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Is there a polynomial D(2X + 1)-quadruple?

Zrinka Franušić and Ana Jurasić

Abstract

In this paper, we show that there does not exist a polynomialD(2X+
1)-quadruple {a, b, c, d}, such that 0 < a < b < c < d and deg d = deg b.

1 Introduction and motivation

Since Diophantus [3] noted that the product of any two elements of the set{
1
16 ,

33
16 ,

17
4 ,

105
16

}
increased by 1 is a square of rational number, many gener-

alizations of his original problem were also studied. The following definition
describes a more general problem:

Definition 1. Let R be a commutative ring and n ∈ R\{0}. The set of n
(distinct) elements {a1, . . . , am} in R\{0} is a Diophantine m-tuple with the
property D(n) or simply a D(n)-m-tuple in R if aiaj + n is a perfect square
in R, for all 1 ≤ i < j ≤ m.

If zero or equal elements are allowed in such m-tuple then it is called an
improper D(n)-m-tuple.

A polynomial variant of the problem of Diophantus was firstly studied by
Jones [24, 23] for the case R = Z[X] and n = 1. Since then, many other
variants of such a polynomial problem have also been considered (for example
[8, 9, 10, 11, 13, 15, 14]). In polynomial variants of this problem, it is usually
assumed that not all polynomials in such a D(n)-tuple are constant and the
term polynomial D(n)-tuple is used.
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Here, we consider D(n)-m-tuples in a ring of polynomials with integer
coefficients – Z[X]. The representation 2X+1 = (X+1)2−X2 might suggest
the existence of a D(2X+1)-quadruple. Indeed, such an improper D(2X+1)-
quadruple exists, for example {X,X, 4X + 2, 9X + 6}. In [21] we showed that
there is no polynomial D(n)-quadruple in Z[X] for some polynomials n ∈ Z[X]
that are not representable as a difference of squares of two polynomials in Z[X].
Namely, D(n)-quadruples are related to the representations of n by the binary
quadratic form x2−y2. More precisely, the claim that a D(n)-quadruple exists
if and only if n can be written as the difference of two squares (up to finitely
many exceptions) has been proved for the ring of integers and for rings of
integers of certain number fields: [5, 7, 18, 16, 19, 17, 20, 22, 25] (although by
a recent result [2] in certain rings of the form Z[

√
4k + 2] there are elements z

which are not difference of two squares but there exists a D(z)-quadruple). It
is interesting that the existence of D(n)-quadruples in these rings is obtained
due to two-parameter polynomial sets, for example the set

{m,mk2 − 2k − 2,m(k + 1)2 − 2k,m(2k + 1)2 − 8k − 4}

which has the property D(2m(2k + 1) + 1). This set and several similar ones
were constructed by Dujella in [6]. Furthermore, an important ”tool” for
proving the existence of D(n)-quadruples is the following implication:

{a, b, c, d} is a D(n)-quadruple ⇒ {aw, bw, cw, dw} is a D(nw2)-quadruple.

What motivated us to ask whether there is a D(2X+1)-quadruple in Z[X]
is precisely the proof of the existence of a D(2n+1)-quadruple in Z, for n ∈ Z,
which arises from three cases/sets:

• {1, k2− 2k− 2, k2 + 1, 4k2− 4k− 3} - a set with the property D(4k+ 3),

• {4, k2 − 3k, k2 + k + 2, 4k2 − 4k} - a set with the property D(8k + 1),

• {2, 2k2−2k−2, 2k2+2k+2, 8k2−2} - a set with the property D(8k+5).

Thus, so far no formula for the D(2n + 1)-quadruple in Z has been found.
However, it should be kept in mind that Dujella’s polynomial formulas are
obtained under the condition of so-called regularity, i.e. they are of the “very
regular” form {a, b, a+ b+ 2r, a+ 4b+ 4r}, where ab+ n = r2 and a(a+ 4b+
4r)+n = �. Recall that a D(n)-triple {a, b, c} is called regular if c = a+b±2r.

The next reason for our motivation is the (finite) set of exceptions that
appear in some rings in which the equivalence between the existence of a D(n)-
quadruple and representability of n as the difference of two squares holds. For
instance, a D(n)-quadruple in Z exists if and only if n = x2 − y2 for x, y ∈ Z
and n 6∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}. The conjecture is that for n ∈ S there
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does not exist a D(n)-quadruple. In fact, it is now known that there is no
D(−1)-quadruple ([1]), which implies the nonexistence of a D(−4)-quadruple,
but this was preceded by the laborious work of a number of mathematicians
(Abu Muriefah, Al-Rashed, Bonciocat, Brown, Cipu, Dujella, Filipin, Fuchs,
Fujita, He, Kedlaya, Kihel, Liqun, Mignotte, Mohanty, Ramasamy, Tamura,
Togbé and Zheng, according to [4]). However, it should be emphasized that
in the case of Z[X] we do not know whether the equivalence between D(n)-
quadruples and representability of n as a difference of squares is valid, even
though we have a partial result on the topic ([21]). Also, known results and
conjectures provide certain restrictions on a potential D(2X + 1)-quadruple.
For example, the non-existence of D(−1)-quadruples proved in [1] implies
that by inserting X = −1 in a D(2X + 1)-quadruple, we should get two equal
elements. Similar conditions follow from the conjecture of non-existence of
D(−3), D(3) and D(5)-quadruples. The existence of a D(2X + 1)-quadruple
will probably solve the open question of existence of at least three D(n)-
quadruples, with n = (4k − 1)(4k + 1) (see Section 3 of [12]).

Here we show the following result.

