1

θ2 − θ1
(
tθ1 − tθ2

))
dt.

It follows that

log (CSTMθ1,θ2(X)) ≥ HS(X) +

∫ 1

0

log

(
1

θ2 − θ1
(
tθ1 − tθ2

))
dt.

Hence

CSTMθ1,θ2(X) ≥ e

HS(X)+

∫ 1

0

log

(
1

θ2 − θ1
(
tθ1 − tθ2

))
dt


=

C(θ1, θ2)e
HS(X).

4 Test based on uniform distribution

Proposition 4.1. If X ∼ U(0, 1) then

CSTMθ1,θ2(X) =
1

(1 + θ1)(1 + θ2)
.

Proof. We have

CSTMθ1,θ2(X) =
1

θ2 − θ1

∫ ∞
0

[(
F |X|(x)

)θ1 − (F |X|(x))θ2] dx =

1

θ2 − θ1

∫ 1

0

(xθ1 − xθ2)dx =
1

θ2 − θ1

(
1

θ1 + 1
− 1

θ2 + 1

)
=

1

θ2 − θ1
· θ2 − θ1
(1 + θ1)(1 + θ2)

=
1

(1 + θ1)(1 + θ2)
.
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We consider X1,...,Xn a random sample de�ned on [0, 1] and with an
absolutely continuous cumulative distribution function denoted by F . Let
X(1) ≤ X(2) ≤ ... ≤ X(n) be the corresponding order statistics.

We take the following estimator of CSTMθ1,θ2(F ), namely

CSTMθ1,θ2(Fn) =

∫ ∞
0

gθ1,θ2
(
Fn(x)

)
dx,

where θ1, θ2 ∈ (0,∞), θ2 > θ1, gθ1,θ2 : [0, 1] → R, gθ1,θ2(t) =
1

θ2 − θ1
(
tθ1 − tθ2

)
, Fn is the empirical cumulative distribution function, given

via (1A is the characteristic function of the set A)

Fn(x) =
n−1∑
i=1

i

n
1[X(i),X(i+1))(x) + 1[X(n),∞)(x) for any x ∈ R

and Fn(x) = 1− Fn(x) for any x ∈ R.
In order to obtain a consistent test of the hypothesis of uniformity, we

consider the statistic test

Tn(θ1, θ2) =
1

θ2 − θ1

n−1∑
i=1

[(
1− i

n

)θ1
−
(
1− i

n

)θ2] (
X(i+1) −X(i)

)
,

with the hypotheses:
H0 : F ∈ U(0, 1).
H1 : F /∈ U(0, 1).

Theorem 4.2. a) The test based on the sample estimate Tn(θ1, θ2) is consis-
tent.

b) In the hypothesis H0 we have CSTMθ1,θ2(Fn)
p−→
n

1

(1 + θ1)(1 + θ2)
.

Proof. a) From the Glivenko-Cantelli Theorem (see [15]) we have

sup
x∈R
|Fn(x)− F (x)|

a.s.−−→
n

0.

Moreover, it is easy to show that

CSTMθ1,θ2(Fn)
a.s.−−→
n

CSTMθ1,θ2(F ).

Hence

CSTMθ1,θ2(Fn)
p−→
n
CSTMθ1,θ2(F ),

which gives the conclusion.
b) From a) we have
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CSTMθ1,θ2(Fn)
p−→
n
CSTMθ1,θ2(F ).

But, if F ∈ U(0, 1), then

CSTMθ1,θ2(F ) =
1

(1 + θ1)(1 + θ2)
.

Hence

CSTMθ1,θ2(Fn)
p−→
n

1

(1 + θ1)(1 + θ2)
.

Theorem 4.3. We have

0 ≤ Tn(θ1, θ2) ≤
1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

 .
Proof. Because θ2 > θ1 we get Tn(θ1, θ2) ≥ 0.

By Lemma 3.3 we obtain that

Tn(θ1, θ2) ≤
1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

(X(n) −X(1)

)
.

Because we have a selection on [0, 1] it follows that X(n)−X(1) ≤ 1, hence

Tn(θ1, θ2) ≤
1

θ2 − θ1

(θ1
θ2

) θ1
θ2 − θ1 −

(
θ1
θ2

) θ2
θ2 − θ1

.

Theorem 4.4. Under the hypothesis H0, the mean and the variance of
Tn (θ1, θ2) are given by:

a) E (Tn(θ1, θ2)) =
1

n+ 1
· 1

θ2 − θ1

n−1∑
i=1

[(
1− i

n

)θ1
−
(
1− i

n

)θ2]
.

b) V ar (Tn (θ1, θ2)) =
n

(n+ 1)2(n+ 2)
·

1

(θ2 − θ1)2
n−1∑
i=1

[(
1− i

n

)θ1
−
(
1− i

n

)θ2]2
.
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Proof. The random variable X(i+1) − X(i) has a beta distribution with
parameter-vector (1, n) for any i = 1, n− 1 (see [15]). Taking into account
the expression of Tn(θ1, θ2) the conclusion follows immediately.

