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Numerical solution of nonlinear reaction
advection-diffusion equation using the modified

collocation method

E-M. Craciun, S.K. Tiwari, S. Das

Abstract

This article presents a numerical solution of the nonlinear reaction-
advection-diffusion equation with specified initial and boundary condi-
tions using a modified cubic B-spline collocation method. Nonlinear
terms are linearised using the Crank-Nicholson method. The derived
numerical scheme is shown to be unconditionally convergent through
stability analysis. The accuracy of the numerical scheme has been ver-
ified by its application to the three standard instances. The numerical
findings are then compared with the existing analytical results by em-
ploying the l2 and l∞ error norms. The main feature of this article is the
graphical presentation of the numerical solution of the concerned model
for different sets of advection, diffusion and reaction coefficients to show
the effect on the solute profile when advection and diffusion terms are
both nonlinear. Nonlinear reaction-advection-diffusion equations have
found applications in diverse areas like groundwater and water pollution
studies.

1 Introduction

In science and technology, the fluid flow through porous media has enormous
theoretical and practical implications. Any true porous material is made up of
a combination of particles that have been weathered from rock or the remnants
of extinct animals. A system of variously sized particles makes up a porous
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medium rather than a compact substance. There are applications in oil explo-
ration, environmental problems, geophysical problems, and industrial prob-
lems, such as the movement of liquid and gas through soil and rock (e.g., shell
oil extraction), clay, gravel, and sand, or sponges and foam [1, 2, 3, 4, 5]. Two
primary categories can be distinguished between groundwater flows across the
saturated zone: those with a phreatic (free) surface and those with a confined
surface. The governing equations for these groups are completely different.
The free flow has a nonlinear governing equation and a linear one for the
flow with a constrained surface. Different nonlinear systems for various natu-
ral phenomena can be modelled using nonlinear partial differential equations.
The first nonlinear diffusion was identified in plasma physics by Berryman and
Holland [19]. Using the Buckingham-Darcy law [29, 30] and the equation of
continuity for one-dimensional vertical flow

∂u

∂t
= − ∂q

∂x
,

and q = −D(u)
∂u

∂x
−K(u),

respectively, Kovarik [31] derived the equation governing groundwater flow
with a confined surface as

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
− dK

du

∂u

∂x
,

where q is flux density, u is volumetric water content, x is depth below the soil
surface, D(u) is the concentration-dependent soil water diffusivity and K(u)
is the concentration-dependent hydraulic conductivity. The above equation
describes the flow in porous media, diffusion in semiconductors, and other
nonlinear processes. For soil moisture flow, 0 ≤ u ≤ 1, where a saturated
medium corresponds to u = 1, whereas a dry medium corresponds to u = 0.
For D(u) = u and K(u) = −νu2, the above equation becomes

ut = uuxx + u2x + 2νuux, (1)

where ν is a physical parameter of the inclination of the bed associated with
the movement of buoyancy-driven plumes in inclined porous media.
The creation and consumption of molecules can occur within an element of
space during a reaction. The diffusion equation is supplemented with these
events, resulting in the reaction-diffusion equation that takes the following
form:

∂u

∂t
= D∇2u+R(u, t),
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where R(u, t) denotes reaction term at time t. The following nonlinear reaction
advection-diffusion equation (nonlinear RADE) will be discussed in this article.

∂u

∂t
= D

∂

∂x

(
u
∂u

∂x

)
− νu∂u

∂x
− λu(1− u), D > 0, ν, λ ∈ R (2)

under the prescribed initial and boundary conditions given by

u(x, 0) = f1(x), (3)

u(r, t) = f2(t), (4)

u(s, t) = f3(t), where r, s ∈ R. (5)

There are only a few simple cases for which an analytical solution is avail-
able. Therefore, the development of accurate and efficient numerical methods
is extremely important to solve the nonlinear RADE. Many researchers have
developed different numerical methods to study different nonlinear diffusion-
advection equations. After studying the asymptotic solution of equation (1),
Loubens and Ramakrishnan [11] have demonstrated that, for compactly sup-
ported beginning data, the solution is characterized by two moving boundaries
propagating at a limited speed across an O(