Theorem 1. A D(2X + 1)-pair {a, b} in Z[X] such that 0 < a < b cannot be
extended to a D(2X + 1)-quadruple {a, b, c, d} in Z[X], such that 0 < a < b <
c < d and deg d = deg b.

In addition, we prove that there is no D(2X + 1)-quadruple {a, b, c, d} in
Z[X] such that a is a negative integer and a < b < c < d (Proposition 3).

For the proof of Theorem 1, we rely on the results obtained in [10, 9] where
the authors set the upper bound for the size of D(n)-m-tuple in Z[X], where
n is a linear polynomial. More precisely, they proved the following:

Theorem 2 ([10], Corollary 1 and Theorem 3). Let n = n1X+n0 be a linear
polynomial in Z[X] (with n1 6= 0) and

L = sup{|S| : S is a D(n)-tuple in Z[X]}.

Then
L ≤ 12.

Also, if Lk denotes the number of polynomials of degree k in a polynomial
D(n)-m-tuple S, then

L1 ≤ 4, Lk ≤ 3, ∀k ≥ 2.

In the last part (Section 4) we give some examples of irregular D(2X + 1)-
triples that are obtained as extensions of D(2X + 1)-pairs due to the solution
of the corresponding Pellian equation. For some of them, we can show that
they cannot be extended to a D(2X + 1)-quadruple.
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2 Preliminaries

Let {a, b, c} be a D(n)-triple in Z[X], where n = 2X + 1 and r, s, t ∈ Z+[X]
such that

ab+ n = r2, ac+ n = s2, bc+ n = t2. (1)

By Greek letters α, β, γ, . . . we will denote degrees of polynomials and with
capital letters A,B,C, . . . mainly the leading coefficients of polynomials. For
a, b ∈ Z[X], a < b means that b− a ∈ Z+[X], where Z+[X] denotes the set of
all polynomials in Z[X] with a positive leading coefficient.

If a < b < c, then α ≥ 0, β, γ ≥ 1 because for a, b ∈ Z a polynomial ab+ n
cannot be a square.

Proposition 3. Let a be a negative integer. Then there is no D(2X + 1)-
quadruple {a, b, c, d} in Z[X] such that a < b < c < d.

Proof. For a ∈ Z, a < 0 and b ∈ Z[X], the set {a, b} is a D(2X + 1)-pair if
and only if one of the following two possibilities holds:

(i) a = −1, b = 2X + 1− k2, k ∈ Z,

(ii) a = −2, b = X + 1−k2

2 , k ∈ Z and k is odd.

In both cases, we show that there is a unique c ∈ Z[X], such that b < c and
{a, b, c} is a D(2X + 1)-triple.

(i) If {−1, b, c} is a D(2X + 1)-triple, then

b = 2X + 1− k2, c = 2X + 1− `2,

for k, ` ∈ Z and

(2X + 1− k2)(2X + 1− `2) + 2X + 1 = (2X + c0)2, c0 ∈ Z.

By substituting Y = 2X + 1, we get

Y 2 + (1− k2 − `2)Y + k2`2 = (Y + c0 − 1)2

which implies 1− k2− `2 = ±2k`, i.e. |k± `| = 1. So, ` = ±k± 1. Since
b < c, the only possibility is c = 2X + 1− (k − 1)2 and k > 0.

(ii) If {−2, b, c} is a D(2X + 1)-triple, then

b = X +
1− k2

2
, c = X +

1− `2

2
,
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k, ` are odd integers and(
X +

1− k2

2

)(
X +

1− `2

2

)
+ 2X + 1 = (X + c0)2, c0 ∈ Z.

Multiplying the previous equation by 4 and substituting Y = 2X + 1,
gives

Y 2 + (−k2 − `2 + 4)Y + k2`2 = (Y + 2c0 − 1)2

which implies (k ± `)2 = 4, i.e. ` = ±k ± 2. Therefore, with the

assumptions b < c and k ≥ 3, we have c = X + 1−(k−2)2
2 . For k = 1, we

get c = X and c = X − 4, but none of them satisfies b < c.

Note that all D(2X + 1)-triples in Z[X] with a ∈ Z, a < 0 and a < b < c
are regular ones, i.e. c = a+ b+ 2r.

In light of Proposition 3, from now on we assume that a, b, c ∈ Z+[X] and
0 < a < b < c, because A,B,C ∈ Z must have the same sign. Also, α, β and
γ are of the same parity, so

α+ β ≥ 2. (2)

The following lemma will be used for the classification of possible forms of
D(n)-triples.

Lemma 4 ([9], Lemma 1). Let {a, b, c} be a D(n)-triple in Z[X] for which
(1) holds. Then there exist polynomials e, u, v, w ∈ Z[X] such that

ae+ n2 = u2, be+ n2 = v2, ce+ n2 = w2.

More precisely,
e = n(a+ b+ c) + 2abc− 2rst. (3)

Furthermore, it holds

c = a+ b+
e

n
+

2

n2
(abe+ ruv),

where u = at− rs, v = bs− rt. Also, w = cr − st.

We also have

e = n(a+ b+ c) + 2abc+ 2rst

and
u = at+ rs, v = bs+ rt, w = cr + st.

Hence, it holds

ae+ n2 = u2, be+ n2 = v2, ce+ n2 = w2.
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Also,

c = a+ b+
e

n
+

2

n2
(abe− ruv).

Since deg(n(a + b + c)) = γ + 1 and deg(abc) = α + β + γ > γ + 1, we have
ε = α+ β + γ and E = 4ABC.