Theorem 4.5. Under the hypothesis H0 we have

lim
n→∞

E (Tn(θ1, θ2)) =
1

(1 + θ1)(1 + θ2)

and

lim
n→∞

V ar (Tn(θ1, θ2)) = 0.

Proof. We have

lim
n→∞

E (Tn(θ1, θ2)) =
1

θ2 − θ1

∫ 1

0

(
xθ1 − xθ2

)
dx =

1

(1 + θ1)(1 + θ2)

and

lim
n→∞

V ar (Tn(θ1, θ2)) =

lim
n→∞

n

(n+ 1)(n+ 2)
· 1

(θ2 − θ1)2

∫ 1

0

(
xθ1 − xθ2

)2
dx = 0.

5 Concrete examples

1. Assume that X ∼ U(0, 1). We have

CSTMθ1,θ2(X) =
1

θ2 − θ1

∫ 1

0

[
(1− x)θ1 − (1− x)θ2

]
dx =

1

(θ1 + 1) (θ2 − θ1)
− 1

(θ2 + 1) (θ2 − θ1)
=

1

(1 + θ1)(1 + θ2)
,

CSTM1,θ2(X) =
1

2 (1 + θ2)
(black line)

and

CSTM1.01,θ2(X) =
1

2.01 (1 + θ2)
(red line).

2. Assume that X ∼ Exp (1). We have
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CSTMθ1,θ2(X) =
1

θ2 − θ1

∫ ∞
0

(
e−θ1x − e−θ2x

)
dx =

1

θ1 (θ2 − θ1)
− 1

θ2 (θ2 − θ1)
=

1

θ1θ2
,

CSTM1,θ2(X) =
1

θ2
(green line)

and

CSTM1.01,θ2(X) =
1

1.01 · θ2
(blue line).

3. Using R we generated the following 50 statistical dates which are uni-
formly distributed on [0, 1]:

[1] 0.02461368 0.04205953 0.04555650 0.10292468 0.13880606 0.14280002
[7] 0.14711365 0.15244475 0.21640794 0.23162579 0.23303410 0.24608773
[13] 0.26597264 0.28757752 0.28915974 0.31818101 0.32792072 0.36884545
[19] 0.40897692 0.41372433 0.41454634 0.45333416 0.45661474 0.46596245
[25] 0.47779597 0.52810549 0.54406602 0.55143501 0.57263340 0.59414202
[31] 0.64050681 0.65570580 0.67757064 0.69070528 0.69280341 0.70853047
[37] 0.75845954 0.78830514 0.79546742 0.85782772 0.88301740 0.88953932
[43] 0.89241904 0.89982497 0.90229905 0.94046728 0.95450365 0.95683335
[49] 0.96302423 0.99426978
For θ1 = 1.1 and θ2 = 1.2, we obtain T50(1.1, 1.2) = 0.001368169. Consid-

ering the power estimates of the tests at the level α = 0.05, we get that the
hypothesis H0 is accepted.

4. Also using R we generated the following 50 statistical dates which are
not uniformly distributed on [0, 1]:
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[1] -11.29609472 -7.17727142 -6.13462697 -4.30609056 -3.28200191
[6] -2.11635506 -1.87858682 -1.60265434 -1.46446501 -1.44393500
[11] -1.30155556 -0.94821132 -0.78424322 -0.74852752 -0.47892684
[16] -0.38500324 -0.36165788 -0.35146072 -0.32552773 -0.31695307
[21] -0.18923919 -0.14391235 -0.13644954 -0.11668813 -0.01800397
[26] 0.07748066 0.13290832 0.14410523 0.33510858 0.46599091
[31] 0.48135357 0.49815579 0.51923801 0.80843908 0.89073714
[36] 0.89870327 0.97571576 1.10575455 1.26912955 1.28218896
[41] 1.55602166 1.66597364 2.28805841 3.40118112 3.59865790
[46] 3.63502154 6.77210788 7.29133088 9.31605615 14.31242194
For θ1 = 1.1 and θ2 = 1.2, we obtain T50(1.1, 1.2) = 0.2187792. Consid-

ering the power estimates of the tests at the level α = 0.05, we get that the
hypothesis H1 is accepted.

Conclusions

We introduced an alternate measure of the cumulative residual Sharma-
Taneja-Mittal residual entropy (which depends on two parameters), generaliz-
ing the alternate measure of the cumulative residual Tsallis entropy from [33]
(which depends on one parameter). For this new measure we found bounds,
de�ned a consistent test based on the uniform distribution and gave some con-
crete examples by taking numerical cases for one parameter. For future works,
we plan to link this measure with the theory of fractals (see [22], [62], [64]).
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