√
t) distance. Furthermore, it was

demonstrated in [12] that the interface shape evolution of a gravity tongue
propagating up an inclined layer with respect to a moving frame is governed
by equation (1). Using the functional constraint method, Polyanin and Zhurov
[13] have found some solutions to nonlinear delay reaction-diffusion equations.
Lu et al. [15] generalised the BurgersFisher equation using the first integral
method and obtained some exact solutions. Jaiswal et al. [17] used the oper-
ational matrix method to study the nonlinear partial differential equation for
porous media.
An advantageous gene’s propagation across a population was first studied
using the reaction-diffusion equation, a one-dimensional parabolic nonlinear
partial differential equation provided by R.A. Fisher[7]. Kenkre[8] studied
the dynamics of bacteria, the formation of patterns, and the propagation of
epidemics using data from variations of the Fisher equation. The branching
Brownian motion process [10] was analysed using the Fisher equation. In
the Fisher equation with degenerate nonlinear diffusion, non-sharp travelling
wavefronts were examined by Sherratt and Marchant[14]. Mittal and Arora
[16] solved the Fisher equation numerically by developing an efficient B-spline
scheme. The nonlinear diffusion problem was numerically solved by Dwivedi
and Das[18] utilising Fibonacci collocation and non-standard/standard finite
difference techniques. Kumar and Arora [24] studied the solution of the Fisher-
Kolmogorov-Petrovsky equation using the Haar scale-3 wavelet collocation
method. Many authors used B-spline functions to develop numerical methods
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[20, 23, 22, 25] for solving different diffusion Fisher equations. The piecewise
continuous nature of spline functions, specifically B-spline functions, makes
them very useful for approximating numerical solutions to partial differential
equations.
The remaining article is organised as follows. With the help of the definition
and properties of cubic B-splines, mathematical derivation and implementa-
tion of the method are covered in sections 2 and 3. Stability analysis is being
done in section 4. To show the accuracy of the numerical scheme, three par-
ticular cases of the proposed model are solved numerically in section 5. The
numerical solution of the proposed mathematical model using a numerical
technique developed for the specified initial and boundary conditions is shown
in section 6. Section 7 summarises the overall work.

2 Description of the numerical scheme

Let the domain be [r, s] and r = x0 < x1 < x2 < ..... < xM−1 < xM = s be a
uniform partition in M + 1 node points such that xi+1 − xi = h is the length
of each sub-interval.
For the proposed model (2), an approximate solution f(x, t) ≈ u(x, t) can be
expressed in the following form using the cubic B-spline collocation method
as

f(x, t) =

n∑
j=1

αj(t)Bj(x), (6)

where Bj(x)’s are the basis functions of B-splines and αj(t)’s are the time-
dependent constants to be determined by applying initial and boundary con-
ditions and using the collocation method.
The cubic B-spline basis function Bj(x) at any knot point is defined as

Bj(x) =
1

h3


(x− xj−2)3, x ∈ [xj−2, xj−1)
(x− xj−2)3 − 4(x− xj−1)3, x ∈ [xj−1, xj)
(xj+2 − x)3 − 4(xj−1 − x)3, x ∈ [xj , xj+1)
(xj+2 − x)3, x ∈ [xj+1, xj+2)
0, otherwise,

(7)

where {B−1, B0, B1, B2, ......, BM−1, BM , BM+1} forms a basis set for the cubic
B-spline functions for the considered domain.
From Table 1, we can get values of basis functions and their derivatives at
each knot point.

Let us denote (xi, t) = (ξi) for further calculations.
Using the method of finite difference and Taylor expansion, the first and
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Table 1: Coefficients of cubic B-splines and its derivatives at knot xj

x xj−2 xj−1 xj xj+1 xj+2

Bj(x) 0 1 4 1 0

B′j(x) 0 3
h 0 −3

h

B′′j (x) 0 6
h2

−12
h2

6
h2 0

second-order derivatives of the function f(xi, t) = f(ξi) are defined as

f ′(ξi) = u′(ξi) +O(h4), 0 ≤ i ≤M, (8)

f ′′(ξi) = u′′(ξi)−
1

12
h2u(4)(ξi) +O(h4), i = 0,M. (9)