We need to point out the useful relation (also used in [9])

e · e = n2(c− a− b− 2r)(c− a− b+ 2r) (4)

and the relation
e = n(a+ b− c) + 2rw, (5)

obtained from (3), (4) and (1).
Note that u, v < 0. Indeed, since 0 < a < b < c, it holds

a2t2 = a2bc+ a2n < a2bc+ abn+ acn+ n2 = (ab+ n)(ac+ n) = r2s2

and at < rs. Analogously,

b2s2 = ab2c+ b2n < ab2c+ abn+ bcn+ n2 = (ab+ n)(bc+ n) = r2t2

and bs < rt.
We want to find all possible c’s for a fixed pair {a, b} such that 0 < a < b <

c. Firstly, for e = 0, we have a possible triple {a, b, c+}, where c+ = a+ b+ 2r
and α ≤ β = γ. If a + b − 2r ≥ b, then α = β and A > B, which is a
contradiction. Therefore, c− = a+ b− 2r < b.

If e 6= 0, from (4), we have

ε ≤ 2 + γ − α− β.

Let us consider two cases:

(I) ε < 2 + γ − α− β,

(II) ε = 2 + γ − α− β.

(I) This case holds if and only if

deg((c− a− b− 2r)(c− a− b+ 2r)) < 2γ. (6)

Obviously, the previous condition does not hold if γ > β and therefore we
consider the following cases:

(i) α = β = γ,

(ii) α < β = γ.
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Case (i) is possible only for α = β = γ = 1, ε = 0 and C = A + B + 2R.
Indeed, according to (2), we have ε < 2 + γ−α− β ≤ γ = α. Since ε < 2−α,
we get

2ε < α+ ε < 2

and ε = 0, α = 1. Also, (6) yields C = A + B + 2R or C = A + B − 2R,
but since B < C, C = A + B − 2R cannot hold (because it is equivalent to
C = (

√
B −

√
A)2 < B).

If (ii) holds, then
α+ ε < 2 and ε < β.

Therefore (α, ε) ∈ {(0, 0), (0, 1), (1, 0)}. Since α ≡ β (mod 2) and β ≡ ε
(mod 2) (because be+n2 = v2), we have α ≡ ε (mod 2) that excludes the last
two possibilities. So, we conclude that only α = ε = 0 with C = B can hold.

(II) may be valid in one of the following cases:

(i) α ≤ β < γ,

(ii) α < β = γ and C 6= B,

(iii) α = β = γ and C 6= A+B + 2R.

In (i), ε+ α = 2 + γ − β > 2, while in (ii) and (iii), we have ε+ α = 2.

Lemma 5. Let the assumptions of Lemma 4 hold and e 6= 0. Then the
following cases arise:

(1) α = β = γ = 1, ε = 0, C = A+B + 2R,

(2) α < β = γ, α = ε = 0, C = B,

(3) α ≤ β < γ, α+ β + ε− γ = 2, α+ ε > 2,

(4) α < β = γ, α+ ε = 2, C 6= B,

(5) α = β = γ, α+ ε = 2, C 6= A+B + 2R.

3 Proof of Theorem 1

The idea of proof is to show that there is no proper D(2X + 1)-triple of types
(1), (2) and (4). For the D(2X + 1)-triple of type (5), we prove that it cannot
be a part of a D(2X + 1)-quadruple {a, b, c, d} with deg(d) = α = β = γ.
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Case (1):

We show that the only D(2X+1)-triple that satisfies conditions (1) in Lemma
5 is not proper.

Since C = A+B + 2R, we put

c− a− b− 2r = P ∈ Z,

and compare the leading coefficients in (4):

2E(ABC + RST︸ ︷︷ ︸
=ABC

) = 4P (−A−B + C︸ ︷︷ ︸
=2R

+2R).

From the above and due to AB = R2, we get

P =
ERC

4
=
eRC

4
and c = a+ b+ 2r +

eRC

4
.

Taking into account that α = β = γ = 1, ε = 0, and u, v < 0, we conclude
that

u = −2X + u0, v = −2X + v0, w = ±2X + w0

and
ae = −4(u0 + 1)X + u20 − 1, (7)

be = −4(v0 + 1)X + v20 − 1, (8)

ce = 4(±w0 − 1)X + w2
0 − 1. (9)

Also, plugging a = AX + a0, b = BX + b0, r = RX + r0 and c = (A+B+
2R)X + a0 + b0 + 2r0 + eRC

4 into (5) yields

e = (2X + 1)

(
−2RX − 2r0 −

eRC

4

)
± 2(RX + r0)(2X + w0). (10)

Since e is a constant, both the leading and the linear coefficients of the poly-
nomial on the right-hand side in (10) are zero. So,

0 = −4R± 4R ⇒ w = 2X + w0, i.e. w > 0

and

0 = −4r0 −
eRC

2
− 2R+ 2Rw0 + 4r0 ⇒ Ce = −4 + 4w0,

because R 6= 0. Finally, by comparing the constant coefficients in (10), we get

e = −2r0 −
RCe

4
+ 2r0w0 = (−4 + 4w0︸ ︷︷ ︸

Ce

)
r0
2
− RCe

4
=

1

4
(2r0 −R)Ce.
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Since e 6= 0 and A,B,R ≥ 1, we have

4 = (2r0 −R)C = (2r0 −R)(A+B + 2R︸ ︷︷ ︸
≥1+1+2

) ⇒ A+B + 2R = 4

and therefore

A = B = R = r0 = 1 ⇒ ab+ 2X + 1 = (X + 1)2 ⇒ a = b = X,

which is a contradiction.
Note that from (7)-(9), we have e = −4(u0+1), e = −4(v0+1), e = w0−1.

Also, we obtain e = −8 and {a, b, c} = {X,X, 4X−6} - an improperD(2X+1)-
triple.

Case (2):

Since a, e ∈ Z, we have ae+ (2X + 1)2 = (−2X + u0)2, i.e.

ae = (−4X + u0 − 1)(u0 + 1).

The previous relation is possible only for u0 = −1 and a = 0 or e = 0, which
is a contradiction.

Case (4):

According to (5), ε ≤ max{deg(n(a+ b− c)),deg(2rw)}. Observe that

α < β = γ and C 6= B ⇒ deg(n(a+ b− c)) = γ + 1,

and

α < β = γ and α+ ε = 2 ⇒ deg(2rw) =
α+ β

2
+
γ + ε

2
= γ + 1.

If ε = γ+1, then 2 = α+ε = α+γ+1 implies α+γ = 1 which is not possible.
Therefore, ε < γ + 1 which is true if the leading coefficient in (5) is zero, i.e.
2(B − C) + 2RW = 0. So,

C −B = RW = ±
√
ABCE,

because deg(ab) ≥ 2 and ab+n = r2 imply AB = R2 and deg(ce) = γ+ ε > 2
and ce+ n2 = w2 imply CE = W 2. On the other hand, ae+ (2X + 1)2 = u2

and deg(ae) = 2 give AE = U2 − 4 and bc + n = s2 and deg(bc) ≥ 2 give
BC = S2. That means that

√
ABCE = S

√
U2 − 4. Since

√
ABCE should be

an integer, it is fulfilled only for U2 − 4 = 0, i.e. for AE = 0, and that is not
possible.
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Case (5):

We will approach this case in a different way than we did with the previous
cases. Instead of proving that such a D(2X + 1)-triple is not possible, we
will show that if it is possible, it cannot be a part of a D(2X + 1)-quadruple
{a, b, c, d}, with deg(d) = δ = β. According to assumptions α = β = γ and
α+ε = 2, there are only two possibilities: α = β = γ = ε = 1 or α = β = γ = 2
and ε = 0. So,

α = β = γ = δ = 1 or α = β = γ = δ = 2.

The last possibility can be rejected since Theorem 2 implies that there is
no D(n1X + n0)-quadruple (n1 6= 0) in Z[X] whose elements are quadratic
polynomials. Therefore, let us consider the case in which the elements of the
quadruple are linear polynomials.

Let
{AX + a0, BX + b0, CX + c0, DX + d0} (11)

be a D(2X + 1)-quadruple such that leading coefficients are positive. Then
either gcd(A,B) > 1 or gcd(A,B) = 1 can be valid. We consider each of the
cases separately.

Case gcd(A,B) = d > 1:
Since

AB︸︷︷︸
d2|

X2 + (a0B +Ab0︸ ︷︷ ︸
d|

+2)X + a0b0 + 1 = R2︸︷︷︸
d2|

X2 + 2Rr0︸ ︷︷ ︸
d|

X + r20,

we have d = 2 and A = 2A1, B = 2B1, gcd(A1, B1) = 1. So,

4A1B1 = R2 ⇒ A1 = A2
2, B1 = B2

2 , R = 2R1.

After rewriting (A = A2, B = B2, R = R1 etc.), we conclude that a D(2X+1)-
quadruple is of the form

{2A2X + a0, 2B
2X + b0, 2C

2X + c0, 2D
2X + d0},

because 2A2C = � and 2A2D = � imply C = 2�, D = 2�. Furthermore, we
have

2a0B
2 + 2A2b0 + 2 = 2(2AB)r0, a0b0 = r20 − 1,

which after substitution b0 = (r20 − 1)/a0 gives a quadratic equation in r0

A2r20 − 2ABa0r0 −A2 + a0 + a20B
2 = 0.
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Since r0 ∈ Z, the discriminant 4(A4 − A2a0) = � yields a0 = A2 − K2, for
K ∈ Z. This gives that a D(2X + 1)-quadruple is of the form

{2A2X +A2 −K2, 2B2X +B2 − L2, 2C2X + C2 −M2, 2D2X +D2 −N2}.

With Y = 2X + 1, we have a D(Y )-quadruple

{A2Y −K2, B2Y − L2, C2Y −M2, D2Y −N2}, (12)

where A,B,C,D ∈ Z are relatively prime in pairs, andK,L,M,N ∈ Z. There-
fore, −B2K2 −A2L2 + 1 = ±2ABKL and similarly for others, i.e.

|AL±BK| = |AM ± CK| = |AN ±DK| =

|BM ± CL| = |BN ±DL| = |CN ±DM | = 1.

But this is not possible modulo 2, so there is no D(Y )-quadruple of the form
(12), i.e. there is no D(2X+1)-quadruple of the form (11) with gcd(A,B) = 2.

Case gcd(A,B) = 1:
Similar to the previous case, we conclude that D(2X + 1)-quadruple is of

the form
{A2X + a0, B

2X + b0, C
2X + c0, D

2X + d0}.