Using the smoothness of the solution u(x, t), and that f(x, t) is a unique cubic
spline approximation satisfying prescribed boundary conditions, we have [6]
for i = 0

u(4)(ξ0) =
2f ′′(ξ0)− 5f ′′(ξ1) + 4f ′′(ξ2)− f ′′(ξ3)

h2
+O(h2), (10)

for 1 ≤ i ≤M − 1

u(4)(ξi) =
f ′′(ξi−1)− 2f ′′(ξi) + f ′′(ξi+1)

h2
+O(h2), (11)

for i = M

u(4)(ξM ) =
2f ′′(ξM )− 5f ′′(ξM−1) + 4f ′′(ξM−2)− f ′′(ξM−3)

h2
+O(h2). (12)

Using equations (10), (11) and (12) along with approximation (6) in the equa-
tions (8) and (9), we get
for i = 0

u′′(x0) =

M+1∑
j=−1

αj(t)
14B′′j (x0)− 5B′′j (x1) + 4B′′j (x2)−B′′j (x3)

12
, (13)

for 1 ≤ i ≤M − 1

u′′(xi) =

M+1∑
j=−1

αj(t)
B′′j (xi−1) + 10B′′j (xi) +B′′j (xi+1)

12
, (14)
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for i = M

u′′(xM ) =

M+1∑
j=−1

αj(t)
14B′′j (xM )− 5B′′j (xM−1) + 4B′′j (xM−2)−B′′j (xM−3)

12
.

(15)

The above equations can further be simplified using (7) as
for i = 0

u′′(x0, t) =
14α−1 − 33α0 + 28α1 − 14α2 + 6α3 − α4

2h2
, (16)

for 1 ≤ i ≤M − 1

u′′(xi, t) =
αi−2 + 8αi−1 − 18αi + 8αi+1 + αi+2

2h2
, (17)

for i = M

u′′(xM , t) =
14αM+1 − 33αM + 28αM−1 − 14αM−2 + 6αM−3 − αM−4

2h2
. (18)

Now, the approximations for u(x, t), u′(x, t) and u′′(x, t) are used to solve our
proposed model numerically. We can discretise the equation (2) using the
Crank-Nicholson method as

un+1
i − uni

∆t
= D

(uuxx)n+1
i + (uuxx)ni

2
+D

(u2x)n+1
i + (u2x)ni

2

− ν (uux)n+1
i + (uux)ni

2
− λ (u(1− u))n+1

i + (u(1− u))ni
2

. (19)

Nonlinear terms are linearised using the Taylor expansion method as

(uuxx)n+1
i = un+1

i (uxx)ni + uni (uxx)n+1
i − uni (uxx)ni ,

(uux)n+1
i = un+1

i (ux)ni + uni (ux)n+1
i − uni (ux)ni ,

(u2x)n+1
i = 2(ux)ni (ux)n+1

i − (u2x)ni ,
(u2)n+1

i = 2(u)ni (u)n+1
i − (u2)ni .

Separating the different time level terms of equation (19), we get

un+1
i

(
1− D∆t

2
(uxx)ni +

ν∆t

2
(ux)ni +

λ∆t

2
− λ∆tuni

)
−
(
D∆t

2
uni

)
(uxx)n+1

i

−
(
D∆t(ux)ni −

ν∆t

2

)
(ux)n+1

i = uni

(
1− λ∆t

2

)
. (20)
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Consider

Ui =

(
1− D∆t

2
(uxx)ni +

ν∆t

2
(ux)ni +

λ∆t

2
− λ∆tuni

)
, Vi =

(
D∆t

4h2
un0

)
,

Wi =
3∆t

h

(
D(ux)n0 −

ν

2

)
, γi =

(
1− λ∆t

2

)
.