Indeed, from (11), AB = R2 and since gcd(A,B) = 1, we get A = �, B = �.
Furthermore, if A2C = �, then C = �. Also,

a0B
2 +A2b0 + 2 = 2ABr0, a0b0 = r20 − 1,

give a quadratic equation in r0:

A2r20 − 2ABa0r0 −A2 + 2a0 + a20B
2 = 0

whose discriminant should be equal to a perfect square in Z, i.e. 4(A4 −
2A2a0) = �. So, a0 = (A2 −K2)/2, for some K ∈ Z. Therefore, in this case,
a D(2X + 1)-quadruple is of the form{
A2X +

A2 −K2

2
, B2X +

B2 − L2

2
, C2X +

C2 −M2

2
, D2X +

D2 −N2

2

}
,

where A,B,C,D > 0 and K,L,M,N are integers of the same parity respec-
tively (i.e. A ≡ K (mod 2), B ≡ L (mod 2) etc.) and gcd(A,B) = 1. Mul-
tiplying the given quadruple by 2 and substituting Y = 2X + 1, yields a
D(4Y )-quadruple of the form (12).
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Lemma 6. There is no D(4Y )-quadruple in Z[Y ] of the form

{A2Y −K2, B2Y − L2, C2Y −M2, D2Y −N2},

where A,B,C,D,K,L,M,N ∈ Z.

Proof. Since (A2Y − K2)(B2Y − L2) + 4Y is a perfect square in Z[X], dis-
criminant equals zero so, taking into account all the others, we get

|AL±BK| = |AM ± CK| = |AN ±DK| =

|BM ± CL| = |BN ±DL| = |CN ±DM | = 2.

The previous relations are fulfilled if the set {(A,K), (B,L), (C,M), (D,N)}
modulo 2 equals:

(i) {(0, 0), (0, 0), (0, 0), (0, 0)},

(ii) {(0, 0), (0, 0), (0, 0), (0, 1)},

(iii) {(0, 0), (0, 0), (0, 0), (1, 0)},

(iv) {(0, 0), (0, 0), (0, 0), (1, 1)},

(v) {(0, 0), (0, 0), (0, 1), (0, 1)},

(vi) {(0, 0), (0, 0), (1, 0), (1, 0)},

(vii) {(0, 0), (0, 0), (1, 1), (1, 1)},

(viii) {(0, 0), (0, 1), (0, 1), (0, 1)},

(ix) {(0, 0), (1, 0), (1, 0), (1, 0)},

(x) {(0, 0), (1, 1), (1, 1), (1, 1)},

(xi) {(0, 1), (0, 1), (0, 1), (0, 1)},

(xii) {(1, 0), (1, 0), (1, 0), (1, 0)},

(xiii) {(1, 1), (1, 1), (1, 1), (1, 1)}.

We observe the coefficients of Y in (A2Y −K2)(B2Y − L2) + 4Y = (ABY ±
KL)2, i.e. the validity of equality

−B2K2 −A2L2 + 4 = 2ABKL. (13)

Cases (i)-(vii): If (A,K), (B,L) mod 2 = (0, 0), then in (13) we get a
contradiction modulo 8.
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Cases (viii) and (xi): Let

(A,K), (B,L), (C,M) = (2A1, 2K1 + 1), (2B1, 2L1 + 1), (2C1, 2M1 + 1),

where A1, . . . ,M1 ∈ Z. Then (13) modulo 8 yields

4 + 4A2
1 + 4B2

1 ≡ 0 (mod 8), i.e. A2
1 +B2

1 ≡ 1 (mod 2).

Analogous statements (modulo 8) to the one in (13) give

A2
1 + C2

1 ≡ 1 (mod 2), B2
1 + C2

1 ≡ 1 (mod 2).

So, 2(A2
1 + B2

1 + C2
1 ) ≡ 1 (mod 2) - a contradiction! (Or simply, two of the

three numbers must have the same parity!)
Cases (ix) and (xii): If

(A,K), (B,L), (C,M) = (2A1 + 1, 2K1), (2B1 + 1, 2L1), (2C1 + 1, 2M1),

where A1, . . . ,M1 ∈ Z, then (13) modulo 8 gives A2
1 + B2

1 ≡ 1 (mod 2) etc.
and everything is analogous to the previous case.

Cases (x) and (xiii): Let (A,K), (B,L), (C,M) ≡ (1, 1) (mod 2). With-
out loss of generality, let A,K,B, . . . be positive integers. Observe that

AL+BK = 2

is possible only for (A,K) = (B,L) = (1, 1), which means that the first two
members of the quadruple are equal. So, we have

AL−BK, AM − CK, BM − CL ∈ {2,−2}.

First, let
AL−BK = 2, AM − CK = 2, BM − CL = 2.

By multiplying the first equation by M , the second by L and subtracting them,
we get

K(CL−BM︸ ︷︷ ︸
−2

) = 2M − 2L,

which means that L = M +K is an even number. A contradiction! (For other
combinations of signs, we also get M = K + L and K = M + L.)

4 On case (3)

At the moment, we do not know if there are D(2X+1)-quadruples containing
triples of type (3) (or (5)) from Lemma 5, but we can give some examples of
pairs that can be extended to triples in infinitely many ways.
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So, let us assume that {a, b} is a polynomial D(2X + 1)-pair, such that
a < b and

ab+ n = r2,

where r ∈ Z+[X]. Expanding the pair {a, b} means that we are looking for a
polynomial c > b for which

ac+ n = s2 and bc+ n = t2

hold for some s, t ∈ Z+[X]. By eliminating c from these two equations, we
obtain

bs2 − at2 = n(b− a) (14)

and, by multiplying (14) with b and substituting p := bs, we further obtain

p2 − abt2 = nb(b− a). (15)

If ab is not a perfect square, equation (15) is a Pellian equation and we can
observe its solutions (p, t) in order to find possible extensions of the pair {a, b}
with the element c. On the other hand, if ab is a perfect square, equation (15)
is not a Pellian equation and we have to observe it separately.

Case 1: ab is a perfect square.
Assume that ab = q2. So, we have

2X + 1 = r2 − q2,

which is only possible for

(r, q) = (X + 1, X) and ab = X2.

Indeed, 2X + 1 = (r − q)(r + q) implies that 2X + 1 | r ± q. Hence, r ± q =
k(2X + 1) and then 1 = k(r ∓ q), where k ∈ Z[X]. We conclude that k = ±1
and easily get r = X + 1 and q = ±X. Therefore,

{1, X2}

is the only pair for which we have to check if there exists c such that the triple
{1, X2, c} is of type (3) i.e. such that c 6= X2 + 2X + 3.

Proposition 7. If {1, X2, c} is a D(2X+1)-triple in Z[X], then it is regular,
i.e. c ∈ {X2 − 2X − 1, X2 + 2X + 3}.

Proof. Since
X2c+ 2X + 1 = t2, (16)
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t(0)2 = 1 and t(0)t′(0) = 1 (where t′ is the derivative of t). So, t(0) = t′(0) =
±1 and

t(X) = X2q ±X ± 1,

for some q ∈ Z[X]. By plugging it into (16), we get

c(X) = X2q2 ± 2Xq ± 2q + 1 = (Xq ± 1)2 ± 2q.

We still need to check the condition

c+ 2X + 1 = s2,

which gives
(Xq ± 1)2 ± 2q + 2X + 1 = s2, (17)

i.e.
±2q + 2X + 1 = (s−Xq ∓ 1)(s+Xq ± 1).

Comparing the degrees of polynomials on both sides of the previous relation,
we get a contradiction under the assumption deg q ≥ 1 (deg q ≥ deg q + 1).
Hence, deg q = 0 and q(X) = q0 ∈ Z. In this case, the discriminant of the
expression on the left in (17) is

∓4(q0 − 1)(q0 + 1)(2q0 ± 1).

So, q0 = ±1 and the corresponding c’s are those created by regular extensions,
i.e. c = X2 + 2X + 3 = a+ b+ 2r or c = X2 − 2X − 1 = a+ b− 2r.

Case 2: ab is not a perfect square.
For e = 0, we have s = a+ r and t = b+ r and in that case

(p0, t0) = (b(a+ r), b+ r)

is a solution of Pellian equation (15). The existence of more solutions depends
on the solvability of the associated Pell’s equation

P 2 − abT 2 = 1. (18)

So, if P1 + T1
√
ab is a (fundamental) solution of Pell’s equation (18) and

p0 + t0
√
ab is a (fundamental) solution of equation (15), more solutions are

obtained by

pn + tn
√
ab = (p0 + t0

√
ab)(P1 + T1

√
ab)n, n ≥ 0. (19)

With (P0, T0) = (1, 0) we denote the trivial solution of equation (18). From
(19) we have

tn = t0Pn + p0Tn,
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where (p0, t0) = (b(a+ r), b+ r) and (Pn, Tn) can be obtained by recursions

Pn = 2P1Pn−1 + Pn−2,
Tn = 2P1Tn−1 + Tn−2,

(20)

with initial conditions (P0, T0) = (1, 0) and (P1, T1). Hence, the following
proposition holds:

Proposition 8. Let {a, b} be a D(2X + 1)-pair in Z[X], 0 < a < b, such that
Pell’s equation (18) is solvable. Then it can be extended to a D(2X+ 1)-triple
of type (3) or (5) (from Lemma 5) by adding

c = cn =
t2n − 2X − 1

b
=

(t0Pn + p0Tn)2 − 2X − 1

b
(21)

for some n ≥ 1, where (p0, t0) = (b(a + r), b + r) and (Pn, Tn) are given by
(20).

In what follows, we give examples of pairs for which Pell’s equation has
solutions. Let us assume that 2X + 1 | ab. Hence, 2X + 1 | r and

r = (2X + 1)q, q ∈ Z[X].

Note that in this case Pell’s equation (18) is solvable. Indeed,

(P, T ) = (4q2X + 2q2 − 1, 2q)

is a solution of (18).

Corollary 9. Let {a, b} be a D(2X+ 1)-pair in Z[X] such that 0 < a < b and
2X+1 | ab. Then there exists c ∈ Z[X] such that {a, b, c} is a D(2X+1)-triple
of type (3) (from Lemma 5).

Proof. It follows straight from Proposition 8 for

(P0, T0) = (1, 0), (P1, T1) = (4q2X + 2q2 − 1, 2q),

where ab+ 2X + 1 = (2X + 1)2q2.

The natural question arises: can {a, b, cn, cm} be a D(2X + 1)-quadruple
for some m,n ∈ N0? Well, we don’t know for sure, but in some cases we can
show that it cannot be. For instance, if there exists an integer X0 such that

cncm(X0) + 2X0 + 1 6≡ 0, 1 (mod 4),
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then cncm + 2X + 1 6= � in Z[X]. It is not difficult to show that the following
congruence holds for the numerator of cn given in (21):

(t0Pn + p0Tn)2 − (2X + 1) ≡ b2 + 2bq + (2X + 1)2q2 − (2X + 1)︸ ︷︷ ︸
ab

(mod 4).

Hence,
cn ≡ a+ b+ 2q (mod 4)

or
cn ≡ a+ b+ 2r = c0 (mod 4),

because 2q ≡ 2(2X + 1)q = 2r (mod 4). Let us formulate the result.

Lemma 10. Let {a, b} be a D(2X + 1)-pair in Z[X] such that

ab+ 2X + 1 = (2X + 1)2q2,

for some q ∈ Z[X], and let (cn) be given by (21) for (P0, T0) = (1, 0) and
(P1, T1) = (4q2X + 2q2 − 1, 2q). If there exists an integer X0 such that

(a+ b)2(X0) + 2X0 + 1 ≡ 2, 3 (mod 4),

then cncm + 2X + 1 is not a perfect square in Z[X].