Using the approximations defined in Section 2, the equation (20) can be sim-
plified as
for i = 0

(αn+1
−1 + 4αn+1

0 + αn+1
1 )

(
1− D∆t

2
(uxx)n0 +

ν∆t

2
(ux)n0 +

λ∆t

2
− λ∆tun0

)
−
(
D∆t

4h2
un0

)
(14αn+1

−1 − 33αn+1
0 + 28αn+1

1 − 14αn+1
2 + 6αn+1

3 − αn+1
4 )

− 3∆t

h

(
D(ux)n0 −

ν

2

)
(αn+1

1 − αn+1
−1 ) = un0

(
1− λ∆t

2

)
, (21)

=⇒ (U0 − 14V0 +W0)αn+1
−1 + (4U0 + 33V0)αn+1

0 + (U0 − 28V0 −W0)αn+1
1

+ 14V0α
n+1
2 − 6V0α

n+1
3 + V0α

n+1
4 = γn0 . (22)

Equation (22) can be written as

ω01α
n+1
−1 + ω02α

n+1
0 + ω03α

n+1
1 + ω04α

n+1
2 + ω05α

n+1
3 + ω06α

n+1
4 = γn0 , (23)

where ω′0is are coefficients of αi−2 in equation (23) respectively.
For 1 ≤ i ≤M − 1

(αn+1
i−1 + 4αn+1

i + αn+1
i+1 )

(
1− D∆t

2
(uxx)ni +

ν∆t

2
(ux)ni +

λ∆t

2
− λ∆tuni

)
−
(
D∆t

4h2
uni

)
(αn+1
i−2 + 8αn+1

i−1 − 18αn+1
i + 8αn+1

i+1 + αn+1
i+2 )− 3∆t

h(
D(ux)ni −

ν

2

)
(αn+1
i+1 − α

n+1
i−1 ) = uni

(
1− λ∆t

2

)
, (24)

=⇒ (−Vi)αn+1
i−2 + (Ui − 8Vi +Wi)α

n+1
i−1 + (4Ui + 18Vi)α

n+1
i

+ (Ui − 8Vi −Wi)α
n+1
i+1 + (−Vi)αn+1

i+2 = rni . (25)

Equation (25) can be written as

ωi1α
n+1
i−2 + ωi2α

n+1
i−1 + ωi3α

n+1
i + ωi4α

n+1
i+1 + ωi5α

n+1
i+2 = γni . (26)
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where ωij ’s are coefficients of αi+j−3 in equation (26).
For i = M

(αn+1
M−1 + 4αn+1

M + αn+1
M+1)

(
1− D∆t

2
(uxx)nM +

ν∆t

2
(ux)nM +

λ∆t

2
− λ∆tunM

)
−
(
D∆t

4h2
unM

)
(14αn+1

M+1 − 33αn+1
M + 28αn+1

M−1 − 14αn+1
M−2 + 6αn+1

M−3 − α
n+1
M−4)

− 3∆t

h

(
D(ux)nM −

ν

2

)
(αn+1
M+1 − α

n+1
M−1) = unM

(
1− λ∆t

2

)
(27)

=⇒ VMα
n+1
M−4 − 6VMα

n+1
M−3 + 14VMα

n+1
M−2 + (UM − 28VM +WM )αn+1

M−1

+ (4UM + 33VM )αn+1
M + (UM − 14VM −WM )αn+1

M+1 = rnM . (28)

Equation (28) can be written as

ωM1α
n+1
M−4 + ωM2α

n+1
M−3 + ωM3α

n+1
M−2 + ωM4α

n+1
M−1 + ωM5α

n+1
M + ωM6α

n+1
M+1

= γnM . (29)

where ωMj ’s are coefficients of αM+j−5 in equation (29).
Now, applying the model’s specified boundary conditions, we get

(αn+1
−1 + 4αn+1

0 + αn+1
1 ) = f2[(n+ 1)∆t], (30)

(αn+1
M−1 + 4αn+1

M + αn+1
M+1) = f3[(n+ 1)∆t]. (31)

Considering the above two equations with equations (23), (26) and (29), we
have a matrix of order (M + 3)× (M + 3) defined as

Ωn+1Cn+1 = Γn, (32)

where Ωn+1 =

1 4 1 0 0 0 0 · · · 0
ω01 ω02 ω03 ω04 ω05 ω06 0 · · · 0
ω11 ω12 ω13 ω14 ω15 0 0 · · · 0
0 ω21 ω22 ω23 ω24 ω25 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...
0 · · · · · · 0 ωM−11 ωM−12 ωM−13 ωM−14 ωM−15
0 · · · · · · ωM1 ωM2 ωM3 ωM4 ωM5 ωM6

0 · · · 0 0 0 0 1 4 1
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Cn+1 = (αn+1
−1 , αn+1

0 , αn+1
1 , ....., αn+1

M−1, α
n+1
M , αn+1

M+1)T

and
Γn = (f2[(n+ 1)∆t], γn0 , γ

n
1 , ....., γ

n
M−1, γ

n
M , f3[(n+ 1)∆t])T .