Proposition 11. In terms of Lemma 10 and if the polynomial q has an odd
integer root, then cncm + 2X + 1 is not a perfect square in Z[X] for n,m ∈ N0

(where cn is given by (21)).

Proof. Assume that q(X0) = 0 for some odd integer X0. Then

ab(X0) + 2X0 + 1 = 0

implies that a(X0), b(X0) ≡ 1 (mod 2). Hence,

(a+ b)2(X0) + 2X0 + 1 ≡ 2 (mod 4)

and the assertion follows according to Lemma 10.
Also, note that in this case we have Tn(X0) = 0, Pn(X0) = (−1)n and

cn(X0) =
b2(X0)− 2X0 − 1

b(X0)
=
b2(X0) + ab(X0)

b(X0)
= (a+ b)(X0) = const,

for all n ≥ 0, so the conclusion can be drawn immediately.
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ab r T1
2(2X + 1)(25X + 12) 5(2X + 1) 10

(2X + 1)
(
2X3 − 19X2 + 40X + 24

)
(X − 5)(2X + 1) 2(X − 5)

2(2X + 1)
(
4X3 − 18X2 + 15X + 12

)
(2X − 5)(2X + 1) 2(2X − 5)

(2X − 3)(2X + 1)
(
9X2 − 12X − 8

)
(2X + 1)(3X − 5) 2(3X − 5)

2(2X + 1)
(
16X3 − 32X2 + 5X + 12

)
(2X + 1)(4X − 5) 2(4X − 5)

(2X + 1)
(
50X3 − 75X2 + 24

)
5(X − 1)(2X + 1) 10(X − 1)

(2X + 1)(32X + 15) 4(2X + 1) 8

(2X + 1)
(
2X3 − 15X2 + 24X + 15

)
(X − 4)(2X + 1) 2(X − 4)

(2X + 1)
(
8X3 − 28X2 + 16X + 15

)
2(X − 2)(2X + 1) 4(X − 2)

(2X − 3)(2X + 1)
(
9X2 − 6X − 5

)
(2X + 1)(3X − 4) 2(3X − 4)

(2X + 1)
(
32X3 − 48X2 + 15

)
4(X − 1)(2X + 1) 8(X − 1)

(2X + 1)
(
50X3 − 55X2 − 8X + 15

)
(2X + 1)(5X − 4) 2(5X − 4)

2(2X + 1)(9X + 4) 3(2X + 1) 6

(2X + 1)
(
2X3 − 11X2 + 12X + 8

)
(X − 3)(2X + 1) 2(X − 3)

2(2X + 1)
(
4X3 − 10X2 + 3X + 4

)
(2X − 3)(2X + 1) 2(2X − 3)

(2X + 1)
(
18X3 − 27X2 + 8

)
3(X − 1)(2X + 1) 6(X − 1)

2(2X + 1)
(
16X3 − 16X2 − 3X + 4

)
(2X + 1)(4X − 3) 2(4X − 3)

(2X + 1)
(
50X3 − 35X2 − 12X + 8

)
(2X + 1)(5X − 3) 2(5X − 3)

(2X + 1)(8X + 3) 2(2X + 1) 4

(2X − 3)(2X + 1)
(
X2 − 2X − 1

)
(X − 2)(2X + 1) 2(X − 2)

(2X + 1)
(
8X3 − 12X2 + 3

)
2(X − 1)(2X + 1) 4(X − 1)

(∗) X2 + 2X + 3 X + 2 X + 1

(2X + 1)
(
18X3 − 15X2 − 4X + 3

)
(2X + 1)(3X − 2) 2(3X − 2)

(2X + 1)
(
32X3 − 16X2 − 8X + 3

)
2(2X − 1)(2X + 1) 4(2X − 1)

(2X + 1)
(
50X3 − 15X2 − 12X + 3

)
(2X + 1)(5X − 2) 2(5X − 2)

2X(2X + 1) 2X + 1 2

(∗) X2
(
X2 − 2X − 1

)
X2 − X − 1 2(X − 2)(X − 1)

X2(2X − 3)(2X + 1) (X − 1)(2X + 1) 2(X − 1)

2X(2X + 1)
(
4X2 − 2X − 1

)
(2X − 1)(2X + 1) 2(2X − 1)

X(2X + 1)
(
18X2 − 3X − 4

)
(2X + 1)(3X − 1) 2(3X − 1)

2X(2X + 1)
(
16X2 − 3

)
(2X + 1)(4X − 1) 2(4X − 1)

X(2X + 1)
(
50X2 + 5X − 8

)
(2X + 1)(5X − 1) 2(5X − 1)

(∗) X2 − 2X − 1 X X − 1

(2X + 1)
(
2X3 + X2 − 1

)
X(2X + 1) 2X

(2X + 1)
(
8X3 + 4X2 − 1

)
2X(2X + 1) 4X

(2X + 1)
(
18X3 + 9X2 − 1

)
3X(2X + 1) 6X

(2X + 1)
(
32X3 + 16X2 − 1

)
4X(2X + 1) 8X

(2X + 1)
(
50X3 + 25X2 − 1

)
5X(2X + 1) 10X

X(2X + 1)
(
2X2 + 5X + 4

)
(X + 1)(2X + 1) 2(X + 1)

2X(2X + 1)
(
4X2 + 6X + 3

)
(2X + 1)2 2(2X + 1)