As mentioned in the following section, the system’s solution can be obtained
at any time level by inserting the initial vector Γ0. In the next section, we will
find the initial vector.

3 Initial Vector

With the help of the initial condition defined in (3) and their derivatives at
boundary points as

u(x, 0) = f1(x),

uxx(r, 0) =
d2f1(x)

dx2

∣∣∣∣
r

,

uxx(s, 0) =
d2f1(x)

dx2

∣∣∣∣
s

,

we can find the initial vector Γ0. Discretising the above equations and using
(16) and (18), we get

(α0
i−1 + 4α0

i + α0
i+1) =f1(r + ih),

(33)

1

2h2
(14αn+1

−1 − 33αn+1
0 + 28αn+1

1 − 14αn+1
2 + 6αn+1

3 − αn+1
4 ) =

d2f1(x)

dx2

∣∣∣∣
r

,

(34)

1

2h2
(14αn+1

M+1 − 33αn+1
M + 28αn+1

M−1 − 14αn+1
M−2 + 6αn+1

M−3−α
n+1
M−4)

=
d2f1(x)

dx2

∣∣∣∣
s

. (35)

From the above equations, we will get a matrix of order (M + 3) × (M + 3)
defined as

Ω0C0 = Γ0, (36)
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where

Ω0 =



14 −33 28 −14 6 −1 · · · 0 0
1 4 1 0 0 0 · · · 0 0
0 1 4 1 0 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 1 4 1 0
0 0 · · · 0 0 0 1 4 1
0 0 · · · −1 6 −14 28 −33 14


and

C0 = (α0
−1, α

0
0, α

0
1, ......., , α

0
M , α

0
M+1)T ,

Γ0 =

(
h2

d2f1(x)

dx2

∣∣∣∣
r

, f1(r), f1(r + h), f1(r + 2h), ....., f1(s), h2
d2f1(x)

dx2

∣∣∣∣
s

)T
.

The solution of the system (36) will provide the initial vector. Using this
initial vector, we can get the approximate solution of the proposed model
using equation (32) at any time. In the next section, we will discuss the
stability of the derived scheme.

4 Stability Analysis

With the help of the Fourier method, we will show the stability of the scheme.
A numerical scheme must have bounded absolute error, denoted by e(x, t) =
‖u(x, t)− f(x, t)‖, to become stable. Let us assume un = β, where β is a local
constant [26, 27]. The proposed numerical scheme is given by (20)

(αn+1
i−1 + 4αn+1

i + αn+1
i+1 )

(
1− D∆t

2
(uxx)ni +

ν∆t

2
(ux)ni +

λ∆t

2
− λ∆tuni

)
−
(
D∆t

4h2
uni

)
(αn+1
i−2 + 8αn+1

i−1 − 18αn+1
i + 8αn+1

i+1 + αn+1
i+2 )− 3∆t

h(
D(ux)ni −

ν

2

)
(αn+1
i+1 − α

n+1
i−1 ) = uni

(
1− λ∆t

2

)
.

Let us consider that

S =

(
1− D∆t

2
(uxx)ni +

ν∆t

2
(ux)ni +

λ∆t

2
− λ∆tuni

)
; P =

(
D∆t

4h2
uni

)
;
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Q =
3∆t

h

(
D(ux)ni −

ν

2

)
;R =

(
1− λ∆t

2

)
.

Entering these values into the equation above yields

S(αn+1
i−1 + 4αn+1

i +αn+1
i+1 )− P (αn+1

i−2 + 8αn+1
i−1 − 18αn+1

i + 8αn+1
i+1 + αn+1

i+2 )

−Q(αn+1
i+1 − α

n+1
i−1 ) = R(αni−1 + 4αni + αni+1). (37)

Substituting αni = Aen exp(ijφh), where en is error in the nth iteration, j =√
−1, ′A′ is the amplitude, h is step length and φ is mode number in equation

(37), we get

en+1[S(e−jφh + 4 + ejφh)− P (e−2jφh + 8e−jφh − 18 + 8ejφh + e2jφh) (38)

−Q(ejφh − e−jφh)] = en[R(e−jφh + 4 + ejφh)],

e =
R(cos z + 2)

S(cos z + 2)− P (cos 2z + 8 cos z − 9)− jQ sin z
,

where z = jφh. Let us take a = R(cos z + 2), b = S(cos z + 2) − P (cos 2z +
8 cos z − 9) and c = Q sin z, then

e =
a

b− jc
.

For the numerical scheme to be stable, we have

|e| ≤ 1

=⇒
∣∣∣∣ a

b− jc

∣∣∣∣ ≤ 1

=⇒ −1 ≤ a√
b2 + c2

≤ 1

In first case,

− 1 ≤ a√
b2 + c2

=⇒ 1 ≤ a2

b2 + c2

=⇒ b2 + c2 − a2 ≤ 0
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In second case,

a√
b2 + c2

≥ 1

=⇒ a2

b2 + c2
≥ 1

=⇒ b2 + c2 − a2 ≥ 0

From both cases, we get |b2 + c2 − a2| ≥ 0.
The optimum value of

b2 + c2 − a2 = {S(cos z + 2)− P (cos 2z + 8 cos z − 9)}2 + {Q sin z}2

−{R(cos z + 2)}}2.

is obtained when cos z = 1.
By putting this, we get

b2 + c2 − a2 = 9(S2 −R2).

Now, putting the values of S and R, we get

|b2 + c2 − a2| = |9λ∆t(1− β)(2− λ∆tβ)|,

As 9∆t(1 − β)(2 − λ∆tβ) > 0, so for |λ| ≥ 0 our proposed numerical scheme
is unconditionally stable.

5 Numerical examples

This section applies the derived numerical scheme to three standard numer-
ical problems, specific instances of the nonlinear RADE. (2), along with the
appropriate boundary conditions to validate the effectiveness of the numerical
scheme. To solve the discretised system, the authors did all the calculations
on a Lenovo laptop(11th Gen Intel Core i5,16 GB 2.40GHz) with Mathemat-
ica 12. The computational time to perform every operation is approximately
0.05 seconds. An accurate comparison is made between the numerical solu-
tions achieved and the exact solutions, and error is calculated using l2 and l∞

norms defined as

||u(x, tn)− f(x, tn)||l2 =

√√√√h

M∑
i=0

|u(xi, tn)− f(xi, tn)|2,

||u(x, tn)− f(x, tn)||l∞ = max
0≤i≤M

|u(xi, tn)− f(xi, tn)|,

where the partial differential equation’s precise and numerical solutions are
denoted by the symbols u(x, t) and f(x, t), respectively.
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Figure 1: Plot of the solution for Example 1

5.1 Example 1

Let us consider D = 1, ν = −1 and λ = −1, which reduces the model (2) as

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
+ u

∂u

∂x
+ u(1− u), (39)

whose exact solution is u(x, t) = exp(t− x)[28]. After solving the problem
(39) numerically for h = 0.05 and ∆t = 0.01, the obtained results are shown
through Fig.1. Table 2 displays the errors for different values of x and t that
were found when comparing the exact findings with the numerical solution.
The suggested numerical approach is quite accurate, as indicated by the table.