X(2X + 1)
(
18X2 + 21X + 8

)
(2X + 1)(3X + 1) 2(3X + 1)

2X(2X + 1)
(
16X2 + 16X + 5

)
(2X + 1)(4X + 1) 2(4X + 1)

X(2X + 1)
(
50X2 + 45X + 12

)
(2X + 1)(5X + 1) 2(5X + 1)

(2X + 1)
(
2X3 + 9X2 + 12X + 3

)
(X + 2)(2X + 1) 2(X + 2)

(2X + 1)
(
8X3 + 20X2 + 16X + 3

)
2(X + 1)(2X + 1) 4(X + 1)

(2X + 1)
(
18X3 + 33X2 + 20X + 3

)
(2X + 1)(3X + 2) 2(3X + 2)

(2X + 1)
(
32X3 + 48X2 + 24X + 3

)
2(2X + 1)2 4(2X + 1)

(2X + 1)
(
50X3 + 65X2 + 28X + 3

)
(2X + 1)(5X + 2) 2(5X + 2)

(2X + 1)
(
2X3 + 13X2 + 24X + 8

)
(X + 3)(2X + 1) 2(X + 3)

2(2X + 1)
(
4X3 + 14X2 + 15X + 4

)
(2X + 1)(2X + 3) 2(2X + 3)

(2X + 1)
(
18X3 + 45X2 + 36X + 8

)
3(X + 1)(2X + 1) 6(X + 1)

2(2X + 1)
(
16X3 + 32X2 + 21X + 4

)
(2X + 1)(4X + 3) 2(4X + 3)

(2X + 1)
(
2X3 + 17X2 + 40X + 15

)
(X + 4)(2X + 1) 2(X + 4)

(2X + 1)
(
8X3 + 36X2 + 48X + 15

)
2(X + 2)(2X + 1) 4(X + 2)

Table 1: Examples of D(2X + 1)-pairs s.t. P 2 − abT 2 = 1 is solvable in Z[X]
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In Table 1 we give some examples of D(2X + 1)-pairs (where deg ab ≤ 4)
that can be extended to triples of the type (3) or (5), i.e. such that Pell’s
equation (18) is solvable. Most of them are examples of pairs {a, b} such that
2X + 1 | ab and only a few do not meet this condition (marked red, with (∗)).

Example 1. According to Corollary 9, D(2X + 1)-pairs:

(a) {1, X2 + 2X + 3},

(b) {1, X2
(
X2 − 2X − 1

)
},

(c) {X2, X2 − 2X − 1},

(d) {1, X2 − 2X − 1}

can be extended to D(2X + 1)-triple of the type (3), for instance with c1:

(a) (2X2 + 5X + 4)(2X4 + 13X3 + 36X2 + 50X + 30),

(b) (4X4 − 16X3 + 16X2 + 2X − 5)(4X8 − 24X7 + 52X6 − 54X5 + 35X4 −
12X3 − 5x2 + 4X − 3),

(c) (2X + 1)(4X4− 16X3 + 16X2 + 2X − 5)(8X5− 44X4 + 80X3− 48X2−
4X + 7),

(d) X(2X − 3)(2X4 − 3X3 − 4X2 + 2X + 2).

Also, in each of the cases

cncm + 2X + 1 6= � in Z[X].

Indeed, we have

(a) for X = −1:

Pn(1) = 1, Tn(1) = 0, cn(1) = 5, ∀n ≥ 0

and cncm(2) + 2 · (−1) + 1 = 24 6= �;

(b) for X = 1:

Pn(1) = 1, Tn(1) = 0, cn(1) = −3, ∀n ≥ 0

and cncm(2) + 2 · 1 + 1 = 12 6= �;

(c) same as (b);
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(d) for X = 2:

Pn(2) =

{
(−1)k+1, n = 2k

0, n = 2k + 1
, Tn(2) =

{
0, n = 2k

(−1)k, n = 2k + 1
,

cn(2) = (−1)n4,

for all n ≥ 0, and cncm(2) + 2 · 2 + 1 = ±16 + 5 6= � in Z.

Example 2. Note that many pairs {a, b} satisfy the conditions of Lemma 10
and Proposition 11, but some pairs do not. For instance, if

ab = 2(2X + 1)
(
4X3 − 18X2 + 15X + 12

)
and q = 2X − 5 then, for

a = 2, b = (2X + 1)(4X3 − 18X2 + 15X + 12),

we get
(a+ b)2 + 2X + 1 ≡ (X + 1)2 (mod 4).

The same is obtained for

a = 2(2X + 1), b = 4X3 − 18X2 + 15X + 12.

But, for
a = 1, b = 2(2X + 1)(4X3 − 18X2 + 15X + 12)

or
a = 2(2X + 1), b = 4X3 − 18X2 + 15X + 12,

we have
(a+ b)2 + 2X + 1 ≡ 2(X + 1) (mod 4)

and, according to Lemma 10, these pairs cannot be extended to D(2X + 1)-
quadruples.

5 Acknowledgments

This work was supported by the Croatian Science Foundation under the project
number HRZZ IP-2022-10-5008. The second author A. J. was supported by
the University of Rijeka project uniri-iskusni-period-23-66.

The authors would like to thank Professor Andrej Dujella for his support
and suggestions. In addition, we thank the referee for the careful reading of
the manuscript and detailed suggestions.



Is there a polynomial D(2X + 1)-quadruple? 87

References

[1] N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine
D(−1)-quadruple, J. London Math. Soc. 105 (2022), 63–99.

[2] K. Chakraborty, S. Gupta and A. Hoque, On a conjecture of Franušić
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