5.2 Example 2

Considering the mathematical model (2) without reaction term i.e., for D =
1, ν = 1 and λ = 0, which is reduced to

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
− u∂u

∂x
, (40)
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Table 2: Variations of errors for Example 1 at different times

t(sec) l2 error l∞ error

0.1 7.17588× 10−3 1.01079× 10−2

0.2 9.69107× 10−3 1.40418× 10−2

0.3 9.18371× 10−3 1.35965× 10−2

0.4 6.89232× 10−3 1.09177× 10−2

0.5 4.02909× 10−3 6.71902× 10−3

Table 3: Variations of errors for Example 2 at different times

t(sec) l2 error l∞ error

0.25 2.05374× 10−2 2.80308× 10−2

0.50 1.53846× 10−2 2.10831× 10−2

0.75 1.17253× 10−2 1.60885× 10−2

1.00 0.900954× 10−2 1.23741× 10−2

having exact solution u(x, t) = ln(t+1)+x+2
t+1 [21] for appropriate initial and

boundary conditions.
The numerical solution is obtained by taking h = 0.05 and ∆t = 0.05. The
obtained errors are shown in Table 3 for different time levels, which demon-
strate the excellent performance of the suggested numerical technique even for
extremely short temporal and spatial discretisations.

5.3 Example 3

Considering another set of parameters D = 1, ν = 0 and λ = −1, for which
our proposed model (2) is reduced to

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
+ u(1− u), (41)

having the exact solution given by

u(x, t) =
1

4

[
1− tanh

{
1

2
√

6

(
x− 5t√

6

)}]2
(42)

for appropriate initial and boundary conditions. The diffusion equation is
numerically solved by applying the suggested numerical scheme for h = 0.05
and ∆t = 0.05. The maximum absolute and root mean square errors are
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Figure 2: Effect on solute profile with the variation in D at t = 0.5sec for
ν = 0.6 and λ = 1

obtained using l2 and l∞ norms, respectively. Table 4 shows that the proposed
numerical scheme performs well.

6 Solution of the proposed nonlinear RADE model

Once the suggested numerical approach has been verified on three distinct
examples of our pertinent mathematical model, (2), the authors have applied it
to the model (2) under the following prescribed initial and boundary conditions
as given by

u(x, 0) = x+ 1, (43)

u(0, t) =
1

1 + t
, (44)

u(1, t) =
2

1 + t
. (45)

The numerical solution of the nonlinear RADE (2) is obtained using the
proposed numerical scheme through the discretisation with h = 0.05 and
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Table 4: Variations of errors for Example 3 at different times

t(sec) l2 error l∞ error

0.1 1.35658× 10−3 1.90915× 10−3

0.2 1.43863× 10−3 2.09177× 10−3

0.3 6.46713× 10−4 1.04007× 10−3

0.4 6.57265× 10−4 9.54313× 10−4

0.5 1.74904× 10−3 2.35696× 10−3

ν=0.0

ν=0.2
ν=0.4

ν=0.6

ν=0.8

ν=1.0

0.2 0.4 0.6 0.8 1.0
x

0.8

1.0

1.2

1.4

u (x, t)

Figure 3: Effect on solute profile with the variation in ν at t = 0.5sec for
D = 1 and λ = 1
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Figure 4: Effect on solute profile with the variation in λ at t = 0.5sec for
D = 1 and ν = 0.6

∆t = 0.05. Fig.2 shows the effect of variation in diffusion coefficient D in the
presence of advection and reaction coefficients. It shows that an increase in
the diffusion coefficient decreases the solute profile. Fig.3 shows the decrease
in the solute profile with an increase in the nonlinear advection coefficient
when diffusion and reaction coefficients are one. While taking diffusion and
advection coefficients 1 and 0.6, respectively, the effect of variation in reaction
coefficient is shown in Fig.4. This figure shows the decline in the solute profile
as the reaction coefficient increases. These figures clearly show the effect of
nonlinearity in the proposed model’s three main components, viz. diffusion,
advection and reaction on the solute profile.

7 Conclusion

An innovative numerical approach to solve the nonlinear RADE with given ini-
tial and boundary conditions is presented in this study. The scheme is based
on the characteristics of the cubic B-spline. Furthermore, the numerical tech-
nique is demonstrated to be unconditionally convergent. Using conventional
but relevant data, the scheme’s application has been shown for various grid
sizes and values of D, ν and λ. A comparison between the obtained numerical
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results and the exact results through error analysis leads to the conclusion that
the suggested approach works effectively and the computed results match the
exact results. The key contributions of the present study are the presentation
of the effectiveness and accuracy of the proposed approach and the observation
of the solute profile with the changes in the reaction, advection, and diffusion
coefficients.
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